Lecture 10

Linear Systems of First order ODEs

We've looked at x' = f(t, x), for $x \in \mathbb{R}$ depending on an independent variable t.

Recall: If f and f_y are continuous, then we can find a solution (through Picard's iteration) which is unique if we fix an initial value x_0 at t = 0.

For special classes of f, one can say a lot. A particular case of interest is when the ODE is *linear*, which is the case when f(t, x) is linear in x, i.e., f(t, x) = a(t)x + b(t), for suitable functions a(t) and b(t). It is said to be *homogeneous* iff the following happens: When x is a solution, any scalar multiple cx is again a solution; in particular, 0 is a solution. In the linear case we just considered, it is homogeneous exactly when b(t) = 0.

We say that the linear ODE has constant coefficients if a(t) and b(t) are both independent of t. Hence we have homogeneity and constant coefficients iff a(t) is independent of t and b(t) = 0; in other words, the ODE is of the form x' = ax, for some scalar a.

Recall: If x' = ax, a is constant, the set of all solutions is given by

$$x = \{Be^{at} \mid B \text{ any constant}\}\$$

Indeed,

$$x' = ax \implies \left(\frac{dx}{dt} = 0 \Leftrightarrow x = 0: \text{ equilibrium point}\right)$$
$$\frac{1}{x}\frac{dx}{dt} = a, \text{ when } x \neq 0$$
$$\implies \int \frac{(dx/dt)}{x} dt = a \int dt$$
$$\implies \log |x| = at + c$$
$$\implies |x| = e^{at+c}$$
$$x = Be^{at}, \text{ with } B = \pm e^c \neq 0$$

But B = 0 is also possible and corresponds to the equilibrium solution x = 0. Hence the claim above, that the general solution of x' = ax is $x = Be^{at}$, where B is any constant.

We may think of x as a vector in a space of dimension 1. The set of all solutions is also a 1-dimensional vector space, with B as the coordinate.

(Brush up on the basics of vector spaces, linear maps, and properties of matrices - including eigenvalues, eigenvectors, and diagonalization - from Ma1b; it will also be good if you know about the Jordan decomposition, which we will discuss later.)

Generalization

Let t be an independent variable (as before), and let \mathbf{x} be a vector in \mathbb{R}^n .

i.e., $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, whose derivative is another vector in \mathbb{R}^n :

$$\mathbf{x}' = \frac{d\mathbf{x}}{dt} = \begin{pmatrix} dx_1/dt \\ dx_2/dt \\ \vdots \\ dx_n/dt \end{pmatrix}$$

We can look at a linear ODE in vector form:

$$\mathbf{x}' = A(t)\mathbf{x} \tag{(*)}$$

where A(t) is an $n \times n$ matrix; $A(t) = (a_{ij}(t)), 1 \leq i, j \leq n$. Explicitly (*) means we have n ODEs

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n$$

$$\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n$$

called an $n \times n$ linear system of ODEs

We can say that this system has constant coefficients iff A is independent of t, i.e., each a_{ij} is a constant. From now on, assume that we are in the case of constant coefficients, and look for solutions $\mathbf{x}(t)$ of $\mathbf{x}' = A\mathbf{x}$. It will be of interest to consider the set of all solutions of such a homogeneous linear system of ODE's:

$$V = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid \mathbf{x}' = A\mathbf{x}, \ A = (a_{ij}) \right\}$$

Using the known fact(s) that differentiation and matrix multiplication are linear operations, we get the following

Properties of V:

- (i) (existence of origin) $0 \in V$
- (ii) (additivity) If \mathbf{x}, \mathbf{y} are both in V, then $\mathbf{x} + \mathbf{y} \in V$
- (iii) (homogeneity) If $\mathbf{x} \in V$, then so is $\alpha \mathbf{x}$ for any scalar α

Reason for (ii):

$$\mathbf{x}' = A\mathbf{x}$$
$$\mathbf{y}' = A\mathbf{y}$$
$$\mathbf{x}' + \mathbf{y}' = A(\mathbf{x} + \mathbf{y})$$
$$(\mathbf{x} + \mathbf{y})' = A(\mathbf{x} + \mathbf{y})$$

Reason for (iii):

$$\alpha \mathbf{x} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}, \ \alpha \mathbf{x}' = \begin{pmatrix} \alpha x_1' \\ \vdots \\ \alpha x_n' \end{pmatrix} = \alpha A \mathbf{x} = A(\alpha \mathbf{x}),$$

since $\alpha A = A\alpha$.

