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1 Basic Notions

Notation:
N = {1, 2, . . . }, Z = {0,±1,±2, . . . } ⊃ Z+ = {0, 1, 2, . . . } = N ∪ {0}
Q = {rational numbers}
R = {real numbers } ⊂ C = {complex numbers}.
Principle of Mathematical Induction (PMI): A statement P about Z+

is true if
(i) P holds for n = 0;

and

(ii) If P holds for all m < n, then P holds for n. (*)

Inputs for Number Theory:
Logic
Algebra
Analysis (Advanced Calculus)
Geometry

A slightly different principle from induction:

Well ordering axiom (WOA): Every non-empty subset of Z+ contains a
smallest element.

Note: if S is finite then WOA is obvious and can be checked. Intuitively,
we often apply it to infinte sets; this is accepting the WOA.

Lemma: WOA⇒PMI (for Z+).

Proof: Suppose (*) (i), (ii) hold for some property P .
To show: P is true for all non-negative integers.
We prove it by contradiction. Suppose P is false. Let S be the subset of
Z+ for which P is false. Since P is assumed to be false S is non-empty. By
WOA, ∃n ≥ 0 such that n is in S, and it is the smallest element of S. If
n = 0, we would get a contradiction by (i). So n > 0. Since n is the smallest
for which P is false, it is true for all m < n. By (ii), P holds for n as well.
Contradiction! So P holds.
�

Note: First couple of weeks will be very easy, so use them to learn how to
write a proof. (People lose more points on easy problems than hard ones.)
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Remark: In fact, PMI and WOA are equivalent. Try to show PMI⇔
WOA.

Theorem: (Euclidean Algorithm) Let a, b be integers ≥ 1. Then we can
write a = bq + r with q, r ∈ Z, 0 ≤ r < b.

Proof: Put S = {a− bn|n ∈ Z} ∩ Z+. Claim: S ̸= ∅. (Easy) Reason: we
can take n negative. So by WOA, S has a smallest element r. Since r ∈ S,
we can write

r = a− bq, for some q ∈ Z

Since S ⊂ Z+, r ≥ 0. Only thing to check: r < b. Suppose r ≥ b. Then let

r′ = a− b(q + 1) = r − b ≥ 0 since r ≥ b.

Thus r′ ∈ S and r′ < r, a contradiction.
�
Definition: b divides a, written b|a, iff a = bq for some q ∈ Z. If not, write
b̸|a.
Definition: An integer p > 1 is prime iff the only positive integers dividing
p are 1 and p.

Examples: 2, 3, 5, 7, 11, 13,. . . 37,. . . 691,. . .
A positive integer which is not a prime is called a composite number.

Theorem: Every n ∈ N is uniquely written as

n =
r∏

i=1

pmi
i ,

with each pi prime and mi > 0.

Proof of unique factorization:
Step 1: Show that any n ∈ N is a product of primes.
Proof: If n = 1, OK (empty product =1 by convention). So let n > 1. If

n is a prime, there is nothing to do. So we may assume that n is composite.
This means that ∃ prime p such that p|n. So n = pq, some q ≥ 1. Use
induction on n. Since q < n, by induction q is a product of primes. Hence n
is a product of primes.

Step 2: Uniqueness of factorization
Suppose this is false. By WOA, ∃ smallest n for which it is false. Write

n = p1 . . . pr = q1 . . . qs with pi, qj primes, 1 ≤ i ≤ r, 1 ≤ j ≤ s, pi ̸= qj
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for any (i, j). We may assume p1 ≤ p2 ≤ · · · ≤ pr, q1 ≤ q2 ≤ · · · ≤ qs and
p1 < q1. Now set n′ = p1q2 . . . qs < n. Since p1 divides n and n′, it divides
(n− n′). We can write, thanks to step 1,

n− n′ = p1ℓ1 . . . ℓk (1)

for some primes ℓ1, . . . , ℓk. We can also write

q1 − p1 = r1r2 . . . rt (2)

for primes r1, . . . , rt. On the other hand, n − n′ = q1 . . . qs − p1q2 . . . qs, i.e.,
n− n′ = (q1 − p1)q2 . . . qs. Then

n− n′ = r1r2 . . . rtq2 . . . qs (3)

Since n−n′ < n, and since n is the smallest counterexample, the two factor-
izations of n− n′ given by (1) and (3) must coincide. Consequently,

p1 ∈ {r1, r3 . . . , rt, q2, . . . , qs}

But p1 ̸= qj; for any j. Thus

p1 = ri, for some i.

Then p1 divides (q1 − p1)⇒ p1|q1, contradiction!
�

Analysis enters when we ask questions about the number and distribution
of primes.

Theorem. (Euclid) There exist infinitely many primes in Z.

Proof: Suppose not. Then there exist only a finite number of primes;
list them as p1, p2, . . . , pm. Put n = p1p2 . . . pm + 1. If n is prime we get a
contradiction since n > pm. So n cannot be prime. Let q be a prime divisor
of n. Since {p1, . . . , pm} is the set of all primes, q must equal pj; for some j.
Then q divides n = p1 . . . pm + 1 and p1 . . . pm ⇒ q|1, a contradiction.

Euler’s attempted proof. (This can be made rigorous!) Let P be the set of
all primes in Z. Euler’s idea: If P were finite, then X =

∏
p∈P

1

(1−1
p
)
<∞.
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Lemma.
Let s be any real number > 1. Then

ζ(s) =
∏
p∈P

1

(1− 1
ps
)
=

∞∑
n=1

1

ns

(called the “Riemann” zeta function, though Euler studied it a century ear-
lier).

Proof of Lemma. Recall: If |x| < 1, then 1
1−x

= 1+x+x2+ . . . (geometric

series). If s > 1, 1
ps
< 1. So 1

1− 1
ps

= 1 + 1
ps

+ 1
p2s

+ . . . Then

∏
p

(
1 +

1

ps
+

1

p2s
+ . . .

)
=

∞∑
n=1

1

ns

by unique factorization.
Euler then argued as follows: let s→ 1 from right. X=lims→1+

∑∞
n=1

1
ns →∑∞

n=1
1
n
, which diverges. But if P is finite, then X is a finite rational number,

a contradiction. (To make this rigorous, we need to be careful about limits
and uniform convergence.)

The Prime Number Theorem (PNT)
For any x ≥ 2, put

π(x) = #{p : prime | p ≤ x}.

What does π(x) look like for x very large? The prime number theorem
(PNT) says:

π(x) ∼ x

log x
, as x→∞

In other words, the fraction of integers in [1, x] which are prime is roughly
1

log x
for x large. (We can’t prove it in this class.)

Twin Primes These are prime pairs (p, q) with q = p+ 2.
Examples: (3,5), (5,7), (11, 13),. . .

Conjecture: There exist infinitely many twin primes.

Stronger conjecture: If π2(x) denotes the number of twin primes ≤ x,
then

π2(x) ∼
x

(log x)2
as x→∞.
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2 Heuristics on Primes

Let P = {primes in Z}. We saw two proofs of the fact that P is infinite.

Prime Number Theorem (PNT). If π(x) = #{p ∈ P |p ≤ x} then π(x) ∼
x

log x
for x large.

Heuristic reason: Let F (x) = the fraction of positive integers ≤ x which

are prime. Then F (x) = π(x)
x
. We want to take all n ≤ x and then throw out

composite numbers. First throw out even numbers, i.e., those divisible by 2.{
fraction of odd numbers

which are ≤ x

}
∼ 1

2
=

(
1− 1

2

)

fraction of numbers which are not divisible by 3 ∼
(
1− 1

3

)
We get

F (x) ∼
∏
p≤x

(
1− 1

p

)
In fact, we should use the bound

√
x for better accuracy. This way we are

off by a factor of 2.
Recall Euler’s result:∏

p≤x

(
1− 1

p

)−1

∼
∑
n≤x

1

n
∼
∫ x

1

1

t
dt = log x

Consequently,

F (x) ∼ 1

log x
, and so π(x) ∼ x

log x

Twin primes
We are looking for numbers n such that n and n+ 2 are prime.
Put

π2(x) = |{twin primes ≤ x}|

A heuristic argument:
Put

F2(x) =
π2(x)

x
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Again, take all n ≤ x and throw out numbers which are not twin primes.

