Lecture 10

Linear Systems of First order ODEs

We've looked at $x^{\prime}=f(t, x)$, for $x \in \mathbb{R}$ depending on an independent variable t.

Recall: If f and f_{y} are continuous, then we can find a solution (through Picard's iteration) which is unique if we fix an initial value x_{0} at $t=0$.

For special classes of f, one can say a lot. A particular case of interest is when the ODE is linear, which is the case when $f(t, x)$ is linear in x, i.e., $f(t, x)=a(t) x+b(t)$, for suitable functions $a(t)$ and $b(t)$. It is said to be homogeneous iff the following happens: When x is a solution, any scalar multiple $c x$ is again a solution; in particular, 0 is a solution. In the linear case we just considered, it is homogeneous exactly when $b(t)=0$.

We say that the linear ODE has constant coefficients if $a(t)$ and $b(t)$ are both independent of t. Hence we have homogeneity and constant coefficients iff $a(t)$ is independent of t and $b(t)=0$; in other words, the ODE is of the form $x^{\prime}=a x$, for some scalar a.

Recall: If $x^{\prime}=a x, a$ is constant, the set of all solutions is given by

$$
x=\left\{B e^{a t} \mid B \text { any constant }\right\}
$$

Indeed,

$$
\begin{aligned}
x^{\prime} & =a x \Longrightarrow\left(\frac{d x}{d t}=0 \Leftrightarrow x=0: \text { equilibrium point }\right) \\
\frac{1}{x} \frac{d x}{d t} & =a, \text { when } x \neq 0 \\
\Longrightarrow \int \frac{(d x / d t)}{x} d t & =a \int d t \\
\Longrightarrow \log |x| & =a t+c \\
\Longrightarrow|x| & =e^{a t+c} \\
x & =B e^{a t}, \text { with } B= \pm e^{c} \neq 0
\end{aligned}
$$

But $B=0$ is also possible and corresponds to the equilibrium solution $x=0$. Hence the claim above, that the general solution of $x^{\prime}=a x$ is $x=B e^{a t}$, where B is any constant.

We may think of x as a vector in a space of dimension 1 . The set of all solutions is also a 1-dimensional vector space, with B as the coordinate.
(Brush up on the basics of vector spaces, linear maps, and properties of matrices - including eigenvalues, eigenvectors, and diagonalization - from Ma1b; it will also be good if you know about the Jordan decomposition, which we will discuss later.)

Generalization

Let t be an independent variable (as before), and let \mathbf{x} be a vector in \mathbb{R}^{n}. i.e., $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$, whose derivative is another vector in \mathbb{R}^{n} :

$$
\mathbf{x}^{\prime}=\frac{d \mathbf{x}}{d t}=\left(\begin{array}{c}
d x_{1} / d t \\
d x_{2} / d t \\
\vdots \\
d x_{n} / d t
\end{array}\right)
$$

We can look at a linear ODE in vector form:

$$
\begin{equation*}
\mathbf{x}^{\prime}=A(t) \mathbf{x} \tag{*}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix; $A(t)=\left(a_{i j}(t)\right), 1 \leq i, j \leq n$. Explicitly $(*)$ means we have n ODEs

$$
\begin{gathered}
\frac{d x_{1}}{d t}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n}(t) x_{n} \\
\frac{d x_{2}}{d t}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n}(t) x_{n} \\
\vdots \\
\frac{d x_{n}}{d t}=a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n}(t) x_{n}
\end{gathered}
$$

called an $n \times n$ linear system of ODEs
We can say that this system has constant coefficients iff A is independent of t, i.e., each $a_{i j}$ is a constant. From now on, assume that we are in the case of constant coefficients, and look for solutions $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}=A \mathbf{x}$. It will be of interest to consider the set of all solutions of such a homogeneous linear system of ODE's:

$$
V=\left\{\left.\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \right\rvert\, \mathrm{x}^{\prime}=A \mathbf{x}, A=\left(a_{i j}\right)\right\}
$$

Using the known fact(s) that differentiation and matrix multiplication are linear operations, we get the following