Conclusion

The solution set V of a linear, homogeneous system $\mathbf{x}' = A\mathbf{x}$ is a vector space. It is natural to expect V has dimension n.

Basic Questions: Can we guess a non-zero solution of $\mathbf{x}' = A\mathbf{x}$, for any $n \times n$ constant matrix A? If so, can we find all the solutions, i.e., write down a general solution like in the n = 1 case?

Here's a clever idea for any n: (in many cases, but not all, this furnishes all the solutions)

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Try:

$$\mathbf{x} = \mathbf{v}e^{\lambda t}, \quad \text{where} \quad \mathbf{v} \in \mathbb{R}^n, \mathbf{v} \neq 0, \ \lambda \in \mathbb{R}.$$

Here \mathbf{v} is independent of t. Then

$$\mathbf{x}' = \lambda \mathbf{v} e^{\lambda t}$$

But $\mathbf{x}' = A\mathbf{x}$, so we must have

$$A\mathbf{x} = \lambda \mathbf{v} e^{\lambda t}$$
$$\Rightarrow A\mathbf{v} \underbrace{e^{\lambda t}}_{\neq 0} = \lambda \mathbf{v} \underbrace{e^{\lambda t}}_{\neq 0}$$
$$\Rightarrow A\mathbf{v} = \lambda \mathbf{v}$$

Hence λ must be an eigenvalue (since **v** is a non-zero vector).

Conversely, if $\mathbf{x}' = A\mathbf{x}$, with λ an eigenvalue of A, i.e., with $A\mathbf{v} = \lambda \mathbf{v}$, for some non-zero vector \mathbf{v} , then

$$A\mathbf{v}e^{\lambda t} = \lambda \mathbf{v}e^{\lambda t} = \frac{d}{dt}(\mathbf{v}e^{\lambda t}).$$

So $\mathbf{x} = \mathbf{v}e^{\lambda t}$ is a solution of $\mathbf{x}' = A\mathbf{x}$.

Recall from *Basic Linear Algebra* (Ma1b):

Given any $n \times n$ matrix A, we can always find all of its eigenvalues in \mathbb{C} . So we get an added complexity (no pun intended) on whether there are real eigenvalues. To elaborate further, the eigenvalues λ are solutions of the *characteristic equation*

$$\det(\lambda I_n - A) = 0,$$

which is a polynomial equation in λ of degree n. There are n complex roots but not necessarily all distinct. Even when A is a real matrix, some of the eigenvalues may be non-real. However, when A is a real matrix, if a complex, i.e., non-real, eigenvalue λ occurs, then its complex conjugate $\overline{\lambda}$ will also be an eigenvalue of A, which is evident from applying complex conjugation to the characteristic equation. Consequently, the complex eigenvalues come in conjugate pairs, and when n is odd, this forces the existence of at least one real eigenvalue. One of the basic results of Linear Algebra (Ma1b), which we will use at various places, is this:

If A is a real symmetric matrix, then all of its eigenvalues are real.

Recall that $A = (a_{ij})$ is symmetric iff $a_{ji} = a_{ij}$ for all $i, j \leq n$, i.e., iff A equals its transpose $A^t = (a_{ji})$. More generally, we say that a complex matrix A is hermitian iff A equals its conjugate transpose, i.e., $A = \overline{A}^t$. The general fact (hopefully discussed in Ma1b) is that the eigenvalues of a complex hermitian matrix are all real. Of course, a real matrix is hermitian iff it is symmetric, since $\overline{A} = A$ for real A.