Check:

F2(x) ≈
∏
p≤x

(
1− 2

p

)
≈ 1

log2 x

So one expects:

π2(x) ≈
x

log2 x
← Not yet proved!

3 More on divisibility and Primes

Proposition 1: Let a1, a2, . . . , an be integers. Put

M = {
n∑

i=1

aixi|xi ∈ Z,∀i}.

Then M = dZ, for a unique d ≥ 0. (dZ is the set of all integers divisible by
d.)

Proof. If M = {0}, take d = 0. Otherwise, put M+ = {n ∈ M |n > 0}.
Then clearly, M+ is non-empty since M ̸= {0}, and so by WOA, ∃ smallest
element, call it d, in M+. For any n in M , we can write by the Euclidean
algorithm: n = dq + r, with q, r ∈ Z, and 0 ≤ r < d.

Note that M is closed under subtraction. So r = n− dq is also in M . If
r = 0, we are done because then n = dq as desired.

Suppose r > 0. Then r ∈M+. Since r < d, this contradicts the minimal-
ity of d. Hence r must be 0, and n ∈ dZ.
�
Definition: Let a1, . . . , an, d be as in Prop. 1. Then d is called the gcd
(greatest common divisor) of {ai}. For brevity, write

d = (a1, . . . , an) = gcd(a1, . . . , an).

Check: (a1, (a2, a3)) = ((a1, a2), a3)

Definition: {ai} are mutually relatively prime iff (a1, . . . , an) = 1.

Example: (2,3,9) is mutually relatively prime but not pairwise relatively
prime.
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Proposition 2. a1, . . . , an are mutually relatively prime iff we can solve the
equation

n∑
i=1

aixi = 1 (*)

in integers.

Proof. Suppose d = (a1, . . . , an) = 1. Then by Prop.1, 1 = d ∈ M =
{
∑n

i=1 aixi|xi ∈ Z}. So (*) can be solved in integers. Conversely, suppose
(*) has a solution in integers. Then 1 ∈M+, and so d = 1.
�
Proposition 3. Let a, b, c ∈ Z, (a, b) = 1. Suppose a|bc. Then a|c.
Proof. Since (a, b) = 1, by Prop.2, ∃ x, y ∈ Z. Set ax + by = 1. Then
c = c(ax + by) = a(cx) + (bc)y. Since a|bc, a divides the right hand side,
hence a|c.
�

Proof of unique factorization in Z.

Existence
As shown before, every n ≥ 1 is a product of primes.

Uniqueness (second proof)
Let n > 1 be the smallest counterexample. So we can write n = p1 . . . pr =

q1 . . . qs, with pi, qj primes and p1 ̸= qj for any (i, j). So

p1|n = q1 . . . qs = q1(q2 . . . qs).

Since p1 ̸= q1, (p1, q1) = 1, and by Prop. 3, p1|(q2 . . . qs). Again, since p1 ̸= q2,
applying Prop.3 again, p1|(q3 . . . qs). Finally get p1|qs. So there is no such
counterexample.
�
Third Proof of the Infinitude of Primes in Z (Polya)

For every n ≥ 1, put Fn = 22
n
+ 1, called the nth Fermat number.

Lemma. If n ̸= m, (Fn, Fm) = 1.

Proof of Lemma. We may assume m > n. Write m = n + k, for some
k > 0. To show:

(Fn, Fn+k) = 1 (for k > 0.)
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Suppose d|Fn and d|Fn+k. Put x = 22
n
. Then, since

Fn+k = 22
n+k

+ 1 = 22
n2k + 1,

Fn+k − 2

Fn

=
x2

k − 1

x+ 1

= x2
k−1 − x2k−2 + · · · − 1 ∈ Z

⇒ Fn|(Fn+l − 2)⇒ d|2.
But Fn, Fn+k are odd. So d = 1. Hence the lemma. �
Proof of Infinitude of primes

Consider F1, F2, . . . , Fn . . . By lemma, each Fn is divisible by a prime,
call it pn, not dividing the previous Fk, k < n. The sequence {p1, p2, . . . } is
infinite. �

One has: F1 = 5, F2 = 17, F3 = 257, F4 = 65537 (Fermat), F5 =
(641)(6700417), . . .

Primes in “Arithmetic Progressions”:

Fix m > 1, and a ∈ Z such that (a,m) = 1.
Theorem (Dirichlet) ∃ infinitely many primes p which are ≡ a (modm).

We cannot possibly prove it in this class. But we can prove the following:
Baby Lemma ∃ infinitely many primes p which are ≡ 3(mod 4).
Proof: Suppose ∃ only a finite number of such primes, say 3, p1, p2, · · · , pr.

Consider
N = 4p1 p2 · · · pr + 3.

By unique factorization in Z we can write N = q1q2 · · · qs, with the qj’s being
primes.

Claim 1: Some qj must be ≡ 3(mod 4).
Indeed, every qj is an odd prime as N is odd, and moreover if qj ≡

1(mod 4) ∀j, then N will also be ≡ 1(mod 4), contradiction! Hence Claim 1.
Say q1 ≡ 3(mod 4).

Claim 2: q1 /∈ {3, p1, · · · , pr}.
Indeed, if q1 = 3, then 3|N , and since N = 4p1 · · · pr + 3, 3 must divide

4p1 · · · pr,→←. So q1 ̸= 3. Suppose q1 = pi for some 1 ≤ i ≤ r. Then pi | N ,
and since N = 4p1 · · · pr + 3, pi | 3, →←. So q1 ̸= pi. Hence Claim 2.

So we have produced a new prime q1 ≡ 3(mod 4) which is not in the
original list, →←. �
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Remark: There is no such simple argument to prove Dirichlet’s theorem for
primes ≡ 1(mod 4). We can try to start the same way by assuming that we
have a finite list of primes ≡ 1(mod 4), say p1, p2, · · · , pr, and we can consider
N = 4p1 · · · pr + 1. Factor N as q1 · · · qs. Now the analog of Claim 1 will
in general fail as the product of an even number of numbers congruent to 3
(mod 4) is 1 (mod 4). However, we will prove the infinitude of such primes
later after studying squares mod p.

Earlier we saw a heuristic reason for expecting there to be an infinite
number of twin primes, e.g. {3, 5}, {5, 7}, {11, 13}, · · ·
Expectation:

π2(x) : = #

(
twin primes
≤ x

)
≈ C

x

log2 x
, as x→∞.

This twin prime problem is closely related to the Goldbach problem,
which asks if every even number ≥ 4 is a sum of 2 primes.
Best known result: (Chen)

2n = a1 + a2, with ai prime or a product of 2 primes.

A similar heuristic reason makes one expect that there are infinitely many
primes p of the form n2 + 1.
Best known result: (Iwaniec)

∃ an infinite of sequence {m1,m2, · · · }

such that
(i)

mj = n2
j + 1, ∀j

and for every j,
(ii)

mj is a prime or a product of 2 primes

The proof is quite hard and beyond the scope of our class.
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4 Pythagorean Triples

Problem:
Find all x, y, z ∈ N such that

x2 + y2 = z2 (1)

If d = (x, y, z) > 1, then (x
d
, y
d
, z
d
) is another solution, called the primitive

solution.
For primitive solutions, we may assume that x is odd and y is even.

The Geometric Method
Solving (1) in integers amounts to solving the following in rational num-

bers:
X2 + Y 2 = 1 (2)

Geometrically, (2) is the equation of the unit circle in R2 with center at
O = (0, 0). Try to parametrize the circle.

One can try as in calculus to set

X = cos θ, Y = sin θ.

This turns out to be terrible for number theory. A better way is to consider
the parametrization

X =
1− t2

1 + t2
, Y =

2t

1 + t2

This is ingenious as this only involves rational functions. If t ∈ Q, then
X, Y ∈ Q. Of course

X2 + Y 2 =
(1− t2)2 + 4t2

(1 + t2)2
= 1

As t→∞ (along rationals) then

X =
1− t2

1 + t2
→ −1

So we are only missing one solution, (−1, 0), which we will remember.