Properties of V :

(i) (existence of origin) $0 \in V$
(ii) (additivity) If \mathbf{x}, \mathbf{y} are both in V, then $\mathbf{x}+\mathbf{y} \in V$
(iii) (homogeneity) If $\mathbf{x} \in V$, then so is $\alpha \mathbf{x}$ for any scalar α

Reason for (ii):

$$
\begin{aligned}
\mathbf{x}^{\prime} & =A \mathbf{x} \\
\mathbf{y}^{\prime} & =A \mathbf{y} \\
\mathbf{x}^{\prime}+\mathbf{y}^{\prime} & =A(\mathbf{x}+\mathbf{y}) \\
(\mathbf{x}+\mathbf{y})^{\prime} & =A(\mathbf{x}+\mathbf{y})
\end{aligned}
$$

Reason for (iii):

$$
\begin{gathered}
\alpha \mathbf{x}=\left(\begin{array}{c}
\alpha x_{1} \\
\vdots \\
\alpha x_{n}
\end{array}\right), \alpha \mathbf{x}^{\prime}=\left(\begin{array}{c}
\alpha x_{1}^{\prime} \\
\vdots \\
\alpha x_{n}^{\prime}
\end{array}\right)=\alpha A \mathbf{x}=A(\alpha \mathbf{x}) \\
\text { since } \quad \alpha A=A \alpha
\end{gathered}
$$

Conclusion

The solution set V of a linear, homogeneous system $\mathbf{x}^{\prime}=A \mathbf{x}$ is a vector space. It is natural to expect V has dimension n.

Basic Questions: Can we guess a non-zero solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, for any $n \times n$ constant matrix A ? If so, can we find all the solutions, i.e., write down a general solution like in the $n=1$ case?

Here's a clever idea for any n : (in many cases, but not all, this furnishes all the solutions)

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Try:

$$
\mathbf{x}=\mathbf{v} e^{\lambda t}, \quad \text { where } \quad \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \neq 0, \lambda \in \mathbb{R}
$$

Here \mathbf{v} is independent of t. Then

$$
\mathbf{x}^{\prime}=\lambda \mathbf{v} e^{\lambda t}
$$

But $\mathbf{x}^{\prime}=A \mathbf{x}$, so we must have

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{v} e^{\lambda t} \\
\Rightarrow A \mathbf{v} \underbrace{e^{\lambda t}}_{\neq 0} & =\lambda \mathbf{v} \underbrace{e^{\lambda t}}_{\neq 0} \\
\Rightarrow A \mathbf{v} & =\lambda \mathbf{v}
\end{aligned}
$$

Hence λ must be an eigenvalue (since \mathbf{v} is a non-zero vector).
Conversely, if $\mathbf{x}^{\prime}=A \mathbf{x}$, with λ an eigenvalue of A, i.e., with $A \mathbf{v}=\lambda \mathbf{v}$, for some non-zero vector \mathbf{v}, then

$$
A \mathbf{v} e^{\lambda t}=\lambda \mathbf{v} e^{\lambda t}=\frac{d}{d t}\left(\mathbf{v} e^{\lambda t}\right)
$$

So $\mathbf{x}=\mathbf{v} e^{\lambda t}$ is a solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.
Recall from Basic Linear Algebra (Ma1b):
Given any $n \times n$ matrix A, we can always find all of its eigenvalues in \mathbb{C}. So we get an added complexity (no pun intended) on whether there are real eigenvalues. To elaborate further, the eigenvalues λ are solutions of the characteristic equation

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=0,
$$

which is a polynomial equation in λ of degree n. There are n complex roots but not necessarily all distinct. Even when A is a real matrix, some of the eigenvalues may be non-real. However, when A is a real matrix, if a complex, i.e., non-real, eigenvalue λ occurs, then its complex conjugate $\bar{\lambda}$ will also be an eigenvalue of A, which is evident from applying complex conjugation to the characteristic equation. Consequently, the complex eigenvalues come in conjugate pairs, and when n is odd, this forces the existence of at least one real eigenvalue. One of the basic results of Linear Algebra (Ma1b), which we will use at various places, is this:

