
Lecture 6 Dinakar Ramakrishnan

Stability

This is a very important and not so transparent a concept. It arises from
the need to know if the solutions one comes up with for differential equations
are stable, especially the special solutions called the equilibrium solutions.
What one wants to know is this:

If we start with a solution close to a desired solution, will we stay close
to this solution as things evolve in time?

This is of practical importance, as it is next to impossible in real situations
to manufacture exact solutions, and when one deviates a little initially, one
needs to know that what evolves later will stick close to the plan.

Suppose we’re given a 1st order ODE:

dy

dt
= f(t, y). (*)

When we succeed in solving this equation, we find that there are infinitely
many solutions involving some constant c, due to the ambiguity arising from
indefinite integration. Very important solutions are those which satisfy dy

dt
=

0; they are called the equilibrium solutions.
Often, but not always, we start with an initial condition say y = y0 at

t = 0, which allows us to solve for c and find one solution. At times, though,
it is profitable to look at the structure of all the solutions, without fixing an
initial state.

There are many solutions if we do not fix an initial condition!

What one wants to do:

i) Look for stable solutions;

ii) Check if the equilibrium solutions are asymptotically stable.

Intuitive Definition Suppose y1(t) is a solution of (∗). We say that it’s
stable iff any other solution y2(t) which starts out being close to y1(t) at t = 0
remains close to y1(t) for all t > 0.

To make this precise, we need to quantify what it means to be close:
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A precise definition of stability:
Start with a fixed solution y1(t) of (∗). It is a stable solution if for every

ϵ > 0, ∃ δ > 0 such that, for every other solution y2(t) satisfying

|y1(0)− y2(0)| < δ,

one has
|y2(t)− y1(t)| < ϵ, ∀t > 0.

Example:

(#)
dy

dt
= ry

The only possible —it equilibrium solution is y = 0 when r ̸= 0. When
r = 0, every solution, necessarily of the form y = constant, is an equilibrium
solution,

When y ̸= 0,
1

y

dy

dt
= r

∫
d

dt
(log |y|)dt = r

∫
dt

= rt+ c

General solution:
y = Bert,

where B is any constant, with B = 0 corresponding to the equilibrium solu-
tion y = 0.

First consider when r < 0. The solution Bert, for any fixed B, approaches
the equilibrium solution y = 0 as t → ∞. We claim the following:

Every solution of (#) is stable for r < 0.

Indeed, fix a solution yB(t) = Bert, and consider any other solution
yC(t) = Cert, and an arbitrary positive number ϵ. We have to be able to
choose a δ > 0 such that whenever |B −C| < δ, we have |yB(t)− yC(t)| < ϵ.
Observe that since r < 0, ert is a decreasing function, so 0 ≤ ert ≤ 1, ∀ t ≥ 0.
So we may just choose δ = ϵ, since

|B − C| < ϵ =⇒ |Bert − Cert| = |B − C|ert ≤ |B − C| < ϵ,
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for all t > 0. Hence the claim.

Next consider when r > 0. We claim that no solution yB(t) = Bert is
stable in this case. This is so because ert is an increasing function and in fact
becomes unbounded as t becomes arbitrarily large. So, given any ϵ > 0, for
any C ̸= B, |Bert − Cert| goes to ∞ as t → ∞, and so becomes larger than
ϵ, regardless of how small |B − C| is. The claim follows.

Finally, let r = 0. Then every solution is of the form y(t) = c, and it
is a equilibrium solution. Fix a c, and consider a nearby solution yb(t) = b.
Then, |yb(0)− y(0)| is the same as |yb(t)− y(t)| for any t, implying that if b
is close to c at t = 0, then it remains close for all t. (We can take δ = ϵ here,
if one wants to be explicit.) So the equilibrium solutions, which are all the
solutions, are stable when r = 0.

Definition An equilibrium solution yeq, say, is asymptotically stable if any
other solution near it at t = 0 becomes asymptotic to yeq in the limit as t
goes to ∞.