Check: If X, Y ∈ Q, then t ∈ Q. (Show: t = Y
1+X

.)
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So the rational solutions of (2) are obtained by setting

X =
1− t2

1 + t2
, Y =

2t

1 + t2
,

together with the missing solution (−1, 0).
Write t = u

v
, u, v ∈ Z. Then

X =
v2 − u2

v2 + u2
, Y =

2vu

v2 + u2

It follows that the non-zero solutions in Z of (1) are given by

x = v2 − u2, y = 2uv, z = v2 + u2

with
u ̸= ±v, u, v ̸= 0

To get primitive solutions, it is convenient to put

m = v + u, n = v − u

x = (v + u)(v − u) = mn, y =
m2 − n2

2
, z =

m2 + n2

2

For primitive solutions, take m,n odd ≥ 1, m > n. Check that these are all
the primitive solutions.

5 Linear Equations

Basic problem: Fix a1, . . . , an ∈ Z, n > 0. Consider the equation:

a1x1 + · · ·+ anxn = a⃗ · x⃗ = m, (*)

where a⃗ = (a1, . . . , an) and x⃗ = (x1, . . . , xn). Determine if (*) can be solved
in integers. If so, determine all the solutions.

These are the simplest Diophantine Equations.
Earlier, we proved that, given a1, . . . , an ∈ Z, not all zero, ∃! positive

integer d, called the greatest common divisor, such that we can solve

a1x1 + . . . anxn = m
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if m is a multiple of d, and that the set

M = {a1x1 + · · ·+ anxn|x1, . . . , xn ∈ Z}

is simply dZ. Moreover, d is the smallest number in M+ = {r ∈ M |r > 0},
which exists by the WOA.

Consequently we have

Lemma 1. (*) can be solved iff m is a multiple of gcd ({ai}). �
So the basic problem comes down to determining all solutions of a · x =

dN , for any N ≥ 1.
Suppose n=1; then it is trivial. We have:

a1 ̸= 0, d = gcd = |a1|,

and we need to solve

a1x1 = |a1|N (*N)

But there is a unique solution, namely:

x1 = sgn(a1)N

n=2:
First look at case gcd=1, N=1.

a1x1 + a2x2 = 1 (*1)

By Lemma 1 there exists a solution, call it (u1, u2). Suppose (v1, v2) is another
solution. Then

a1u1 + a2u2 = 1 (1)

a1v1 + a2v2 = 1 (2)

Multiply (1) by v1; (2) by u1:

a1u1v1 + a2u2v1 = v1

a1u1v1 + a2u1v2 = u1

a2(v1u2 − u1v2) = v1 − u1 = k

Do same with (1) times v2, (2) times u2 to get:

a1 (u1v2 − u2v1)︸ ︷︷ ︸
−k

= (v2 − u2)
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So
v1 = u1 + ka2, v2 = u2 − ka1.

(u1, u2) is a particular solution which we use to generate all solutions.
Conversely, for any integer k,

(u1 + ka2, u2 − ka1)

is a solution of a⃗ · x⃗ = 1.

If gcd (a1, a2) = 1, then we can solve a1x1 + a2x2 = 1 in integers. More-
over, if (u1, u2) is a particular solution, then any other solution is of the form
(u1 + ka2, u2 − ka1), k ∈ Z.

n=2, d >1, N=1:

a1x1 + a2x2 = d (*1)

Since d =gcd(a1, a2), d|a1 and d|a2. Put bi = ai
d
. Then (*) becomes

b1x1 + b2x2 = 1 with (b1, b2) = 1.

So if (u1, u2) is a particular solution, every solution is of the form(
u1 + k

a2
d
, u2 − k

a1
d

)
.

This finishes the n = 2 case. We summarize the results in the following

Proposition Let a1, a2 be non-zero integers, and let d be their gcd. Then
the equation

a1x1 + a2x2 = m

is solvable in integers iff m is divisible by d. Moreover, if (u1, u2) is any
particular solution, then the set of all solutions is parametrized by Z, and for
each r ∈ Z, the corresponding solution is given by

x1 = u1 + r
a2
d
, and x2 = u2 − r

a1
d
.

n, a,N arbitrary: (general case)
It will be good to understand the example at the end of the section (for

n = 3). The rest of the section may be difficult and is included here for
completeness.
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Definition:

Mn(Z) = {a = (aij) : n× n−matrices with aij ∈ Z ∀i, j}.

In =

1
. . .

1


GLn(Z) = {A ∈Mn(Z) : det(A) = ±1}

The equation of interest is

(a1, . . . , an)

x1...
xn

 = Nd (*N)

Lemma 1 Let a = (a1, · · · , an) ∈ Zn − {0} with d = gcd(a1, · · · , an). Then
∃C ∈ GLn(Z) such that aC = den = (0, · · · , 0, d).

Proof. n = 1: d = |a1|, so we can take C = (sgn(a1)). Now let n > 1, and
assume Lemma by induction for m < n. If a1 = · · · = an−1 = 0 we can take

C =

(
I 0
0 sgn (an)

)
.

So we may suppose that a′ := (a1, · · · , an−1) ∈ Zn−1 − {0}.
Let d′ = gcd(a1, · · · , an−1). By the inductive hypothesis, ∃C ′ ∈ GLn−1(Z)

such that a′C ′ = (0, · · · , d′) ∈ Zn−1.

Let

A =

(
C ′ 0
0 1

)
∈ GLn (Z).

Then aA = (0, · · · , 0, d′, an). Clearly, d = gcd(d′, an), and ∃ x, y ∈ Z such
that d′x+ an y = d.

Put

B =

(
an/d x
−d′/d y

)
∈ SL2(Z).

Then (d′, an)B = (0, d).
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Put

C = A

(
In−2 0
0 B

)
∈ GLn (Z).

Then

aC = (aA)

(
In−2 0
0 B

)
= (0, · · · , 0, d′, an)

(
In−2 0
0 B

)
(3)

= (0, · · · , 0, d). (4)

�

Theorem 5.1 Let a = (a1, · · · , an) ∈ Zn − {0} with gcd equal to d.
Let C be the matrix given by Lemma. Pick any N ∈ Z. Then we have:

x =

x1...
xn

 ∈ Zn

is a solution of
∑n

i=1 ai xi = Nd if and only if ∃m1, · · · ,mn−1 ∈ Z such that

x =
n−1∑
i=1

miC
i +NCn

where Cj denotes (∀j) the j-th column of C.

Proof.
Let y = x−NCn.
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Then

a · x = Nd⇔ a·y = 0

⇕
aC(C−1y) = (0, · · · , 0, d)(C−1y) = 0

⇕

C−1y = m =


m1

·
·

mn−1

0

 , for some mi ∈ Z, 1 ≤ i ≤ n− 1

⇕

y = Cm =
n−1∑
i=1

miC
i

⇕
x = Cm+NCn.

Example: Find all the integral solutions of

5x+ 7y + 11z = 2. (∗)

Put a = (5, 7, 11). Then the gcd of the coordinates of a is 1. By Lemma,
we can find a 3 × 3 - integral matrix C of determinant ±1 such that aC =
(0, 0, 1). The proof of Lemma gives a recipe for finding C. First solve
5x + 7y = 1. Since 1 = gcd(5, 7), this can be solved, and a solution (by

inspection) is given by x = −4, y = 3. Put C ′ =

(
7 −4
−5 3

)
. Next we have

to solve d′u + 11v = 1, where d′ = gcd(a1, a2) = 1. A solution is given by

u = 1, v = 0. Let B =

(
11 1
−1 0

)
.

Then the proof of Lemma says that

C =

 C ′ 0
0

0 0 1

 1 0 0
0
0

B

 .
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Matrix multiplication gives

C =

 7 −44 −4
−5 33 3
0 −1 0

 .

By the Theorem, the complete set of integral solutions of (*) is given by: x = 7m− 44n− 8
y = −5m+ 33n+ 6

z = −n

 where m, n ∈ Z

6 Congruences

Fix an integer m > 1. We say that two integers a, b are congruent modulo
m iff m|(a− b).

Remark: If we had done this for m = 1, then any pair a, b would be
congruent mod 1.

If a, b are congruent mod m, we write

a ≡ b (mod m)

Modular arithmetic:
If a is any integer, we can use the Euclidean algorithm to write

a = mq + r, with 0 ≤ r < m

Then m|(a− r), so a ≡ r (mod m).
Consequently, we can partition Z into m blocks, one for each integer r,

with 0 ≤ r < m. Suppose Br is the block corresponding to r. Then, for any
a in Br, a ≡ r (mod m). Note: B0 = {. . . ,−2m,−m, 0,m, 2m, . . . }, B1 =
{. . . ,−2m+ 1,−m+ 1, 1,m+ 1, 2m+ 1, . . . }, etc.