If A is a real symmetric matrix, then all of its eigenvalues are real.
Recall that $A=\left(a_{i j}\right)$ is symmetric iff $a_{j i}=a_{i j}$ for all $i, j \leq n$, i.e., iff A equals its transpose $A^{t}=\left(a_{j i}\right)$. More generally, we say that a complex matrix A is
hermitian iff A equals its conjugate transpose, i.e., $A=\bar{A}^{t}$. The general fact (hopefully discussed in Ma1b) is that the eigenvalues of a complex hermitian matrix are all real. Of course, a real matrix is hermitian iff it is symmetric, since $\bar{A}=A$ for real A.

Examples:

(i) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
\operatorname{det}(\underbrace{\lambda I_{2}}_{\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)}-A)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right)=\lambda^{2}-1
$$

Eigenvalues: $\quad \lambda=1,-1$ since ± 1 : roots of $\lambda^{2}-1=0$.
Eigenvectors:

$\lambda=1$	$\lambda=-1$
$A \mathbf{v}=\mathbf{v}$	$A \mathbf{v}=-\mathbf{v}$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y} \stackrel{?}{=}\binom{x}{y}$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y} \stackrel{?}{=}\left(\begin{array}{l}-x \\ \downarrow \\ -y\end{array}\right)$
$x=y$	$x=-y$
Take $\mathbf{v}=\binom{1}{1}$	Take $\mathbf{v}=\binom{1}{-1}$

(ii) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \rightarrow \operatorname{det}\left(\lambda I_{2}-A\right)=\lambda^{2}+1$

Eigenvalues: $\quad \lambda_{ \pm}= \pm i$
Eigenvectors: $\quad \mathbf{v}^{ \pm}=\binom{1}{ \pm i} \quad$ (no real eigenvector)
Suppose $\lambda_{1} \neq \lambda_{2}$ are two real eigenvalues of A. Then we get two distinct solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, namely

$$
\mathbf{x}^{(1)}:=\mathbf{v}^{(1)} e^{\lambda_{1} t} \quad \text { and } \quad \mathbf{x}^{(2)}:=\mathbf{v}^{(2)} e^{\lambda_{2} t}
$$

with $\mathbf{v}^{(1)}$ eigenvector of λ_{1} and $\mathbf{v}^{(2)}$ eigenvector for λ_{2}. Indeed, for $j=1,2$, since $A \mathbf{v}^{(j)}=\lambda_{j} \mathbf{v}^{(j)}$,

$$
A \mathbf{x}^{(j)}=\lambda_{j} \mathbf{v}^{(j)} e^{\lambda_{j} t}=\mathbf{v}^{(j)} \frac{d}{d t}\left(e^{\lambda_{j} t}\right)=\frac{d}{d t} \mathbf{x}^{(j)}
$$

Claim: $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are linearly independent solutions.
Proof: Suppose $c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)}=0$, for scalars c_{1}, c_{2}, not both zero. Putting $t=0$, and noting that, by definition, $\mathbf{x}^{(j)}(0)=\mathbf{v}^{(j)}$ for $j \in\{1,2\}$, we get the linear dependence relation

$$
\begin{equation*}
c_{1} \mathbf{v}^{(1)}+c_{2} \mathbf{v}^{(2)}=0, \tag{1}
\end{equation*}
$$

not both constants c_{1}, c_{2} being zero. So it suffices to check that $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$ are linearly independent. This should be clear from the material covered in Ma1b, since these eigenvectors correspond to different eigenvalues, but in any case, here is the argument: To begin, since the eigenvectors are non-zero, if one constant, say c_{1}, is zero, then so is the other. So we may assume that both c_{1} and c_{2} are non-zero. Applying the matrix A to this relation (1), and using the fact that $A \mathbf{v}^{(j)}=\lambda_{j} \mathbf{v}^{(j)}$, we obtain

$$
\begin{equation*}
c_{1} \lambda_{1} \mathbf{v}^{(1)}+c_{2} \lambda_{2} \mathbf{v}^{(2)}=0 \tag{1}
\end{equation*}
$$

Multiplying (1) by λ_{2} and subtracting it from (2),

$$
c_{1}\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}^{(1)}=0,
$$

which is impossible since $c_{1}, \lambda_{1}-\lambda_{2}$, and $\mathbf{v}^{(1)}$ are all non-zero. This gives the necessary contradiction, and the Claim follows.