Note that in the above example, the equilibrium solutions is asymptoti-
cally stable if r < 0, but not when r ≥ 0. When r = 0, all the solutions are
equilibrium solutions and all are stable, but not asymptotically stable, as the
solutions are constant.

Example:
dy

dt
= r

(
1− y

K

)
y, r,K > 0

This represents a better model for population growth than the simple minded
one we looked at before without the quadratic correction term.
Equilibrium points: y = 0 and y = K

Suppose we look at the equilibrium solution y = 0. We want to look at
all the solutions y(t) which are close to 0 at t = 0 and see how they evolve.
For this note that for y very close to 0, y2 negligible compared to y, and the
given differential equation is approximated by its linearization:

dy

dt
= ry

We have already seen that the general solution of this linear ODE is given
by y = Bert, with B a constant. We will now admit a general fact (which
we may discuss in the last week of the term if time permits), which says that
the evolution of the solution y(t) of the non-linear ODE (with y(0) close to
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0) remains close to the evolution of a corresponding solution of the linearized
ODE, and has the same asymptotic as t → ∞. This means that we can check
the asymptotic stability by looking at how y(t) behaves as t → ∞ if it were
to satisfy the associated linear ODE. If y(0) = B with |B| small, lim

t→∞
y(t) is

then given by lim
t→∞

Bert, which is unbounded. Hence this equilibrium solution,

namely y = 0 is not asymptotically stable.
Next look at the other equilibrium solution y = K. Let us change vari-

ables and put u = y −K, so that the (non-linear) ODE becomes

du

dt
=

(
−r

K

)
u(u+K),

and in this changed coordinates, the equilibrium solution y = K becomes
u = 0. Again, we can approximate any solution u(t) with u(0) close to 0 by
a corresponding solution of the linearized ODE:

du

dt
= −ru,

whose general solution is u(t) = Be−rt, with B a constant; putting B = 0
gives the equilibrium solution u = 0. So for |B| small, we need to check that
lim
t→∞

Be−rt equals 0, which is true since r > 0. So u = 0 is an asymptotically

stable solution of the non-linear equation (in u), which in turn implies the
same for the equilibrium solution y = K of the non-linear ODE we started
with.

Difference equations

We have been looking at ODE’s of the form dy
dt

= f(t, y), where y(t): a dif-
ferentiable function of x, often, but not always, with a fixed initial condition:
y0 = y(0). Now we will consider its discrete analog:

yn+1 − yn = f(n, yn),

where yn is a sequence, with initial value y0. Here the independent variable is
n ≥ 0 in Z, and instead of the continuously varying dependent variable y(t),
we have the discretely varying sequence y0, y1, y2, y3, . . . , yn, . . . . Moreover,
the analog of the derivative dy

dt
is the difference quotient

yn+1 − yn
(n+ 1)− n

= yn+1 − yn.
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One often rewrites the difference equation above as

yn+1 = g(n, yn),

where g(n, yn) = f(n, yn) + yn.
The equilibrium solution is where the difference quotient yn+1−yn

(n+1)−n
is zero,

i.e., where yn+1 = yn.
Instead of starting the sequence at the usual n = 0 point, we could start

with any integer and go to infinity. In fact we can also replace the indexing
sequence n by any other strictly increasing sequence {tn}.
Examples

1) yn+1 = (−1)n+1yn:

The sequence {yn} is y0, y1 = −y0, y2 = −y1, . . . , oscillating oscillates
between y0 and −y0, so there is no limit as n → ∞. Moreover, the only
possible equilibrium solution is yn = 0.

2) yn+1 =
n+1
2n+1

yn, y0 = 1:

Put L = limn→∞ yn if it exists. Then, letting n go to ∞ on both sides
of the difference equation, we get

L =

(
lim
n→∞

n+ 1

2n+ 1

)
L.