If m = 2, this partition will yield even and odd integers; the even integers
are ≡ 0 (mod 2) and the odd integers are ≡ 1 (mod 2).

m = 3 :
These blocks are called congruence classes modulo m. There are

exactly m classes. We write Z/m for {B0, B1, . . . Bm−1}.
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a r (mod 3)
0 0
1 1
2 2
3 0
4 1
5 2
6 0

Definition: A set of representatives for Z/m is a subset S = {x0, x1, . . . , xn−1}
of Z such that xr ∈ Br for each r = 0, 1, . . . ,m− 1.
Note: There is a natural choice for S, namely S0 = {0, 1, . . . ,m−1}, called
the standard or usual set of representatives.

So for m = 3, we can use

S0 = {0, 1, 2}

or
S1 = {9, 16,−1}

as a set of representatives.
Claim:

One has addition, subtraction, 0, and multiplication in Z/m, just like in
Z.
Proof. Consider Bi, Bj. Look at i+ j. By Euclidean algorithm,

i+ j = qm+ ri+j,

for some ri+j with 0 ≤ ri+j < m. We put

Bi +Bj = Bri+j

Similarly, Bi − Bj = Bri−j
, if i − j = q′m + ri−j, with 0 ≤ ri−j < m. B0 is

the “zero” of Z/m, because

B0 +Bi = Bi = Bi +B0

Multiplication
Here is how we determine BiBj: Write ij = bm+ rij, 0 ≤ rij < m. Put

BiBj = Brij .
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Note that
B1Bj = Bj, for any j.

So B1 is the (multiplicative) “identity” element.
We also have distributive and associative laws in Z/m just like in Z.

Definition: If a ∈ Z, write a (mod m) to denote the block it belongs to. If
a, b ∈ Z, we write a+b (mod m) for any element of Bi+Bj, if a ∈ Bi, b ∈ Bj.
Similarly, ab (mod m) is defined.

Remark. In Z the only numbers we can divide by, i.e., which have “multi-
plicative inverses”, are ±1. The situation is better in Z/m. In fact, when m
is a prime p, all the non-zero elements of Z/m are invertible (mod m).
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7 Linear Equations mod m

Given a, c ∈ Z, we want to solve

(A) ax ≡ c (mod m)

Note that we can solve the “congruence” (I) iff we can solve

(B) ax+my = c

with x, y ∈ Z.
We have looked at ⋆ before.

Recall:
(i) For ⋆ to have a solution in integers, it is necessary and sufficient to

have c be divisible by the gcd, say d, of a,m.
(ii) Let u, v satisfy

(C)
(a
d

)
u+

(m
d

)
v = 1

This is possible as (a
d
, m

d
) = 1.

All the solutions for (C) are obtained by first finding one solution, say
(u0, v0) and writing the general solution as

(u, v) =
(
u0 + k

m

d
, v0 − k

a

d

)
for any k ∈ Z.

So the general solution of (B) is given by

(x, y) =

(
c

(
u0 +

km

d

)
, c

(
v0 −

ka

d

))
=
(
cu0 + k

c

d
m, cv0 − k

c

d
a
)

Thus the general solution to (A) is given by

x = cu0 + k
( c
d

)
m

Suppose x, x′ are both solutions of (A) mod m. Then

a(x− x′) ≡ 0 mod m,
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which means
m|a(x− x′).

Since d = gcd(a,m) we need

m

d
|(x− x′)

Example. m = 6, a = 4

4(x− x′) ≡ 0 (mod 6), d = 2⇔ 3|(x− x′)

So
(x− x′) ≡ 0 or 3 (mod 6)

In general, if (a,m) = d, then

a(x− x′) ≡ 0 (mod m)⇒ x− x′ is divisible by
m

d

There exists exactly d distinct solutions of (*) mod m. So we have

Lemma. ax ≡ c (mod m) has solutions if

d=gcd(a,m) | c.

When d|c, there are d distinct solutions mod m.

Corollary: ax ≡ 1 (mod m) can be solved iff (a,m) = 1. Moreover, the
solution is unique in this case.

Definition: If (a,m) = 1, we call the unique x (mod m) such that ax ≡ 1
(mod m) the inverse of a mod m.

Often, people write it as a′ (mod m).

Example. m = 7, a = 2, a′ = 4 (mod 7).

Recall
S0 = {0, 1, . . . ,m− 1}

is a set of reps. for Z/m. (It is the standard set of reps.)

Definition:
(Z/m)∗ = {Invertible elements of Z/m}

φ(m) = #(Z/m)∗

Explicitly,
φ(m) = |{a ∈ {0, 1, . . . ,m− 1} |(a,m) = 1}|.
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8 Euler’s φ-function

The function φ introduced above is called Euler’s totient function.
Note: If m is a prime p, then φ(p) = p− 1.

Theorem. Fix any m ≥ 1. Then, for any integer a relatively prime to m,
we have

aφ(m) ≡ 1 (mod m).

Corollary (Fermat’s Little Theorem). For any prime p, and for any a
not divisible by p,

ap−1 ≡ 1 (mod p).

This is very useful for computations.

Example: Compute 11470 (mod 37).

Idea: Since 37 is a prime, by Fermat’s little theorem,

a36 ≡ 1 (mod 37).

Hence
ar+36b ≡ ar (mod 37).

Write, using the Euclidean algorithm,

470 = 36b+ r, 0 ≤ r < 36

= 36 · 13 + 2

⇒ 11470 ≡ 112 (mod 37)

≡ 10 (mod 37).

Proof of Theorem. Let

S = {r0, . . . , rn−1}

be a set of reps. for Z/m, and let (a,m) = 1. Consider

S′ = {ar0, ar1, . . . , arm−1}.

Claim. S′ is another set of reps for Z/m.
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To show the claim, we need to prove

ari ≡ arj (modm) ⇒ i = j.

Suppose ari ≡ arj, for some i ̸= j. Then

a(ri − rj) ≡ 0 (mod m),

i.e., m|a(ri − rj). Since (a,m) = 1, m|(ri − rj), but this contradicts the fact
that S is a set of reps. for Z/m. Hence the claim.

So S and S′ are both sets of reps for Z/m. In other words, for each
congruence class Bi and m, ∃! number in Bi∩ S and in Bi∩ S′. Consequently,
the product of all the numbers in S coprime to m will be congruent (mod m)
to the product of all the numbers in S′ coprime to m.

Moreover, if ri is coprime to m, so is ari. So∏
ri∈S

(ri,m)=1

(ari) ≡
∏
ri∈S

(ri,m)=1

ri (mod m)

⇒ aφ(m)

 ∏
ri∈S

(ri,m)=1

ri

 ≡
 ∏

ri∈S

(ri,m)=1

ri

 (mod m)

If we set
b =

∏
ri∈S

(ri,m)=1

ri,

we then have
aφ(m)b ≡ b (mod m), with (b,m) = 1,

which implies that
m | (aφ(m) − 1)b.

Since (b,m) = 1,

m|(aφ(m) − 1), i.e., aφ(m) ≡ 1 (mod m).

Done.
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Warning: Little Fermat says that ap−1 ≡ 1 (mod p), for any prime p and
1 ≤ a < p. It might happen that ∃m ≥ 1 which is not a prime and a such
that

am−1 ≡ 1 (mod m).

For example, consider
m = 341 = (11)(31), and a = 2. Then

2340 ≡ 211−1 · 34 ≡ 1 (mod 11)

by Little Fermat. Also

2340 ≡ 2(31−1)11 · 210 ≡ 210 (mod 31) ≡ 322 (mod 31) ≡ 1 (mod 31).

Hence
2340 ≡ 1 (mod31).

In other words, 2340 is congruent to 1 modulo both 11 and 31. Since 11 and
31 are relatively prime, this implies

2341−1 ≡ 1 (mod 341),

though 341 is not a prime. (Some call it a pseudo-prime.)