Lecture 11

Linear, homogeneous system with constant coefficients:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \tag{}\\
\vdots \\
x_{n}
\end{array}\right), \mathbf{x}^{\prime}=\frac{d \mathbf{x}}{d t}, A=\left(a_{i j}\right)_{1 \leq i, j \leq n}
$$

During the first 3 weeks we studied this for $n=1$. In general, try to understand well the $n=2$ and $n=3$ cases. For $n=2$, you should know how to draw various pictures, often called portraits, in the (x_{1}, x_{2})-plane.

Equilibrium points are the solutions \mathbf{x} for which $\mathbf{x}^{\prime}=0$, i.e., where $A \mathbf{x}=0$. Important special case: when A is an invertible matrix, i.e., when the determinant of A, denotes as $\operatorname{det}(A)$ or just $|A|$, is nonzero. Then there exists an inverse matrix to A. Applying A^{-1} (in this case) to $A \mathbf{x}=0$ on both sides, we see that $\mathbf{x}=0=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$ is the only equilibrium point (when A is invertible).

Check that in general, a matrix A is singular, i.e., not invertible, if and only if 0 is an eigenvalue of A.

General principle/ Theorem:

Consider $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$
(a) If λ is an eigenvalue of A with eigenvector $\mathbf{v}(\neq 0)$, then the function of t given by $\mathbf{x}=\mathbf{v} e^{\lambda t}$ is a non-zero solution of ($*$).
(b) Suppose A has n distinct eigenvalues, say $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ (with $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$) with eigenvector $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots \mathbf{v}^{(n)}$, i.e.,

$$
A \mathbf{v}^{(j) \mid}=\lambda_{j} \mathbf{v}^{(i)}
$$

then every solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is a linear combination

$$
\mathbf{x}=c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)}+\cdots+c_{n} \mathbf{x}^{(n)}
$$

where the c_{j} are scalars and

$$
\mathbf{x}^{(j)}=\mathbf{v}^{(i)} e^{\lambda_{j} t}
$$

for each $j=1,2, \ldots, n$.

Look at the case $\mathbf{n}=\mathbf{2}$: When the eigenvalues are (real and) distinct, i.e., $\lambda_{1} \neq \lambda_{2}$,

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\mathbf{v}^{(1)} e^{\lambda_{1} t}, \quad \mathbf{x}^{(2)}=\mathbf{v}^{(2)} e^{\lambda_{2} t} \\
& W\left(\lambda^{(1)}, \lambda^{(2)}\right)=\operatorname{det}\left({ }^{(1)} e^{\lambda_{1} t}, \mathbf{v}^{(2)} e^{\lambda_{2} t}\right. \\
&=\operatorname{det}\left(\begin{array}{ll}
a e^{\lambda_{1} t} & c e^{\lambda_{2} t} \\
b e^{\lambda_{1} t} & d e^{\lambda_{2} t}
\end{array}\right) \\
&=\operatorname{det}\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) e^{\left(\lambda_{1} \lambda_{2}\right) t}
\end{aligned}
$$

Remarks:

(a) It is more subtle if the solutions are not real or not all distinct. Here when $\lambda_{1} \ldots \lambda_{n}$ are all real and distinct, all fundamental solutions $\mathbf{x}^{(1)} \ldots \mathbf{x}^{(n)}$ are all real vectors, i.e., in \mathbb{R}^{n}.
(b) A key point to remember (from Ma1b) is that eigenvectors corresponding to distinct eigenvalues are linearly independent
(c) The matrix $\Psi=\left(\begin{array}{llll}\mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \ldots & \mathbf{x}^{(n)}\end{array}\right)$ is called a fundamental matrix.
(d) If $\mathbf{y}^{(1)} \ldots \mathbf{y}^{(n)}$ are n arbitrary solutions of (*), one defines their