Since n+1
2n+1

= 1
2

(
1+

1
n

1+
1
2n

)
goes to 1

2
as n → ∞, we get L = L

2
, which

implies that L = 0 if L exists. One usually says that there is no limit
even if L = ±∞ (which is different from the sequence {sin(n)} not
having any limit). Here each yn is positive and also yn+1 < yn, so the
sequence can’t go to ∞ (or −∞). Explicitly,

y1 = y0 = 1, y2 =
2

3
, y3 =

(
3

5

)(
2

3

)
=

2

5
, y4 =

(
4

7

)(
2

5

)
=

8

35
, . . .

Since n+1
2n+1

decreases from 2/3 monotonically to 1/2 in the limit, we

have for any n ≥ 1, 0 < yn+1 <
(
2
3

)
yn <

(
2
3

)n
, and since lim

n→∞

(
2
3

)n
=

(as 2
3
< 1), the squeeze theorem for limits (see the online Notes for

Ma1a) implies that {yn} has the limit 0 as expected.
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Lecture 7

More remarks on stability (concerning first order ODEs)

dy

dt
= f(t, y)

Typically, t represents time, and we usually look only at the asymptotics as
t → ∞. However, sometimes it also makes sense to look at t → −∞.

Recall: A solution y1(t) is stable iff any other solution y2(t) close to y1(t)
at t = 0 (or any other starting pt t = t0) remains close to y1(t) for all t > 0.
More precisely, given any ϵ > 0, we need to be able to find a δ > 0 such that

|y1(0)− y2(0)| < δ =⇒ |y1(t)− y2(t)| < ϵ, ∀t > 0.

Definition An equilibrium solution yeq(t) is asymptotically stable iff for any
solution y2(t) close to yeq(t) at t = 0, we have

lim
t→∞

|yeq(t)− y2(t)| = 0.

Facts:

1) If f(t, y) is continuous, then asymptotically stable implies stable; the
converse is not true.
Counterexample: dy

dt
= 0, all of whose the solutions are of the form

y(t) = c, c a constant, and there is a unique equilibrium solution yeq
corresponding to c = 0. Since the solutions are constants, if y is close
to yeq at t = 0, it will remain close, in fact at the same distance, for
all t > 0, implying that yeq is stable. (In fact, every solution is stable.)
However, for any c ̸= 0, the solution y = c will not approach yeq as
t → ∞. Hence yeq is not asymptotically stable.

2) There is a useful criterion to check for the asymptotic stability
of an equilibrium solution yeq of dy

dt
= f(t, y) when, and this is a

serious condition to check, f(t, y) = φ(y), i.e., f does not involve t,
only y. In this case, if we put φ′(y) = dφ

dy
, then

yeq(t) is asymptotically stable if φ′(yeq) < 0; and

yeq(t) is unstable if φ′(yeq) > 0.
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One can draw no conclusion if φ′(yeq) = 0. This criterion is sometimes called
the linear stability test, not because φ(y) needs to be linear, but because
whether or not yeq is asymptotically stable depends only on the linear ap-
proximation of φ(y) at y = yeq. Recall (from Ma1a) that by Taylor’s theorem,
φ(y) is approximated to first order near any y = b by φ(b)+φ′(b)(y− b), and
when b = yeq, φ(yeq) = 0 (since it is an equilibrium solution of the ODE), and
so φ′(yeq) determines the first order Taylor approximation, and the stability
criterion requires only that, unless φ′(yeq) = 0, in which case one gets no
information.

Example: dy
dt

= y(1− y)

Equilibrium points: y = 1, y = 0
Put φ(y) = y(1 − y), which does not involve t and is moreover differ-

entiable (being a polynomial in y), so we may apply the criterion above
for checking asymptotic stability. Clearly, φ′(y)(= dφ

dy
) is 1 − 2y, which is

positive at y = 0 and is negative at y = 1.