Clearly, if m is a prime p, then φ(m) = p − 1. It is of great importance
to have a formula for computing φ(m) even when m is not a prime. To this
end we prove the following

Theorem Let m > 1. Write m =
∏r

i=1 p
ai
i , where p1, · · · , pr are distinct

primes and a1, · · · , ar are positive integers. Then

φ(m) =
r∏

i=1

pai−1
i (pi − 1) (a)

and

m =
∑
d|m

φ(d). (b)

Proof: (a) Step 1: Show φ(n1n2) = φ(n1)φ(n2) if n1, n2 are relatively
prime.
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Proof of Step 1:

φ(n1n2) = #{y ∈ {1, 2, · · · , n1n2 − 1} | (y, n1n2) = 1}
= #{ain1 + bjn2 | ai ∈ Z/n2, bj ∈ Z/n1, (ain1 + bjn2, n1n2) = 1}.

But we have

(ain1 + bjn2, n1n2) = 1⇐⇒

(ain1 + bjn2, n1) = 1
and

(ain1 + bjn2, n2) = 1


Also, (ain1 + bjn2, n1) = 1 iff (bjn2, n1) = 1, that is iff (bj, n1) = 1, since
(n1, n2) = 1.

Similarly, (ain1 + bjn2, n2) = 1 iff (ai, n2) = 1.
Consequently,

φ(n1n2) = #{ain1 + bjn2 | (ai, n2) = 1, (bj, n1) = 1}
= φ(n1)φ(n2).

Hence we have achieved Step 1.

Step 2: If p is a prime and a > 0, then show: φ(pa) = pa−1(p− 1).
Proof of Step 2:

φ(pa) = #{b ∈ {0, · · · , pa−1} | p - b} = pa−#{b ∈ {0, 1, · · · , pa} | p | b} = pa−pa−1,

which proves the assertion.

Step 3: Proof of the general case:

By step 1, we have

If m =
r∏

i=1

paii , then φ(m) =
r∏

i=1

φ (paii )

This is so because (paii , p
aj
j ) = 1 if i ̸= j. Now part (a) of the Theorem follows

by Step 2.

(b): m =
∏r

i=1 p
ai
i . So every positive divisor d of m is of the form

m =
∏r

i=1 p
bi
i with 0 ≤ bi ≤ ai. So

∑
d|m

φ(d) =
∑

{(b1,...,br)|0≤bi≤ai,∀i}

φ

(
r∏

i=1

pbii

)
.
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By part (a) this equals ∑
{(b1,...,br)|0≤bi≤ai,∀i}

r∏
i=1

φ(pbii ),

with φ(pbii ) being p
bi
i − p

bi−1
i (resp. 1) if bi > 0 (resp. bi = 0). Exchanging

the sum and the product, and noting that for fixed bj, j ̸= i,∑
{(b1,...,br)|0≤bi≤ai}

φ(pbii ) = paii ,

we get ∑
d|m

φ(d) =
r∏

i=1

paii = m.

This finishes our proof of the Theorem.

9 Linear congruences revisited

Theorem. Fix m > 1. Let a, c ∈ Z. Put d = gcd(a,m). Then the
congruence

ax ≡ c (mod m) (*)

has a solution x (mod m) iff d|c. Moreover, when d|c, all d solutions are of
the form

x ≡ cu0 +mk

d
(mod m),

with k ∈ Z, where (u0, v0) is a solution of au+mv = d.
We already proved (*) has a solution x (mod m) iff d|c. So let d|c. Let

(u0, v0) be a solution of

au+mv = d. (**)

Multiply by c, get
acu0 +mcv0 = cd,

i.e.,

a
(cu0
d

)
+m

(cv0
d

)
= c
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⇒ a
(cu0
d

)
≡ c (mod m)

⇒ x ≡ cu0
d

(mod m) is a solution of (*).

Recall that we get all the solutions of (**) by taking

(u, v) =

(
u0 +

km

d
, v0 −

kc

d

)
,

as k runs over Z. So the general solution of (*) is given by

x ≡ cu0
d

+
km

d
≡ cu0 + km

d
(mod m)

QED.

Corollary: ax ≡ 1 (mod m) has a solution iff (a,m) = 1. In this case there
is a unique solution, called the multiplicative inverse of a mod m, and
denoted a′ (mod m).

We knew before that a has a multiplicative inverse if (a,m) = 1. This
corollary replaces the if by iff.

Definition:
(Z/m)∗ = {a ∈ Z/m|(a,m) = 1}.

Note: By corollary, (Z/m)∗ is precisely the subset of Z/m consisting of
elements which have multiplicative inverses mod m.
Recall:

φ(m) = |(Z/m)∗|.
= |{a ∈ {0, 1, . . . ,m− 1}|(a,m) = 1}|.

In the previous section we proved the following:

Theorem: (Euler) For any a ∈ Z with (a,m) = 1,

aφ(m) ≡ 1 (mod m).

Corollary. (Fermat’s Little Theorem)

m = p (prime), (p, a) = 1⇒ ap−1 ≡ 1 (mod p).
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Remark. Fermat’s Little Theorem says that

xp−1 − 1 ≡ 0 (mod p)

has p− 1 solutions mod p, namely

x ≡ 1, 2, . . . , p− 1 (mod p)

⇒ ap − a ≡ 0 (mod p), ∀a = 1, 2, . . . , p− 1.

This is also true for
a ≡ 0 (mod p).

So,
xp − x ≡ 0 (mod p)

has p solutions mod p. On the other hand,

xp ≡ 0 (mod p)

has only one solution, namely x ≡ 0 (mod p). In other words, if a ̸= 0 (mod
p), then ap cannot be 0 (mod p).

Claim. If ab ≡ 0 (mod p), then either a or b must be ≡ 0 (mod p).

Proof of Claim. Suppose a ̸≡ 0 (mod p). Then a is invertible modulo p,
i.e.,

a ∈ (Z/p)∗.
So ∃a′ such that a′a ≡ 1 (mod p). Multiple both sides of ab = 0 (mod p) by
a′ to get (aa′)b ≡ 0 (mod p), giving

b ≡ 0 (mod p).

Conclusion: Z/p has no “zero divisors.” It is a field just like R, C and Q.

Note: If m is any integer > 1 which is not a prime, then Z/m has zero
divisors.

Proof. Since m is composite, we can write m = m1,m2 with m1,m2 > 1.
then

m1m2 ≡ 0 (mod m),

but neither m1 nor m2 is ≡ 0 (mod m).

Moral: Congruences modulo a prime p are nicer to study. They have much
more structure.
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10 Number of solutions modulo a prime

Theorem (Lagrange) Fix a prime p and integer n ≥ 1. Let f(x) = anx
n +

· · ·+ a0 be a polynomial with coefficients ai ∈ Z, such that some aj is prime
to p. Then the congruence

f(x) ≡ 0 (mod p) (1)

has at most n solutions mod p.

Proof: Suppose n = 1. Then the congruence is a1x ≡ −a0 (mod p). By
hypothesis, either a1 or a0 is not divisible by p. The former case must happen
as otherwise we would have 0 ≡ −a0 (mod p), implying a0 and a1 are both
≡ 0 (mod p), leading to a contradiction. Thus a1 is invertible mod p; let a′1
be such that a′1 a1 ≡ 1(mod p). Multiplying a1x ≡ −a0 (mod p) by a′1, get

(a′1a1)x ≡ x ≡ −a′1a0(mod p)

Thus we get a unique solution, and the Theorem is O.K. for n = 1.
Now let n > 1, and assume by induction that the Theorem holds for all

k < n. Suppose (1) has no solutions mod p. Then there is nothing to prove.
So we may assume that there is at least one solution, say x ≡ x1 (mod p).
Then we get

f(x1) ≡ 0 (mod p). (2)

Subtracting (2) from (1), we get

f(x)− f(x1) ≡ an(x
n−xn1 )+ an−1(x

n−1−xn−1
1 )+ · · · a1(x−x1) ≡ 0 (mod p).

But for any k ≥ 1, (x−x1) | (xk−xk1), so f(x)−f(x1) = (x−x1)g(x), where
g(x) is a polynomial in x of degree k − 1. Thus, f(x) − f(x1) ≡ 0 (mod p)
holds iff

(x− x1)g(x) ≡ 0 (mod p). (3)

Then either x− x1 ≡ 0 or

g(x) ≡ 0 (mod p) (4)

The coefficients of g cannot all be ≡ 0 (mod p), for otherwise f(x) would be
congruent to 0 (mod p). Since the degree of g is < n, we then have by the
inductive hypothesis, that the number of solutions of (4) mod p is bounded
above by n−1. Then the number of solutions mod p of (1) is ≤ 1+n−1 = n.

