
Lecture 24

To begin, it may be helpful to make a few comments on the case of regular
singular points before starting the next big topic of the course, namely the
Laplace Transform.

If x = x0 is a regular singular point of a linear, second order ODE

(∗) y′′ + p(x)y′ + q(x) = 0,

then we look for series solutions just like in the case of an ordinary point,
but with a difference, namely we try

y = xr

∞∑
n=0

an(x− x0)
n,

where r is a constant to be determined, which r need not be an integer,
or even a rational number. (When r is not rational, it will be a quadratic
irrational.) Assuming that the radius of convergence R (around x0) is pos-
itive, we differentiate the series expression term by term (for x satisfying
|x− x0| < R) to get series expressions for y′ and y′′. Plugging this informa-
tion back in the differential equation, we get an identity of the form

xr

∞∑
n=0

cn(x− x0)
n = 0,

where the coefficients cn of the power series on the left are determined by the
coefficients an of y (and hence of y′, y′′) as well as by r, p(x).q(x). It follows
that for such an identity to hold for all x close to x0, we need to have

cn = 0, ∀ n ≥ 0.

A key difference with the ordinary case occurs when we look at the condition
c0 = 0, because this leads to an equation for r, called the indicial equation
associated to (∗), which will be a quadratic equation in r. In this course
we will only look at the case when this has two distinct real roots, and
moreover assume that the two roots do not differ by a integer. (As usual, it
is more subtle when there is a repeated root, and even when the roots are
not repeated, if they differ by a positive integer, we will not be able to find
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easily a second series solution.) For an r satisfying the indicial equation, we
may plug its value in and solve the equations cn = 0 for all n > 0. This
results, as in the ordinary case, a formula for the coefficients an, which can
be used to find an explicit series solutions of (∗).

Let us illustrate this by solving the following ODE:

(i) x2y′′ − (x+ 1)y = 0,

where p(x) = 0 and q(x) = −(x+1)/x2. The only singular point of the ODE,
given by looking at where the coefficient of y′′ vanishes, is the point x = 0.
Since xp(x) = 0 and x2q(x) = −x− 1, both of which are obviously analytic,
x = 0 is a regular singular point. So we try a series solution of the form

y = xr

∞∑
n=0

anx
n,

which we assume has a positive radius of convergence R. Then for |x| < R,
we may differentiate (again and again) the series expression for y term by
term. We get

y′ = xr−1

∞∑
n=0

(r + n)anx
n.

Differentiating this again, and rearranging, we obtain

y′′ = xr−2

∞∑
n=0

(r + n)(r + n− 1)anx
n,

so that

(ii) x2y′′ = xr

∞∑
n=0

(r + n)(r + n− 1)anx
n.

Moreover,

(iii) (x+ 1)y = xr
∑
n≥1

an−1x
n +

∑
n≥0

anx
n.

Plugging (ii) and (iii) back into (i) and rearranging,

xr

∞∑
n=0

cnx
n = 0,
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where
c0 = r(r − 1)− 1,

and

(iv) cn = ((r − 1 + n)(r + n)− 1) an − an−1, ∀ n ≥ 1.

We need to have cn = 0 for all n ≥ 0. Just from the n = 0 case, and assuming
a0 ̸= 0, we get the indicial equation:

(r − 1)r − 1 = 0,

whose solutions are

r± =
1

2
±

√
5

2
.

Clearly, these are distinct roots, with r+ − r− =
√
5, which is not an integer.

Plugging in for r (and using (iv) in cn = 0), we get for every n ≥ 1,

an =
an−1

(n+ r)(n+ r − 1)
,

which makes sense because the denominator is non-zero. (This is where we
would run into a problem if the two roots differ by an integer.) It follows
that

an =

(
n∏

j=1

1

(n− j + r + 1)(n− j + r)

)
a0.

This leads to two series solutions with a0 = 1:

y± = xr±

(
1 +

∞∑
n=1

an,±x
n

)
,

with

an,± =
n∏

j=1

1

(n− j + r± + 1)(n− j + r±)
, ∀ n ≥ 1.

(Check that these series have positive radius of convergence R. Is R = ∞ ?)
We claim that these two solutions are independent. Indeed, otherwise

y− would be a multiple of y+ for all x near 0. Since they both have equal
constant term (corresponding to n = 0 in the respective series), we must have
an equality of the n = 1 term as well, which does not hold since r+ ̸= r−.
Hence the Claim.
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Laplace Transform

Let f be a function on the half-open interval [0,∞) ⊂ R. Its Laplace
transform is defined for s > 0 (when it makes sense) by

F (s) = L(f(t)) =

∫ ∞

0

f(t)e−stdt.