Conclusion: The equilibrium solution y = 0 is unstable, while y = 1 is
asymptotically stable.
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Difference Equations:

Continuous realm Discrete realm
t: continous parameter n: positive integer
t → ∞ n → ∞
y: function of t {yn}: sequence
dy
dt

= lim∆t→0
∆y
∆t

yn+1−yn
n+1−n

= yn+1 − yn
d2y
dt2

yn+2 − yn
dmy
dtm

yn+m − yn∑n
j=0 aj

djy
dtj

= φ(t)
∑m

j=0 aj(yn+j − yn) = φ(n)

⇔
∑m

j=0 bjyn+j = 0

bj = aj for j > 0, b0 = −
∑m

j=1 aj

First order:
dy
dt

= g(t, y) yn+1 − yn = g(n, yn)
⇔ yn+1 = f(n, yn) = g(n1yn) + yn

Equilibrium solutions:

when dy
dt

= g(t, y) = 0 when yn+1 = f(n, yn) = yn
f(n, yn) = g(n, yn) + yn

i.e., g(n, yn) = 0 and yn+1 = yn

Definition An equilbrium solution yn, i.e., a solution of yn+1 = f(n, yn)
with yn = yn+1, is asymptotically stable iff for any close solution zn = yn+vn,
where vn is a small perturbation,

lim
n→∞

|yn − zn| = 0.

An important special case:

yn+1 = f(yn)

Here f does not involve n, i.e., f(n, yn) = f(yn). Such an f is called a
transformation, and any equilibrium solution is just a fixed point: yn =
f(yn).

Example: yn+1 = f(yn) = y2n (quadratic not linear).
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Equilibrium solutions: yn+1 = y2n = yn, i.e., yn = 0 or yn = 1.
yn = 0: We argue as in the continuous case (first order ODE). If zn is close
to yn = 0, then z2n ≈ 0 (very small). The difference equation yn+1 = y2n is
close to the linear equation yn+1 = 0. (One drops the quadratic term in the
approximation, but not the linear term.)

Conclusion: zn+j remains close to 0 for all j if it is so for j = 0. So
yn = 0 is asymptotically stable.
The case of yn = 1 is left as an exercise.

Note that in this example, yn = (y0)
2n , so

lim
n→∞

yn =

{0, if |y0| < 1
1, if y0 = 1
undefined otherwise
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Lecture 8

Euler’s Approximate solution

Whenever we try to find an approximate solution to y′ = f(t, y), we
inadvertently move to a discrete situation. A prime example is furnished by
Euler’s method for finding approximate solutions to first order ODE’s of the
form

y′ = f(t, y), y0 = y(0).

Recall that even if we have difficulty solving it, we can always get a
qualitative picture by considering the slope field f(tj, yj) drawn on a grid
{(tj, yj)} of points in the (t, y)-plane.

If f(t, y) is continuous, then this gives a good picture, and one can visu-
alize different possible flow lines of solutions by seeing how the arrows point
and evolve with time.

f(t0, y0) = slope at t0

Even if we know the starting point, there are many possible paths by which
y(t) could evolve.

Euler’s Idea:

Pick some small number h > 0, and consider

t0 < t1 < t2 < . . . < tn < tn+1 < . . .
q q q
0 h 2h

tnh, and f(tj, yj) gives the slope at each (tj, yj).

Start with the line L0 at y = y0 given by the equation

y = y0︸︷︷︸
y(t0)

+(slope at t0)︸ ︷︷ ︸
f(t0,y0)

(t− t0)

This gives a linear approximation to the true solution y = φ(t) when t − t0
is very small.

At t1, let y1 denote the y-coordinate of L0 at t1, i.e., y1 = y0 + f(t0, y0)t
(assuming t0 = 0). Then y1 is different from φ(t1), but it will be close if h is
small. Draw the line L1, say, starting at (t1, u1), of slope f(t1, y1).

The next point in Euler’s approximation is (t2, y2) with

y2 = y1 + f(t1, y1)(t2 − t1).
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There draw a line L2 starting at (t2, y2) of slope f(t2, y2). We proceed this
way till we reach a point of interest, say tn. This gives a piecewise linear
approximation to the true solution curve y = φ(t) (which we don’t know).