QED.
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11 Fermat’s Last Theorem and Gauss

Recall the Fermat equation xn+yn = zn. For n = 2, this leads to Pythagorean
triples and we classified all the solutions in this case.

Theorem (A. Wiles) (’97): For n ≥ 3, xn + yn = zn has no positive integral
solutions.

There is no way we can prove this magnificent result in this class.

Note: To prove this, it suffices to prove in the cases where n = 4 and
when n = p, where p is any odd prime.

Reason: If m|n, then any solution of un+ vn = wn will give a solution for
m, namely (un/m)m + (vn/m)m = (wn/m)m.

Moreover, for any n ≥ 3, n will be divisible by 4 or by an odd prime p.
We also proved in the first week that x4+y4 = z4 has no integral solutions

for. (In fact, we showed Fermat’s result that x4 + y4 = w2 has no integral
solutions.) Consequently, the key fact needed to be proven is that xp+yp = zp

has no solution for any odd prime.
This gets split into two cases:

Case I: p - xy z.
Case II: p | xy z.

Gauss showed almost no interest in the Fermat equation. We say almost
because there is just one place where he discusses a congruence which is of
some relevance for the first case of FLT.

Proposition (Gauss). Suppose the congruence

(∗) xp + yp ≡ (x+ y)p (mod p2)

has no non-trivial solutions, i.e. with none of x, y, x+ y ≡ 0 (mod p). Then
Case I of FLT holds for p, i.e.

@x, y, z ∈ Z>0, p - x y z, such that xp + yp = zp.

Note:

(x+ y)p =

p∑
j=0

(
p

j

)
xjyp−j,

(
p

j

)
=

p!

(p− j)!j!
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If j ̸= 0 or p, then
(
p
j

)
is divisible by p. Since (x + y)p = xp + yp +∑p−1

j=1

(
p
j

)
xjyp−j, we get

(x+ y)p ≡ xp + yp (mod p).

Proof of Prop.
Suppose we have positive integers x, y, z, with p - xyz, such that xp+yp =

zp. We have just seen that xp+yp ≡ (x+y)p (mod p), so zp ≡ (x+y)p (mod p).
Moreover, we have the Little Fermat Theorem, which says that xp ≡

x (mod p), zp ≡ z (mod p), yp ≡ y (mod p), and (x + y)p ≡ x + y (mod p).
Consequently, z ≡ x+ y (mod p), i.e. z = x+ y +mp, for some m ∈ Z.

Since xp + yp = zp, we get

xp + yp = (x+ y +mp)p =

p∑
i=0

(
p

i

)
(x+ y)i (mp)p−i

= (mp)p + p(x+ y)(mp)p−1 + · · ·+ p(x+ y)p−1(mp) + (x+ y)p.

Therefore xp + yp ≡ (x+ y)p (mod p2)

QED.
Difficulty:
If p ≡ 1 (mod 3), one can always solve the congruence xp + yp ≡ (x +

y)p (mod p2). So Gauss’s Proposition doesn’t help us. On the other hand,
when p ≡ 2(mod 3), xp + yp ≡ (x + y)p (mod p2) has no solution for many
small p.

Still, there are primes p ≡ 2 (mod 3) for which ∃ solutions to this con-
gruence. This happens for 13 primes less than 1000, as you will verify in
a HW exercise in Assignment 2. For example, when p = 59, 159 + 359 ≡
459 (mod 592).
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12 Mersenne Primes, Perfect Numbers and

the Lucas-Lehmer primality test

Basic idea: try to construct primes of the form an − 1; a, n ≥ 1. e.g.,
22 − 1 = 3 but 24 − 1 = 3 · 5
23 − 1 = 7
25 − 1 = 31
26 − 1 = 63 = 32 · 7
27 − 1 = 127
211 − 1 = 2047 = (23)(89)
213 − 1 = 8191

Lemma: xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

Corollary: (x− 1)|(xn − 1)

So for an − 1 to be prime, we need a = 2.
Moreover, if n = md, we can apply the lemma with x = ad. Then

(ad − 1)|(an − 1)

So we get the following

Lemma If an − 1 is a prime, then a = 2 and n is prime.

Of course this is a necessary, but not sufficient condition as seen by the
case 211 − 1.

Definition: A Mersenne prime is a prime of the form

q = 2p − 1, p prime.

Question: Are they infinitely many Mersenne primes?

A conjecture of Lenstra, Pomerance and Wagstaff predicts that there are
infinitely many Mersenne primes.

Best result (as of May 2013):
The largest known Mersenne prime q = 2p−1 is associated to p = 57, 885, 161,
and this was checked in Febuary 2013. This q is in fact the largest known
prime.
Definition: A positive integer n is perfect iff it equals the sum of all its
(positive) divisors < n.
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Definition: σ(n) =
∑

d|n d (divisor function)

So n is perfect if n = σ(n)− n, i.e. if σ(n) = 2n.
Well known example: n = 6 = 1 + 2 + 3
Properties of σ:

1. σ(1) = 1

2. n is a prime iff σ(n) = n+ 1

3. If p is a prime, σ(pj) = 1 + p+ · · ·+ pj = pj+1−1
p−1

4. (Exercise) If (n1, n2) = 1 then σ(n1)σ(n2) = σ(n1n2) “multiplicativity”.

Consequently, if

n =
r∏

j=1

p
ej
i ,

with positive integers ej and pairwise distinct primes pj, we have

σ(n) =
r∏

j=1

σ(p
ej
j ) =

r∏
j=1

(
pej+1 − 1

p− 1

)

Examples of perfect numbers:

{ 6=1+2+3
28=1+2+4+7+14
496
8128

Questions:

1. Are there infinitely many perfect numbers?

2. Is there any odd perfect number?

Note:

6 = (2)(3), 28 = (4)(7), 496 = (16)(31), 8128 = (64)(127)

They all look like
2n−1(2n − 1),

with 2n − 1 prime (i.e., of Mersenne type).
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Theorem (Euler) Let n be a positive, even integer. Then

n is perfect⇔ n = 2p−1(2p − 1), for a prime p, with 2p − 1 a prime.

Corollary. There exists a bijection between even perfect numbers and Mersenne
primes.

Proof of Theorem. (⇐) Start with n = 2p−1q, with q = 2p− 1 a Mersenne
prime. To show: n is perfect, i.e., σ(n) = 2n. Since 2p−1q, and since
(2p−1, q) = 1, we have

σ(n) = σ(2p−1)σ(q) = (2p − 1)(q + 1) = q2p = 2n.

(⇒): Let n be a even, perfect number. Since n is even, we can write

n = 2jm, with j ≥ 1, m odd ̸= n

.
⇒ σ(n) = σ(2j)σ(m) = (2j+1 − 1)σ(m)

Since n is perfect,
σ(n) = 2n = 2j+1m

Get
2j+1m = (2j+1 − 1)σ(m)

Since 2j+1 − 1 is odd,
2j+1|σ(m),

implying that
r2j+1 = σ(m) (1)

for some r ≥ 1.
Also,

2j+1m = (2j+1 − 1)r2j+1,

so
m = (2j+1 − 1)r. (2)

Suppose r > 1. Then
m = (2j+1 − 1)r

will have 1, r and m as 3 distinct divisors.
(Explanation: By hypothesis, 1 ̸= r. Also, r = m iff j = 0 iff n = m, which
will then be odd!)
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Hence

σ(m) ≥1 + r +m

=1 + r + (2j+1 − 1)r

=1 + 2j+1r

=1 + σ(m)

Contradiction!
So r = 1, and so (1) and (2) become

σ(m) = 2j+1 (1’)

m = 2j+1 − 1 (2’)

Since n = 2jm, we will be done if we prove that m is a prime. It suffices to
show that σ(m) = m+ 1. But this is clear from (1’) and (2’).
QED.

For any integer n ≥ 1, let us callMn = 2n−1 a Mersenne number. Define
numbers Sn recursively by setting

Sn = S2
n−1 − 2, with S1 = 4.