Wronskian determinant to be

$$
W\left(\mathbf{y}^{(1)} \ldots \mathbf{y}^{(n)}\right)=\operatorname{det}\left(\mathbf{y}^{(1)} \ldots \mathbf{y}^{(n)}\right)
$$

These $\mathbf{y}^{(j)}$'s give a fundamental set of solutions when
$W\left(\mathbf{y}^{(1)} \ldots \mathbf{y}^{(n)}\right) \neq 0$.
Clearly, there are at most n independent solutions.

Example:

(1) $n=2, \mathbf{x}^{\prime}=A \mathbf{x}, A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathbf{x}=\binom{x_{1}}{x_{2}}$

We saw last time A has 2 eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$, with corresponding eigenvectors $\mathbf{v}^{(1)}=\binom{1}{1}$ and $\mathbf{v}^{(2)}=\binom{1}{-1}$.

The two basic solutions of the linear system are

$$
\mathbf{x}^{(1)}=\mathbf{v}^{(1)} e^{t}=\binom{1}{1} e^{t}, \mathbf{x}^{(2)}=\mathbf{v}(2) e^{t}=\binom{1}{-1} e^{-t},
$$

and the Wronskian is

$$
W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{t} & e^{t} \\
e^{t} & e^{-t}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=-2 \neq 0 .
$$

Thus $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ are independent solutions. Of course we knew this already, because they correspond to distinct eigenvalues.

Slope field:

This is a plot in the $\left(x_{1}, x_{2}\right)$-plane, called the phase plane, where one chooses a grid and draws, at each point on the grid, a short arrow in the direction of the vector connecting the origin to the point determined by $A\binom{x_{1}}{x_{2}}$.

Note that since A is a constant matrix, $\mathbf{x}^{\prime}(t)$, given by $A \mathbf{x}$, is independent of t, which is what allows us to draw the slope field on the phase plane (at all times t.

Asymptotics:

Suppose A is an $n \times n$-matrix with distinct (real) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$. Then the general solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ is given by

$$
\mathbf{x}=c_{1} \mathbf{v}^{(1)} e^{\lambda_{1} t} \cdots+c_{n} \mathbf{v}^{(n)} e^{\lambda_{n} t}
$$

Note that when $\lambda_{j}>0, e^{\lambda_{j} t}$ goes to ∞ as $t \rightarrow \infty$ and goes to 0 when $t \rightarrow-\infty$. It follows that the term corresponding to the largest (positive) λ_{j} dominates the other terms as $t \rightarrow \infty$, while the largest (negative) λ_{j} dominates when $t \rightarrow-\infty$. This is because the eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots \mathbf{v}^{(n)}$ of A are static, i.e., do not vary with t (in our "constant coefficients" context). However, for each j with $\lambda_{j} \neq 0$, the corresponding basic solution $\mathbf{x}^{(j)}:=\mathbf{v}^{(j)} e^{\lambda_{j} t}$ evolves as t varies.

Note: If A has a non-zero eigenvalue, then the equilibrium solution $\mathbf{x}=0$ is not asymptotically stable (or even stable), since any solution which is near 0 goes to a (non-zero vector times) $\pm \infty$ either as t goes to ∞ or as $t \rightarrow-\infty$. If the only eigenvalue is $0, \mathbf{x}=0$ is stable as solutions near it will stay nearby for larger $|t|$, but is not asymptotically stable.