The approximation gets better as h = tn+1 − tn is made smaller. Thus
we get a sequence of numbers y0, y1, y2, . . . satisfying the difference equation

yn+1 = yn + f(tn, yn)(tn+1 − tn)

More on difference equations

Given
yn+1 = f(n, yn),

we want to know the following:

(i) The limit L := lim
n→∞

yn, if it exists

(ii) The equilibrium points

(iii) Asymptotic stability

Examples:

(1)

yn+1 =
1

1 + 1
yn

Suppose L exists, then

L = lim
n→∞

yn = lim
n→∞

yn+1.

As n → ∞, the difference equation tends to the limiting equation

L =
1

1 + 1
L

L =
L

L+ 1
⇒ L(L+ 1) = L ⇒ L = 0.

Start with y0; if y0 > 0, then all yn’s are > 0.

Then the limit L should be ≥ 0. Explicitly,

y0 = 1, y1 =
1

1+1
= 1

2
, y2 =

1

1+
1

1/2

= 1
3
, y3 =

1
4
, . . .
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By induction, yn = 1
n
, for all n > 0. Thus L = lim

n→∞
1
n
= 0, as expected.

The equilibrium points are obtained by solving

yn+1 =
1

1 + y−1
n

= yn,

i.e., 1 = yn + 1, implying that the only equilibrium solution is

yn = 0.

This is asymptotically stable since L = lim
n→∞

yn = 0.

(2) Solve the initial value problem (with n ≥ 4)

yn+1 =

(
n− 3

n+ 7

)
yn, y4 = 1, L = lim

n→∞
yn

↓

L = lim
n→∞

(
n− 3

n+ 7

)
︸ ︷︷ ︸

=1

·L

L = L,

which is not helpful. On the other hand, since y4 = 1, we have for all
n ≥ 5,

0 < yn =
(n− 3)!

(n+ 7)(n+ 6) . . . (12)(11)
=

10!

(n+ 7)(n+ 6) . . . (n− 2)
<

10!

(n− 2)10
,

implying, by the squeeze theorem (of Ma1a), that L = 0, since

lim
n→∞

10!

(n− 2)10
= 10! lim

n→∞

1

(n− 2)10
= 0.

(3)

yn+1 = ryn(1− yn), r > 0 (**)

Equilibrium points: yn = ryn(1− yn) =⇒ yn = 0, yn = r−1
r
.

Is yn = 0 asymptotically stable?

Here are two ways to proceed:
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i) Solve (∗∗) explicitly and look at the asymptotics; or

ii) Use linearization!

Let’s do the latter here.

We want to start with a solution vn (“perturbation”) close to 0.

When a real number u is small, then

c0 + c1u+ c2u
2 + · · ·+ cmu

m

can be well approximated by the linear term c0 + c1u.

So the linear approximation to ryn(1− yn) equals just ryn. Since vn is
very close to 0, we can approximate the equation vn+1 = rvn(1 − vn)
by its linearization vn+1 = rvn.

Basic Fact: The asymptotic of vn (as n → ∞) can be evaluated by
a corresponding solution of the linearized difference equation vn+1 = vnr,
which is easy to solve:

L := limn→∞ vn =
(
lim
n→∞

rn
)

︸ ︷︷ ︸
↓

v0 v1 = rv0

0 if r < 1 v2 = r2v0
1 if r = 1 v3 . . .
undefined otherwise vn = rnv0

Hence L = 0 if r < 1. (Recall that we have started with a positive r.)
So the equilibrium solution yn = 0 is asymptotically stable for r < 1,

and not so for r ≥ 1. (When r = 1, it is stable since L = v0, but not
asymptotically stable for v0 ̸= 0.)
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Lecture 9

Existence and uniqueness of First order ODEs

The object of this section is to justify our implicitly assuming earlier that
solutions exist for first order ODE’s of the form y′ = f(t, y), at least when
f is nice enough, say continuously differentiable. What is striking about the
Theorem below is that it also furnishes an explicit method to find (in fact)
a unique solution through an iterative procedure.

Theorem (Picard) Suppose we are given du
dx

= g(x, u), with x0 = 0, u0 = 0

such that g and ∂g
∂u

are continuous on the rectangular region in the plane
given by |x| ≤ a, |u| ≤ b, with a, b > 0. Then for some positive h < a, the
ODE has a unique solution u = φ(x), valid for all x in |x| ≤ h.