Examples:

(i)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\det(\underbrace{\lambda I_2}_{\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}} -A) = \det\begin{pmatrix} \lambda & -1 \\ -1 & \lambda \end{pmatrix} = \lambda^2 - 1$$

Eigenvalues: $\lambda = 1, -1$ since ± 1 : roots of $\lambda^2 - 1 = 0$. *Eigenvectors*:

$$\lambda = 1 \qquad \lambda = -1 \qquad A\mathbf{v} = \mathbf{v} \qquad A\mathbf{v} = -\mathbf{v} \qquad A\mathbf{v} = -\mathbf{v$$

Suppose $\lambda_1 \neq \lambda_2$ are two real eigenvalues of A. Then we get two distinct solutions to $\mathbf{x}' = A\mathbf{x}$, namely

$$\mathbf{x}^{(1)} := \mathbf{v}^{(1)} e^{\lambda_1 t} \quad \text{and} \quad \mathbf{x}^{(2)} := \mathbf{v}^{(2)} e^{\lambda_2 t},$$

with $\mathbf{v}^{(1)}$ eigenvector of λ_1 and $\mathbf{v}^{(2)}$ eigenvector for λ_2 . Indeed, for j = 1, 2, since $A\mathbf{v}^{(j)} = \lambda_j \mathbf{v}^{(j)}$,

$$A\mathbf{x}^{(j)} = \lambda_j \mathbf{v}^{(j)} e^{\lambda_j t} = \mathbf{v}^{(j)} \frac{d}{dt} \left(e^{\lambda_j t} \right) = \frac{d}{dt} \mathbf{x}^{(j)}.$$

Claim: $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are linearly independent solutions.

Proof: Suppose $c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} = 0$, for scalars c_1, c_2 , not both zero. Putting t = 0, and noting that, by definition, $\mathbf{x}^{(j)}(0) = \mathbf{v}^{(j)}$ for $j \in \{1, 2\}$, we get the linear dependence relation

(1)
$$c_1 \mathbf{v}^{(1)} + c_2 \mathbf{v}^{(2)} = 0,$$

not both constants c_1, c_2 being zero. So it suffices to check that $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$ are linearly independent. This should be clear from the material covered in Ma1b, since these eigenvectors correspond to different eigenvalues, but in any case, here is the argument: To begin, since the eigenvectors are non-zero, if one constant, say c_1 , is zero, then so is the other. So we may assume that both c_1 and c_2 are non-zero. Applying the matrix A to this relation (1), and using the fact that $A\mathbf{v}^{(j)} = \lambda_j \mathbf{v}^{(j)}$, we obtain

(1)
$$c_1\lambda_1\mathbf{v}^{(1)} + c_2\lambda_2\mathbf{v}^{(2)} = 0$$

Multiplying (1) by λ_2 and subtracting it from (2),

$$c_1(\lambda_1 - \lambda_2)\mathbf{v}^{(1)} = 0,$$

which is impossible since c_1 , $\lambda_1 - \lambda_2$, and $\mathbf{v}^{(1)}$ are all non-zero. This gives the necessary contradiction, and the Claim follows.

Lecture 11

Linear, homogeneous system with constant coefficients:

$$\mathbf{x}' = A\mathbf{x}, \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ \mathbf{x}' = \frac{d\mathbf{x}}{dt}, \ A = (a_{ij})_{1 \le i,j \le n}$$
(*)

During the first 3 weeks we studied this for n = 1. In general, try to understand well the n = 2 and n = 3 cases. For n = 2, you should know how to draw various pictures, often called portraits, in the (x_1, x_2) -plane.

Equilibrium points are the solutions \mathbf{x} for which $\mathbf{x}' = 0$, i.e., where $A\mathbf{x} = 0$. Important special case: when A is an invertible matrix, i.e., when the determinant of A, denotes as det(A) or just |A|, is nonzero. Then there exists an inverse matrix to A. Applying A^{-1} (in this case) to $A\mathbf{x} = 0$ on both sides, we $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

see that $\mathbf{x} = 0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ is the only equilibrium point (when A is invertible).

Check that in general, a matrix A is *singular*, i.e., not invertible, if and only if 0 is an eigenvalue of A.

General principle/ Theorem:

Consider
$$\mathbf{x}' = A\mathbf{x}, \ \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- (a) If λ is an eigenvalue of A with eigenvector $\mathbf{v} \ (\neq 0)$, then the function of t given by $\mathbf{x} = \mathbf{v} e^{\lambda t}$ is a non-zero solution of (*).
- (b) Suppose A has n distinct eigenvalues, say $\lambda_1, \lambda_2, \ldots, \lambda_n$ (with $\lambda_i \neq \lambda_j$ if $i \neq j$) with eigenvector $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(n)}$, i.e.,

$$A\mathbf{v}^{(j)|} = \lambda_j \mathbf{v}^{(i)}$$

then every solution of $\mathbf{x}' = A\mathbf{x}$ is a linear combination

$$\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \dots + c_n \mathbf{x}^{(n)}$$

where the c_i are scalars and

$$\mathbf{x}^{(j)} = \mathbf{v}^{(i)} e^{\lambda_j t},$$

for each j = 1, 2, ..., n.