Then we have

S2 = 14, S3 = 194, S4 = 37634, S5 = 1416317954,

S6 = 2005956546822746114, . . .

Some books have a shift and start with the sequence an with a0 = 4 and
an = a2n−1 − 2. This is not a serious difference, but one has to be careful
when checking various tables available online.

Theorem: (Lucas-Lehmer Primality Test) Suppose for some n ≥ 2 that Mn

divides Sn−1. Then Mn is prime.

Look at n = 5. Since S4 = 37634 is divisible by 31 = 25 − 1, the
criterion checks in this simple case. In fact, 37304 has the prime factorization
2(31)(607), but the fact that 607 is a prime, etc. is not important to check the
primality of 31. We don’t care about factoring Sn−1, which can be forbidding,
only that it is divisible (or not) by Mn.
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Note also that it is not too time-consuming to check in an integer m is
divisible by 2n − 1, since we can first write m = q · 2n + r (by writing m in
binary, for example), and then adding, to r, q mod 2n − 1.

Proof of Theorem. (Very clever) Put α = 2 +
√
3, β = 2 −

√
3. Note

that α + β = 4, αβ = 1. So S1 = α + β.

Lemma. For any n ≥ 1, Sn = α2n−1
+ β2n−1

.

Proof of Lemma: n = 1 : S1 = α + β = 4. So let n > 1, and assume that
the lemma holds for n− 1. Since

Sn = S2
n−1 − 2

we get (by induction)

Sn = (α2n−1

+ β2n−1

)2 − 2

Note:

(αk + βk)2 = α2k + 2αkβk + β2k

= α2k + β2k + 2, as αβ = 1.

So we get (setting k = 2n−2)

Sn = α2n−1

+ β2n−1

+ 2− 2.

Hence the lemma.

Proof of Theorem (continued): Suppose Mn|Sn−1. Then we may write
rMn = Sn−1, some positive integer. By the lemma, we get

rMn = α2n−2

+ β2n−2

(3)

Multiply (3) by α2n−2
and subtract 1 to get:

α2n−1

= rMnα
2n−2 − 1 (4)

Squaring (4) we get

α2n = (rMnα
2n−2 − 1)2 (5)

Suppose Mn is not a prime. Then ∃ a prime ℓ dividing Mn, ℓ ≤
√
Mn. Let

us work in the number system

R = {a+ b
√
3|a, b ∈ Z}
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Check: R is closed under addition, subtraction, and multiplication (it is
what one calls a ring). Equations (4) and (5) happen in R. Define R/ℓ =
{a, b
√
3|a, b ∈ Z/ℓ}.

Note: |R/ℓ| = ℓ2

We can view α, β as elements of R/ℓ. Since ℓ|Mn, (4) becomes the fol-
lowing congruence in R/ℓ:

α2n−1 ≡ −1 (mod ℓ) (6)

Similarly, (5) says
a2

n ≡ 1 (mod ℓ)

Put
X = {αj mod ℓ|1 ≤ j ≤ 2n}.

Claim |X| = 2n.

Proof of claim. Suppose not. Then ∃j, k between 1 and 2n, with j ̸= k,
such that αj ≡ αk (mod ℓ).

If r denotes |j − k|, then 0 < r < 2n and αr ≡ 1 (mod ℓ). Let d denote
the gcd of r and 2n, so that ar + b2n = d for some a, b ∈ Z. Then we have

αd = αar+b2n = (αr)a · (α2n)b ≡ 1 (mod ℓ).

But since d|2n, d is of the form 2m for some m < n, and αd ≡ 1 (mod ℓ)
contradicts α2n−1 ≡ −1 (mod ℓ). Hence the claim.

So |X| ≤ ℓ2 − 1, i.e., we need 2n ≤ ℓ2 − 1.
Since

ℓ ≤
√
Mn, ℓ

2 − 1 < Mn = 2n − 1.

⇒ 2n < 2n − 1, a contradiction!
So Mn is prime.

QED
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13 RSA Encryption

The mathematics behind the very successful RSA encryption method is very
simple and uses mainly Euler’s congruence for any N ≥ 1:

bφ(N) ≡ 1 (mod N)

if (b,N) = 1. (When N is a prime, this is Fermat’s little theorem.)

Imagine that a person X wants to send a carefully encrypted message to
another person Y , say. X will look in a directory which publishes the public
key of various people including Y . The public key of Y will be a pair (e,N)
of positive integers, where N will be a large number which is a product of
2 distinct primes p and q. The point is that the directory will contain no
information on the factorization of N . For large enough N it will become
impossible (virtually) to factor N . The number e will be chosen mod N and
it will be prime to φ(N).

The person X will first represent his/her plain text message by a numeral
a (which can be done in many ways). For simplicity, suppose that a is prime
to N . X will then raise a to the power e mod N and send the message as b.
So

b ≡ ae (mod N).

If someone intercepts the message, he or she will be unable to recover
a from b without knowing the factorization of N . So it is secure. On the
other hand, the recipient of the message, namely Y , will be able to decode
(decrypt) the message as follows. He/she will pick a number d (decryption
constant) such that

de ≡ 1 (mod (p− 1)(q − 1)).

Y can do this because he/she knows the prime factors p, q and because e is
prime to φ(N); observe that since p and q are distinct primes and N = pq,
one has

φ(N) = φ(p)φ(q) = (p− 1)(q − 1).

So by applying Euler’s congruence mod N , we get

bd ≡ aed ≡ a1+c(p−1)(q−1) ≡ a (mod N).

Thus Y recovers a.
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Note that if someone does not have the factorization of N , he/she will
find it hard to decrypt the message.

The major fault line in this method is that there is no proof – at all,
that the only reasonably fast way to decrypt the RSA-encrypted message is
to know the factorization of N . In a sense this is scary because so much of
the internet traffic is dependent on RSA for secure transmission of possibly
sensitive information.

14 Primitive roots mod p and Indices

Fix an odd prime p, and x ∈ Z. By little Fermat:

xp−1 ≡ 1 (mod p) if x ̸≡ 0 (mod p)

Example: p = 5
x x2 x3 x4

1 1 1 1
2 -1 3 1
3 -1 2 1
4 1 -1 1

2 and 3 are called primitive roots mod 5, since no smaller power than
4 = 5− 1 is ≡ 1 (mod 5).

Definition: Let x ∈ Z, p ̸ |x. Then the exponent of x (relative to p) is the
smallest integer r among {1, 2, . . . , p − 1} such that xr ≡ 1 (mod p). One
writes r = ep(x).

When p = 5, e5(1) = 1, e5(2) = 4 = e5(3), e5(4) = 2.

Definition: x is a primitive root mod p iff ep(x) = p− 1.

Again, when p = 5, 2 and 3 are primitive roots.

Claim: For any x prime to p,

ep(x)|(p− 1).

Proof: Since 1 ≤ ep(x) ≤ p− 1, by definition, it suffices to show that

d = gcd(ep(x), p− 1) ≥ ep(x).
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Suppose d < ep(x). Since d is the gcd of ep(x) and p−1, we can find a, b ∈ Z
such that aep(x) + b(p− 1) = d. Then

xd = xaep(x)+b(p−1) = (xep(x))a(xp−1)b

But
xp−1 ≡ 1 (mod p) by Little Fermat,

and
xep(x) ≡ 1 (mod p) by definition of ep(x).

Thus
xd ≡ 1 (mod p)

Since we are assuming that d < ep(x), we get a contradiction as ep(x) is the
smallest such number in {1, 2, . . . , p− 1}.
⇒ d ≥ ep(x).
Since d = gcd(ep(x), p− 1), d|ep(x)⇒ d = ep(x). Hence the Claim.

Two natural questions

1. Are there primitive roots mod p?

2. If so, how many are there?

For p = 5, the answers are yes for (1), and two for (2).

Theorem: Fix an odd prime p. Then
(i) ∃ primitive roots mod p
(ii) #{primitive roots mod p} = φ(p− 1).

Of course, (i) implies (ii) as φ(m) ≥ 1 for any positive integer m.