The integral on the right is an improper integral and hence is evaluated as
the limit

lim
A→∞

∫ A

0

f(t)e−stdt.

Before looking at explicit examples, let us state the following without proof:

Theorem 1 Suppose f is a function on [0,∞) satisfying the following:

(i) f is, for each A > 0, piecewise continuous on [0, A]; and

(ii) f is a-nice for some a ∈ R, i.e.,there exist real numbers C, a, T with
C, T > 0, such that

|f(t)| ≤ Ceat, ∀ t > T.

Then the Laplace transform F (s) is defined for all positive s > a.

Recall that f is piecewise continuous on [0, A] means we can partition the
interval as

0 = b0 < b1 < · · · < bn−1 < bn = A,

for some n > 0, such that f is continuous on each subinterval [bj−1, bj], for
j = 1, 2 . . . , n.

The simplest example of a piecewise continuous function is a step func-
tion.

Remarks:

(1) The reason for the hypothesis (i) (of Theorem 1) is this: If f is a
piecewise continuous function on a closed interval [0, A], then we know
(cf. Ma1a) that f is integrable there, and so is f(t)e−st, which is also

piecewise continuous.Thus at least
∫ A

0
f(t)e−st makes sense for such a

function.
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(2) The reason for the hypothesis (ii) is this: We can write (for f a-nice):

lim
A→∞

∫ A

0

f(t)e−st =

∫ T

0

f(t)e−stdt+ lim
A→∞

∫ A

T

f(t)e−stdt,

and for t > T , |f(t)e−st| is less than or equal to Ce(a−s)t, which goes to
zero at t → ∞ when a− s < 0, which makes F (s) well defined.

(3) L is a linear operator, i.e., for all f, g as in Theorem, and for all α, β
scalars,

L(αf + βg) = αL(f) + βL(g).

(4) L is a prime example of an integral transform. Other important exam-
ples are the Fourier transform and the Mellin transform. Also useful is
the discrete version of the Laplace transform, called the z -transform,
which associates to any sequence {f(n)} the ”transform”:

∑
n f(n)z−n,

with z, resp. n, playing the role of es, resp. t.

Note that any bounded function on [0,∞), such as sin t or e−t, satisfies
(ii) with a = 0. Moreover, any polynomial, even a rational function, and
ln x, are a-nice for any a > 0, because any positive power of the exponential
function dominates any such function as t goes to ∞.

Examples:

(1) (Heaviside function) For any c > 0, define the associated simple step
function uc on [0,∞) by setting it to be 1 if t ≥ c and 0 if 0 ≤ t < c.
Then f is evidently piecewise continuous and 0-nice, so that for all
s > 0, we have

F (s) = lim
A→∞

∫ A

c

e−stdt =
1

s
lim
A→∞

(e−cs − eAs) =
e−cs

s
.

(2) Put f(t) = t/2 if t < π/2, and f(t) = sin t if t ≥ π/2. Note that f is
then piecewise continuous and bounded (in fact with |f(t)| ≤ 1), so its

Laplace transform is well defined for all s > 0. Since
∫ π/2

0
t
2
dt = π2/4,

we have

L(f(t)) =
π2

4
+ lim

A→∞

∫ A

π/2

sin t e−stdt.

One solves the integral of sin t e−st by integration by parts (using the
methods of Ma1a).
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Here is the reason why we need to bother with L:

The Laplace transform converts differentiation into multiplication, up to
an additional term involving the initial value.

Theorem 2 Let f be differentiable with f, f ′ piecewise continuous and a-
nice. Then we have, for all s > a,

L(f ′(t)) = sL(f(t))− f(0).

More generally, for any n ≥ 1, if f is n-times differentiable with all the
derivatives f (j), for 0 ≤ j ≤ n, satisfying the hypotheses of Theorem 1, we
have

L(f (n)(t)) = snL(f(t))− sn−1f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0).

Here is the reason: Since f ′(t)dt = d(f(t)), we have by the integration
by parts ∫ A

0

f ′(t)e−stdt = f(t)e−st|A0 −
∫ A

0

f(t)d(e−st)

= f(A)e−sA + s

∫ A

0

f(t)e−stdt,

and since |f(A)| ≤ CeaA for large A, and since e(a−s)A goes to 0 as A goes to
∞ (by virtue of s being > a), we see, by taking the limits as A → ∞,

L(f ′(t)) = −f(0) + sL(f(t)),

as asserted. The generalization for any n follows the same way by repeated
differentiation, and will be left as an exercise to check.
QED.
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