Look at the case $\mathbf{n} = 2$: When the eigenvalues are (real and) distinct, i.e., $\lambda_1 \neq \lambda_2$, (1) (1) but (2) (2) but

$$\mathbf{x}^{(1)} = \mathbf{v}^{(1)} e^{\lambda_1 t}, \quad \mathbf{x}^{(2)} = \mathbf{v}^{(2)} e^{\lambda_2 t}$$
$$W(\lambda^{(1)}, \lambda^{(2)}) = \det(\overset{(1)}{=} e^{\lambda_1 t}, \mathbf{v}^{(2)} e^{\lambda_2 t}$$
$$= \det\begin{pmatrix} ae^{\lambda_1 t} & ce^{\lambda_2 t}\\ be^{\lambda_1 t} & de^{\lambda_2 t} \end{pmatrix}$$
$$= \det\begin{pmatrix} a & c\\ b & d \end{pmatrix} e^{(\lambda_1 \lambda_2) t}$$

Remarks:

- (a) It is more subtle if the solutions are not real or not all distinct. Here when $\lambda_1 \dots \lambda_n$ are all real and distinct, all fundamental solutions $\mathbf{x}^{(1)} \dots \mathbf{x}^{(n)}$ are all real vectors, i.e., in \mathbb{R}^n .
- (b) A key point to remember (from Ma1b) is that eigenvectors corresponding to distinct eigenvalues are linearly independent
- (c) The matrix $\Psi = \begin{pmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \dots & \mathbf{x}^{(n)} \end{pmatrix}$ is called a *fundamental matrix*.
- (d) If $\mathbf{y}^{(1)} \dots \mathbf{y}^{(n)}$ are *n* arbitrary solutions of (*), one defines their

Wronskian determinant to be

$$W(\mathbf{y}^{(1)}\dots\mathbf{y}^{(n)}) = \det(\mathbf{y}^{(1)}\dots\mathbf{y}^{(n)}).$$

These $\mathbf{y}^{(j)}$'s give a fundamental set of solutions when $W(\mathbf{y}^{(1)} \dots \mathbf{y}^{(n)}) \neq 0.$

Clearly, there are at most n independent solutions.

Example:

(1)
$$n = 2$$
, $\mathbf{x}' = A\mathbf{x}$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
We saw last time A has 2 eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$, with corresponding eigenvectors $\mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{v}^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

The two basic solutions of the linear system are

$$\mathbf{x}^{(1)} = \mathbf{v}^{(1)}e^t = \begin{pmatrix} 1\\ 1 \end{pmatrix} e^t, \ \mathbf{x}^{(2)} = \mathbf{v}(2)e^t = \begin{pmatrix} 1\\ -1 \end{pmatrix} e^{-t},$$

and the Wronskian is

$$W(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \det \begin{pmatrix} e^t & e^t \\ e^t & e^{-t} \end{pmatrix} = \det \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2 \neq 0.$$

Thus $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ are independent solutions. Of course we knew this already, because they correspond to distinct eigenvalues.

Slope field:

This is a plot in the (x_1, x_2) -plane, called the **phase plane**, where one chooses a grid and draws, at each point on the grid, a short arrow in the direction of the vector connecting the origin to the point determined by $_{\Lambda}(x_1)$

$$A\begin{pmatrix} x_1\\ x_2 \end{pmatrix}.$$

Note that since A is a constant matrix, $\mathbf{x}'(t)$, given by $A\mathbf{x}$, is independent of t, which is what allows us to draw the slope field on the phase plane (at all times t).

Asymptotics:

Suppose A is an $n \times n$ -matrix with distinct (real) eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$. Then the general solution of $\mathbf{x}' = A\mathbf{x}$ is given by

$$\mathbf{x} = c_1 \mathbf{v}^{(1)} e^{\lambda_1 t} \cdots + c_n \mathbf{v}^{(n)} e^{\lambda_n t}.$$

Note that when $\lambda_j > 0$, $e^{\lambda_j t}$ goes to ∞ as $t \to \infty$ and goes to 0 when $t \to -\infty$. It follows that the term corresponding to the largest (positive) λ_j dominates the other terms as $t \to \infty$, while the largest (negative) λ_j dominates when $t \to -\infty$. This is because the eigenvectors $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots \mathbf{v}^{(n)}$ of A are *static*, i.e., do not vary with t (in our "constant coefficients" context). However, for each j with $\lambda_j \neq 0$, the corresponding basic solution $\mathbf{x}^{(j)} := \mathbf{v}^{(j)} e^{\lambda_j t}$ evolves as t varies.