Picard’s iteration method to find a solution (with the given hypothesis
on g, gu):

Idea: Construct a sequence of functions

φ0(x), φ1(x)1 . . . φn(x), . . .

such that the desired solution is obtained as the limit

u = φ(x) = lim
n→∞

φn(x)

The assumptions on g, gu are needed to make sure that the sequence {φn(x)}
has a limit for all x in |x| < h, for some 0 < h < a

Picard’s idea is to think of φn(x) as

φ0(x) + (φ1(x)− φ0(x)) + · · ·+ (φn−1(x)− φn−2(x)) + (φn(x)− φn−1(x)),

i.e.,

φn(x) = φ0(x) +
n∑

m=1

(φm(x)− φm−1(x))︸ ︷︷ ︸
should be small

⇒ lim
n→∞

φn(x) = φ0(x) +
∞∑

m=1

(φm(x)− φm−1(x))︸ ︷︷ ︸
when this make sense

This limit, called φ(x), exists if φm(x)− φm−1(x) becomes sufficiently small
as m becomes large.
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Here is the explicit procedure of Picard:
Start with any given φ0(x), which satisfies the initial condition φ0(0) = 0.
At the end we want a solution u = φ(x) st

φ′(x) = g(φ(x), x)

with φ(0) = 0
Once we start with a φ0(x) with φ0(0) = 0, we may solve for φ1(x) from

φ1(x) =

∫ x

0

g(φ0(t), t)dt,

which should be a better approximation. Next, put φ2(x) =
∫ x

0
g(φ1(t), t)dt,

and so on.
So for any n ≥ 1,

φn(x) =

∫ x

0

g(φn−1(t), t)dt.

Finally, set φ(x) = limn→∞ φn(x).

Remark: Independent of the φ0(x) one starts with, one always gets the
same answer in the limit. This is a remarkable property.

Example:

(1) du
dx

= u, with u0 = 0, x0 = 0

Recall the general solution: u = Bex, B = u0. The unique solution
satisfying the initial condition is u = 0. This seems like we are bela-
boring over a trivial case. But what we are trying to do is to check
Picard’s assertion (in this example) that the final solution φ(x) is inde-
pendent of the starting function φ0(x) (as long as φ0 satisfies the initial
condition):

If we start with φ0(x) = 0 (identically) then φn(x) = 0, ∀n so φ(x) = 0
(by Picard).

Suppose we start with another φ0, say φ0(x) = x; then φ0(x) = 0 as
needed. Here

g(x, u) = u, g(x, φ0(x)) = φ0(x) = x.
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Moreover,

φ1(x) =

∫ x

0

φ0(t)dt =

∫ x

0

+dt =
1

2
x2

φ2(x) =

∫ x

0

(
1

2
t2
)
dt =

1

3!
x3

φn(x) =
xn

n!
→ 0 as n → ∞, if |x| < 1.

Conclusion: The limit function φ(x) is just the 0 function for all x, when
we start with φ0(x) = x.

Suppose we start instead with φ0(x) = sinx, which also satisfies the initial
condition at x = 0. We obtain

φ1(x) =

∫ x

0

sin tdt = 1− cos x

φ2(x) =

∫ x

0

(1− cos t)dt = x− sinx

φ3(x) =

∫ x

0

(t− sin t)dt =
1

2
− (1− cos x) = −1 +

x2

2
+ cosx

φ4(x) = −x+
x2

3!
+ sinx

The appearance of the alternating sin and cos functions make it seem like
there is no limit, but there is one. Indeed, the odd φn’s go in the limit to

± lim
n→∞

[(
1− x2

2!
+

x2

4!
− . . .

)
− cosx

]
= 0,

because the infinite series 1− x2

2!
+ x2

4!
− . . . is the Taylor expansion of cosx

(cf. the online Notes for Ma1a).
Similarly, the even φn’s go in the limit to

± lim
n→∞

[(
x− x3

3!
+

xs

s!

)
− sin x

]
= 0.

Nice!
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