Trajectory:

To fix ideas, look at the example above with eigenvalues ± 1, and with general solution

$$
\begin{aligned}
& \mathbf{x}=\phi(t) \\
& \mathbf{x}_{0}=\phi(0)=c_{1} \mathbf{v}^{(1)} e^{t}+c_{2} \mathbf{v}^{(2)} e^{-t} \\
& \mathbf{v}^{(1)}+c_{2} \mathbf{v}^{(2)}=c_{1}\binom{1}{1}+c_{2}\binom{1}{-1}
\end{aligned}
$$

If we sketch the evolution of $\phi(t)$ for any particular choice of c_{1}, c_{2}, we can represent it by a curve, called a trajectory, in the phase plane.

A phase portrait is just a sampling of different types of trajectories in the phase plane.

Trajectory of $\mathbf{x}^{(1)}(t)$:

$$
\mathbf{x}^{(1)}(t)=\binom{1}{1} e^{t}
$$

Choose $t_{1}, t_{2}, \ldots t_{m}$ and plot $\mathbf{x}^{(1)}\left(t_{j}\right)$ for each j, and then join them:

$$
\begin{aligned}
& \mathbf{x}^{(1)}(0)=\binom{1}{1}, \mathbf{x}^{(1)}(1)=\binom{e}{e}, \\
& \mathbf{x}^{(1)}(a)=\binom{e^{a}}{e^{a}}, \ldots
\end{aligned}
$$

Lecture 12

Last time we discussed the example, in the plane:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}=\binom{x_{1}}{x_{2}}, A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

A three-dimensional example

$$
A=\left(\begin{array}{ccc}
7 & -8 & 0 \\
3 & -8 & 0 \\
0 & 0 & 3
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ subject to the initial condition: $\quad \mathbf{x}(0)=\left(\begin{array}{c}7 \\ 3 \\ -1\end{array}\right)$.
Eigenvalues of A : Solve $\operatorname{det}\left(\lambda I_{3}-A\right)=0$.

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
\lambda-7 & 8 & 0 \\
-3 & \lambda+8 & 0 \\
0 & 0 & \lambda-3
\end{array}\right) & =\left|\begin{array}{cc}
\lambda-7 & 8 \\
-3 & \lambda+8
\end{array}\right|(\lambda-3) \\
& =[(\lambda-7)(\lambda+8)+24](\lambda-3) \\
& =\left(\lambda^{2}+\lambda-56+24\right)(\lambda-3) \\
& =(\lambda-1)(\lambda+2)](\lambda-3)
\end{aligned}
$$

Thus $\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=3$.
Eigenvectors: \quad Look for $\mathbf{v}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \neq 0$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\lambda_{3}=3: \underbrace{\left(\begin{array}{ccc}
7 & -8 & 0 \\
3 & -8 & 0 \\
00 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)}_{\left(\begin{array}{c}
7 a-8 b \\
3 a-8 b \\
3 c
\end{array}\right)}
$$

We may take $\mathbf{v}^{(3)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

$$
\begin{aligned}
& \lambda_{1}=1: \quad \text { Want } A\left(\mathbf{v}^{(1)}\right.=\mathbf{v}^{(1)} . \operatorname{Put} \mathbf{v}^{(1)}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { so that } \\
& 7 a-8 b=a \\
& 3 a-8 b=b \\
& 3 c=c \Rightarrow c=0
\end{aligned}
$$

We may take $\mathbf{v}^{(1)}=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$.

$$
\lambda_{2}=-2: \quad \text { Check: } \quad \mathbf{v}^{(2)}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \text { works! }
$$

Note: Put

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
\mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)}
\end{array}\right) \text {, matrix of eigenvectors } \\
& =\left(\begin{array}{lll}
3 & 2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { Check : } M^{-1} & =\left(\begin{array}{ccc}
1 & -2 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { using }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1} & =\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
\Longrightarrow \underbrace{M^{-1} A M}_{\text {conjugation of } A \text { by } M} & =\left(\begin{array}{ccc}
1 & -2 & 0 \\
2 & -6 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
7 & -8 & 0 \\
3 & -8 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{lll}
3 & 2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right) \leftarrow \text { the diagonal matrix of eigenvalues }
\end{aligned}
$$