Note: If A has a non-zero eigenvalue, then the equilibrium solution $\mathbf{x} = 0$ is not asymptotically stable (or even stable), since any solution which is near 0 goes to a (non-zero vector times) $\pm \infty$ either as t goes to ∞ or as $t \to -\infty$. If the only eigenvalue is 0, $\mathbf{x} = 0$ is stable as solutions near it will stay nearby for larger |t|, but is not asymptotically stable.

Trajectory:

To fix ideas, look at the example above with eigenvalues ± 1 , and with general solution

$$\mathbf{x} = \phi(t) = c_1 \mathbf{v}^{(1)} e^t + c_2 \mathbf{v}^{(2)} e^{-t}.$$

$$\mathbf{x}_0 = \phi(0) = c_1 \mathbf{v}^{(1)} + c_2 \mathbf{v}^{(2)} = c_1 \begin{pmatrix} 1\\1 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-1 \end{pmatrix}$$

If we sketch the evolution of $\phi(t)$ for any particular choice of c_1, c_2 , we can represent it by a curve, called a *trajectory*, in the phase plane.

A **phase portrait** is just a sampling of different types of trajectories in the phase plane.

Trajectory of $\mathbf{x}^{(1)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} 1\\1 \end{pmatrix} e^t$$

Choose $t_1, t_2, \ldots t_m$ and plot $\mathbf{x}^{(1)}(t_j)$ for each j, and then join them:

$$\mathbf{x}^{(1)}(0) = \begin{pmatrix} 1\\1 \end{pmatrix}, \mathbf{x}^{(1)}(1) = \begin{pmatrix} e\\e \end{pmatrix},$$
$$\mathbf{x}^{(1)}(a) = \begin{pmatrix} e^a\\e^a \end{pmatrix}, \dots$$

Lecture 12

Last time we discussed the example, in the plane:

$$\mathbf{x}' = A\mathbf{x}, \ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

A three-dimensional example

$$A = \begin{pmatrix} 7 & -8 & 0 \\ 3 & -8 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Solve $\mathbf{x}' = A\mathbf{x}$ subject to the initial condition: $\mathbf{x}(0) = \begin{pmatrix} 7 \\ 3 \\ -1 \end{pmatrix}$.
Eigenvalues of A: Solve $\det(\lambda I_3 - A) = 0$.
$$\det \begin{pmatrix} \lambda - 7 & 8 & 0 \\ -3 & \lambda + 8 & 0 \\ 0 & 0 & \lambda - 3 \end{pmatrix} = \begin{vmatrix} \lambda - 7 & 8 \\ -3 & \lambda + 8 \end{vmatrix} (\lambda - 3)$$
$$= [(\lambda - 7)(\lambda + 8) + 24](\lambda - 3)$$
$$= (\lambda^2 + \lambda - 56 + 24)(\lambda - 3)$$
$$= (\lambda - 1)(\lambda + 2)](\lambda - 3)$$

Thus $\lambda_1 = 1, \ \lambda_2 = -2, \ \lambda_3 = 3.$

Eigenvectors: Look for
$$\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq 0$$
 such that $A\mathbf{v} = \lambda \mathbf{v}$.

$$\lambda_3 = 3: \underbrace{\begin{pmatrix} 7 & -8 & 0 \\ 3 & -8 & 0 \\ 00 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}}_{\begin{pmatrix} 7a - 8b \\ 3a - 8b \\ 3c \end{pmatrix}}_{\begin{pmatrix} 0 \end{pmatrix}}$$

We may take $\mathbf{v}^{(3)} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$.

$$\lambda_1 = 1$$
: Want $A(\mathbf{v}^{(1)} = \mathbf{v}^{(1)}$. Put $\mathbf{v}^{(1)} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ so that

$$7a - 8b = a$$

$$3a - 8b = b$$

$$3c = c \Rightarrow c = 0$$

We may take $\mathbf{v}^{(1)} = \begin{pmatrix} 3\\1\\0 \end{pmatrix}$.

$$\lambda_2 = -2$$
: Check: $\mathbf{v}^{(2)} = \begin{pmatrix} 2\\ 1\\ 0 \end{pmatrix}$ works!

Note: Put

$$M = (\mathbf{v}^{(1)} \ \mathbf{v}^{(2)} \ \mathbf{v}^{(3)}), \text{ matrix of eigenvectors}$$

$$= \begin{pmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Check: M^{-1} = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$using \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{(ad - bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\implies \underbrace{M^{-1}AM}_{\text{conjugation of } A \text{ by } M} = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -6 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 7 & -8 & 0 \\ 3 & -8 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \leftarrow \text{ the diagonal matrix of eigenvalues}$$

Since the eigenvalues of A are all (real and) distinct, we know that a fundamental set (basis) of solutions of $A\mathbf{x} = \mathbf{x}'$ is given by:

$$\mathbf{x}^{(j)}, \mathbf{x}^{(j)}, \mathbf{x}^{(j)}, \text{ with } \mathbf{x}^{(j)} = \mathbf{v}^{(j)} e^{\lambda j t}, \text{ for each } j = \{1, 2, 3\}$$

Explicitly,

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} e^t,$$
$$\mathbf{x}^{(2)} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} e^{-2t},$$
$$\mathbf{x}^{(3)} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} e^{3t}.$$

The associated fundamental matrix

$$\Psi = \begin{pmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(3)} \end{pmatrix} = \begin{pmatrix} 3e^t & 2e^{-2t} & 0\\ e^t & e^{-2t} & 0\\ 0 & 0 & e^{3t} \end{pmatrix},$$

whose Wronskian is

$$W\left(\mathbf{x}^{(1)} \ \mathbf{x}^{(2)} \ \mathbf{x}^{(3)}\right) = (3e^{-t} - 2e^{-t})e^{3t} = e^{2t} \neq 0.$$

Asymptotics of the fundamental solutions

$$\mathbf{x}^{(1)}(0) = \mathbf{v}^{(1)}: \text{ starting point at } t = 0$$
$$\mathbf{x}^{(1)}(t) = \mathbf{v}^{(1)}e^t \to \begin{pmatrix} \infty \\ \infty \\ 0 \end{pmatrix} \text{ as } t \to \infty; \text{ the first } 2 \text{ coordinates go to } +\infty$$

while third one stays at 0. Also, as $t \to -\infty$, $\mathbf{x}^{(1)}(t) \to \begin{pmatrix} \infty \\ \infty \\ 0 \end{pmatrix}$. Similarly,

$$\mathbf{x}^{(2)}(t) = \mathbf{v}^{(2)}e^{-2t} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} e^{-2t} \to \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \text{ as } t \to \infty$$
$$\mathbf{x}^{(3)}(t) = \mathbf{v}^{(3)}e^{3t} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} e^{3t} \to \begin{pmatrix} 0\\0\\\infty \end{pmatrix}, \text{ as } t \to \infty$$

Note: No non-zero linear combination of $\mathbf{x}_1(t)$, $\mathbf{x}_3(t)$ goes to the equilibrium solution $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ as $t \to \infty$, while $\mathbf{x}^{(2)}$ does approach the equilibrium solution as $t \to \infty$.

$$\mathbf{x}^{(2)}(0) = \mathbf{v}^{(2)} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$

General Solution:

$$\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + c_3 \mathbf{x}^{(3)},$$

where c_1, c_2, c_3 are scalars.

The given initial condition requires that $\mathbf{x}(0) = \begin{pmatrix} 7\\ 3\\ -1 \end{pmatrix}$. This gives a system of equations for c_1, c_2, c_3 :

$$c_1 \begin{pmatrix} 3\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 2\\1\\0 \end{pmatrix} + c_3 \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 7\\3\\-1 \end{pmatrix}$$
(*)

Write $C = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ as a vector of constants. Consider the matrix of eigenvectors $M = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, which diagonalizes the matrix A defining the linear system. It follows that

$$MC = \mathbf{x}(0)$$

We know that M is invertible, and so

$$C = M^{-1}\mathbf{x}(0) = \begin{pmatrix} 1 & -2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

So the unique solution satisfying the Initial Condition is:

$$\mathbf{x} = \mathbf{x}^{(1)} + 2\mathbf{x}^{(2)} - \mathbf{x}^{(3)} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} e^t + \begin{pmatrix} 4\\2\\0 \end{pmatrix} e^{-2t} - \begin{pmatrix} 0\\0\\1 \end{pmatrix} e^{3t}.$$

Terminology

Let $\mathbf{x}' = A\mathbf{x}$ be a homogeneous, linear system, with A an $n \times n$ -matrix with constant coefficients.