Since the eigenvalues of A are all (real and) distinct, we know that a fundamental set (basis) of solutions of $A \mathbf{x}=\mathbf{x}^{\prime}$ is given by:

$$
\mathbf{x}^{(j)}, \mathbf{x}^{(j)}, \mathbf{x}^{(j)}, \text { with } \mathbf{x}^{(j)}=\mathbf{v}^{(j)} e^{\lambda j t}, \text { for each } j=\{1,2,3\}
$$

Explicitly,

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) e^{t} \\
& \mathbf{x}^{(2)}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) e^{-2 t} \\
& \mathbf{x}^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{3 t}
\end{aligned}
$$

The associated fundamental matrix

$$
\Psi=\left(\begin{array}{lll}
\mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(3)}
\end{array}\right)=\left(\begin{array}{ccc}
3 e^{t} & 2 e^{-2 t} & 0 \\
e^{t} & e^{-2 t} & 0 \\
0 & 0 & e^{3 t}
\end{array}\right)
$$

whose Wronskian is

$$
W\left(\mathbf{x}^{(1)} \quad \mathbf{x}^{(2)} \quad \mathbf{x}^{(3)}\right)=\left(3 e^{-t}-2 e^{-t}\right) e^{3 t}=e^{2 t} \neq 0
$$

Asymptotics of the fundamental solutions

$$
\begin{aligned}
& \mathbf{x}^{(1)}(0)=\mathbf{v}^{(1)}: \text { starting point at } t=0 \\
& \mathbf{x}^{(1)}(t)=\mathbf{v}^{(1)} e^{t} \rightarrow\left(\begin{array}{l}
\infty \\
\infty \\
0
\end{array}\right) \text { as } t \rightarrow \infty ; \text { the first } 2 \text { coordinates go to }+\infty
\end{aligned}
$$

while third one stays at 0 . Also, as $t \rightarrow-\infty, \mathbf{x}^{(1)}(t) \rightarrow\left(\begin{array}{c}\infty \\ \infty \\ 0\end{array}\right)$. Similarly,

$$
\begin{aligned}
\mathbf{x}^{(2)}(t) & =\mathbf{v}^{(2)} e^{-2 t}
\end{aligned}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) e^{-2 t} \rightarrow\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \text { as } t \rightarrow \infty
$$

Note: No non-zero linear combination of $\mathbf{x}_{1}(t), \mathbf{x}_{3}(t)$ goes to the equilibrium solution $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ as $t \rightarrow \infty$, while $\mathbf{x}^{(2)}$ does approach the equilibrium solution as $t \rightarrow \infty$.

$$
\mathbf{x}^{(2)}(0)=\mathbf{v}^{(2)}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

General Solution:

$$
\mathbf{x}=c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)}+c_{3} \mathbf{x}^{(3)}
$$

where c_{1}, c_{2}, c_{3} are scalars.
The given initial condition requires that $\mathbf{x}(0)=\left(\begin{array}{c}7 \\ 3 \\ -1\end{array}\right)$. This gives a system of equations for c_{1}, c_{2}, c_{3} :

$$
c_{1}\left(\begin{array}{l}
3 \tag{}\\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
7 \\
3 \\
-1
\end{array}\right)
$$

Write $C=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$ as a vector of constants.
Consider the matrix of eigenvectors $M=\left(\begin{array}{lll}3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, which diagonalizes the matrix A defining the linear system. It follows that

$$
M C=\mathbf{x}(0)
$$

We know that M is invertible, and so

$$
C=M^{-1} \mathbf{x}(0)=\left(\begin{array}{ccc}
1 & -2 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
7 \\
3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

So the unique solution satisfying the Initial Condition is:

$$
\mathbf{x}=\mathbf{x}^{(1)}+2 \mathbf{x}^{(2)}-\mathbf{x}^{(3)}=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) e^{t}+\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right) e^{-2 t}-\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{3 t} .
$$

Terminology

Let $\mathbf{x}^{\prime}=A \mathbf{x}$ be a homogeneous, linear system, with A an $n \times n$-matrix with constant coefficients.