If we have *n* solutions, say $\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots \mathbf{y}^{(n)}$ of this system of ODE's, then the *Wronskian* of $\{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}\}$ is

$$W\left(\mathbf{y}^{(1)},\mathbf{y}^{(2)},\ldots,\mathbf{y}^{(n)}\right) = \det(\mathbf{y}^{(1)},\mathbf{y}^{(2)}\ldots\mathbf{y}^{(n)}).$$

The $\mathbf{y}^{(j)}$ give a *basis of solutions* in an interval (-a, a), for some a > 0, iff $W(\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}) \neq 0$ on (-a, a). This is the same as saying: The $\mathbf{y}^{(j)}$ are linearly independent on the interval.

If $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ is a fundamental set of solutions, the associated *fun*damental matrix is

$$\Psi = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \dots \mathbf{x}^{(n)}.$$

A simple example where A is real, but has non-real eigenvalues in the plane

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{x}' = A\mathbf{x}, \quad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

As we saw earlier, the *eigenvalues of* A are $\lambda_1 = i$, $\lambda_2 = -i$, with associated eigenvectors

$$\mathbf{v}^{(1)} = \begin{pmatrix} 1\\i \end{pmatrix}, \ \mathbf{v}^{(2)} = \begin{pmatrix} 1\\-i \end{pmatrix}.$$

We get distinct solutions:

$$\mathbf{z}^{(1)} = \mathbf{v}^{(1)} e^{\lambda t} = \begin{pmatrix} 1\\ i \end{pmatrix} e^{it} = \begin{pmatrix} e^{it}\\ ie^{it} \end{pmatrix}$$
$$\mathbf{z}^{(2)} = \mathbf{v}^{(2)} e^{\lambda_2 t} = \begin{pmatrix} 1\\ -i \end{pmatrix} e^{-it} = \begin{pmatrix} e^{-it}\\ -ie^{-it} \end{pmatrix}$$

The only catch is that the solutions are complex, not real!

If \mathbf{z} is a complex solution, i.e., if $\mathbf{z}' = A\mathbf{z}$, then $\mathbf{x} = Re(\mathbf{z})$ and $\mathbf{y} = Im(\mathbf{z})$ are also solutions, since A is real, $Re(\mathbf{z}') = \mathbf{x}'$, and $Im(\mathbf{z}') = \mathbf{y}'$. The nice thing is that \mathbf{x} , \mathbf{y} are real solutions. Since

$$e^{\pm it} = \cos t \pm i \sin t, \quad \pm i e^{\pm it} = -\sin t \pm i \cos t,$$

the real solutions in the example above are

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \quad \mathbf{y}^{(1)}(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix},$$

and

$$\mathbf{x}^{(2)}(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \quad \mathbf{y}^{(2)}(t) = \begin{pmatrix} -\sin t \\ -\cos t \end{pmatrix}.$$

Note that

$$\mathbf{x}^{(1)}(t) = \mathbf{x}^{(2)}(t), \ \mathbf{y}^{(1)}(t) = -\mathbf{y}^{(2)}(t).$$

So it suffices to consider just the solutions $\mathbf{x}^{(1)}$ and $\mathbf{y}^{(1)}$. Moreover, their Wronskian is

$$W\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right) = \det \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} = \cos^2 t + \sin^2 t = 1 \neq 0.$$

So these two real solutions are linearly independent (over \mathbb{R}), and the corresponding fundamental matrix

$$\Psi = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

is a *rotation matrix*, representing the rotation (with center $\mathbf{0}$) of the points in the plane through the *angle* t in the counterclockwise direction.

Finally, the general real solution of $\mathbf{u}' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{u}$ is given by

$$\mathbf{u}(t) = b_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + b_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix},$$

where b_1, b_2 are arbitrary real constants.