If we have n solutions, say $\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \ldots \mathbf{y}^{(n)}$ of this system of ODE's, then the Wronskian of $\left\{\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}\right\}$ is

$$
W\left(\mathbf{y}^{(1)}, \mathbf{y}(2), \ldots, \mathbf{y}^{(n)}\right)=\operatorname{det}\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)} \ldots \mathbf{y}^{(n)}\right)
$$

The $\mathbf{y}^{(j)}$ give a basis of solutions in an interval $(-a, a)$, for some $a>0$, iff $W\left(\mathbf{y}^{(1)}, \ldots \mathbf{y}^{(n)}\right) \neq 0$ on $(-a, a)$. This is the same as saying: The $\mathbf{y}^{(j)}$ are linearly independent on the interval.

If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}$ is a fundamental set of solutions, the associated fundamental matrix is

$$
\Psi=\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \ldots \mathbf{x}^{(n)}\right.
$$

A simple example where A is real, but has
 non-real eigenvalues in the plane

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

As we saw earlier, the eigenvalues of A are $\lambda_{1}=i, \lambda_{2}=-i$, with associated eigenvectors

$$
\mathbf{v}^{(1)}=\binom{1}{i}, \quad \mathbf{v}^{(2)}=\binom{1}{-i} .
$$

We get distinct solutions:

$$
\begin{aligned}
& \mathbf{z}^{(1)}=\mathbf{v}^{(1)} e^{\lambda t} \\
&=\binom{1}{i} e^{i t}=\binom{e^{i t}}{i e^{i t}} \\
& \mathbf{z}^{(2)}=\mathbf{v}^{(2)} e^{\lambda_{2} t}=\binom{1}{-i} e^{-i t}=\binom{e^{-i t}}{-i e^{-i t}}
\end{aligned}
$$

The only catch is that the solutions are complex, not real!

If \mathbf{z} is a complex solution, i.e., if $\mathbf{z}^{\prime}=A \mathbf{z}$, then $\mathbf{x}=\operatorname{Re}(\mathbf{z})$ and $\mathbf{y}=\operatorname{Im}(\mathbf{z})$ are also solutions, since A is real, $\operatorname{Re}\left(\mathbf{z}^{\prime}\right)=\mathbf{x}^{\prime}$, and $\operatorname{Im}\left(\mathbf{z}^{\prime}\right)=\mathbf{y}^{\prime}$. The nice thing is that \mathbf{x}, \mathbf{y} are real solutions. Since

$$
e^{ \pm i t}=\cos t \pm i \sin t, \quad \pm i e^{ \pm i t}=-\sin t \pm i \cos t
$$

the real solutions in the example above are

$$
\mathbf{x}^{(1)}(t)=\binom{\cos t}{-\sin t}, \quad \mathbf{y}^{(1)}(t)=\binom{\sin t}{\cos t},
$$

and

$$
\mathbf{x}^{(2)}(t)=\binom{\cos t}{-\sin t}, \quad \mathbf{y}^{(2)}(t)=\binom{-\sin t}{-\cos t} .
$$

Note that

$$
\mathbf{x}^{(1)}(t)=\mathbf{x}^{(2)}(t), \quad \mathbf{y}^{(1)}(t)=-\mathbf{y}^{(2)}(t) .
$$

So it suffices to consider just the solutions $\mathbf{x}^{(1)}$ and $\mathbf{y}^{(1)}$. Moreover, their Wronskian is

$$
W\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right)=\operatorname{det}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)=\cos ^{2} t+\sin ^{2} t=1 \neq 0
$$

So these two real solutions are linearly independent (over \mathbb{R}), and the corresponding fundamental matrix

$$
\Psi=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

is a rotation matrix, representing the rotation (with center $\mathbf{0}$) of the points in the plane through the angle t in the counterclockwise direction.

Finally, the general real solution of $\mathbf{u}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathbf{u}$ is given by

$$
\mathbf{u}(t)=b_{1}\binom{\cos t}{-\sin t}+b_{2}\binom{\sin t}{\cos t},
$$

where b_{1}, b_{2} are arbitrary real constants.