Proof: For every (positive) divisor d of p− 1, put

ψ(d) = #{x ∈ {1, . . . , p− 1}|ep(x) = d}

Both (i) and (ii) will be proved if we show

ψ(p− 1) = φ(p− 1). (*)

We will in fact show that

ψ(d) = φ(d) ∀d|(p− 1)
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Every x in {1, . . . , p − 1} has an exponent, and by the Claim above, this
exponent is a divisor d of p− 1. Consequently,

(p− 1) =
∑

d|(p−1)

ψ(d) (1)

Recall, on the other hand, that we proved in Chapter 8 that

p− 1 =
∑

d|(p−1)

φ(d) (2)

Consequently, ∑
d|(p−1)

ψ(d) =
∑

d|(p−1)

φ(d) (3)

Since ψ(d) and φ(d) are both non-negative, it suffices to show that

(A) ψ(d) ≤ φ(d), ∀d|(p− 1)

Proof of (A): Pick any d|(p− 1). If ψ(d) = 0, we have nothing to prove. So
assume that ψ(d) ̸= 0. Then

∃a ∈ {1, . . . , p− 1} such that ep(a) = d.

Consider
Y = {1, a, . . . , ad−1}

Then Y supplies d distinct solutions to the congruence

xd ≡ 1 (mod p).

(If they are not distinct, then ai−j will be 1 mod p for some i ̸= j, i, j ∈
[1, d − 1], which will contradict d = ep(a) being the smallest integer m > 0
such that am ≡ 1 (mod p).) In Chapter 10 we proved Lagrange’s theorem
which says that given any polynomial f(x) with integral coefficients f degree
n, with not all of whose coefficients are zero mod p, there are at most n
solutions mod p of f(x) ≡ 0 (mod p). So xd − 1 ≡ 0 (mod p) has at most
d solutions mod p. Consequently, Y is exactly the set of solutions to this
congruence and #Y = d.

Claim:
ψ(d) = #{aj ∈ Y |ep(aj) = d | (j, d) = 1}.
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Indeed, let r = gcd(j, d). Then by the proof of the earlier Claim,

ep(a
j) =

d

r
.

So r = 1 iff ep(a
j) = d. Hence the Claim.

So we have:

ψ(d) = #

{
aj ∈ Y

∣∣∣∣j ∈ {0, 1, . . . , d− 1}
(j, d) = 1

}
≤ φ(d) for all d|(p− 1).

In fact we see that ψ(d) = 0 or φ(d), which certainly proves (A), and hence
the Theorem. QED

2 is a primitive root modulo the following primes < 100:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83

Artin’s Conjecture:
There are infinitely many primes with 2 as a primitive root.

More generally, for any non-square a, one can ask if there are infinitely
many primes with a a primitive root mod p.

This blind generalization cannot be true if a is a perfect square. Indeed
if a = b2, since b(p−1) ≡ 1 (mod p), if p ̸ |b, we have

a
p−1
2 ≡ 1 (mod p).

So, for any odd p ̸ |a, ep(a)|(p−1
2
). Similarly, a = −1 is another bad case,

because
(−1)2 = 1 and ep(−1) = 2 or 1, ∀p odd.

So one is led to the following

Generalized Artin Conjecture. Let a be an integer which is not -1 and
not a perfect square. Then ∃ infinitely many primes such that ep(a) = p− 1.

Here is a positive result in this direction:

Theorem: (Gupta, Murty, and Heath-Brown) There are at most three pair-
wise relatively prime a’s for which there are possibly just a finite number of
primes such that ep(a) = p− 1.
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Problem: No one seems to have any clue as to the nature and size of these
three possible exceptions, or whether they even exist. Is 2 an exception?

Indices
Fix an odd prime p and a primitive root a mod p. We can consider

Y = {aj|0 ≤ j < p− 1}.

Then each element of Y is in (Z/p)∗ and we get p− 1 distinct elements. But
#(Z/p)∗ = p− 1. So Y gives a set of reps. for (Z/p)∗.

Consequently, given any integer b prime to p, we can find a unique j ∈
{0, 1, . . . , p− 2} such that b ≡ aj (mod p).

This (unique) j is called the index of b mod p relative to a, written Ip(b)
or I(b). One has the following
Properties:

I(ab) ≡ I(a) + I(b) ( mod p)

I(ka) ≡ kI(a) ( mod p)
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15 Squares mod p

Recalll that a real number x is a square if and only if the sign of x sis positive.
One can ask a similar question if we replace the field R by the finite field
Z/p, for a fixed prime p.

Basic question: Given ain Z, how can we determine if ∃b ∈ Z such that
a ≡ b2 (mod p)?

Trivial case: If p|a, one can take b ≡ 0. Also, every integer is a square mod
2. So from now on we may (and we will) assume that (a, p) = 1 with p odd.

Let’s make a table for very small odd primes: (with x ̸≡ 0 mod p)

p = 3 p = 5 p = 7
x x2 x x2 x x2

1 1 1 1 1 1
2 1 2 -1 2 4

3 -1 4 2
-1=4 1 5 4

6 1

1 : square mod 3 1, 4 : squares mod 5 1, 2, 4 : squares mod 7
2 : non-square mod 3 2, 3 : non-squares mod 5 3, 5, 6 : non-squares mod 7

Guess:

# of squares in (Z/p)× = # of non-squares in (Z/p)×

for any odd prime p.

Definition: The Legendre symbol of a mod p is given by(
a

p

)
=

{
1, if a ≡ square mod p

−1, if a ̸≡ square mod p

We say a is a quadratic residue mod p if it is a �, otherwise a quadratic
non-residue. (Some would allow a to be divisible by p and set (a

p
) = 0 if p|a.)

Lemma: The Guess is on the money.

Proof: Let S = {1, 2, . . . , p− 1}. We know that S is a set of representatives
for (Z/p)×. Put

T =

{
1, 2, . . . ,

p− 1

2

}
,
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which we will call a half-set of representatives,and

T 2 = {b2|b ∈ T}.

Claim A: #(T 2 mod p) = p−1
2
, i.e., if b, c ∈ T , b ̸= c, then b2 ̸≡ c2 (mod

p).

Proof of Claim A: Indeed, if b2 ≡ c2 (mod p) then b ≡ ±c (mod p). This
cannot happen as, ∀b ∈ T, ∃ unique b′ in S − T such that b′ ≡ −b (mod p),
unless b = c.

Claim B: T 2 ≡ S2 (mod p)

Proof: Let a ∈ S − T . Then ∃!a′ ∈ T such that a′ ≡ −a (mod p). Then
a2 ≡ (a′)2 (mod p). Hence a2 ∈ T 2 mod p⇒ the square of any element of S
is in T 2 mod p. Hence the claim.

End of Proof of Lemma 1:
Note that #{quad res. mod p} = #S2 (mod p). On the other hand, by

the Claims A and B, there is p−1
2
⇒ #{quad. non-res. mod p} = p−1− p−1

2
=

p−1
2
.

Corollary of Lemma 1: Let p be an odd prime. then∑
a∈( Z

p
)×

(
a

p

)
= 0.

Proof of Corollary: Since
(

a
p

)
is 1 for quadratic residues a and −1 for

quadratic non-residues, we obtain∑
a∈( Z

p
)×

(
a

p

)
= #{quadratic residues} −#{quadratic non-residues}

=
p− 1

2
− p− 1

2
= 0.

Done.

Remark: Let a, b be integers prime to p. Then with what we have es-
tablished so far, we can deduce that if at least one of {a, b} is a quadratic
residue, then (

ab

p

)
=

(
a

p

)(
b

p

)
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Indeed, is a, b are both quadratic residues mod p, i.e. a ≡ a21, b ≡ b21 (mod
p) for some a1, b1, then ab ≡ (a1b1)

2 (mod p), and (ab
p
) = (a

p
)( b

p
) = 1 · 1. Now

suppose a is a quadratic residue mod p, but not b. (a
p
) = 1, ( b

p
) = −1. If

(ab
p
) = 1, then ∃c such that ab ≡ c2. Since (a

p
) = 1, ∃a1 such that a21 ≡ a (

mod p), implying a21b ≡ c2 ( mod p).
Since p ̸ |a1, a1 is invertible mod p, i.e., ∃a′1 such that a1a

′
1 ≡ 1. Then

b ≡ (a′1c)
2 (mod p), contradicting the assumption that

(
b
p

)
= −1.

This multiplicative property still remains valid when (a
p
) = ( b

p
) − 1, but

the best way to prove it is to appeal to a criterion of Euler – see Proposition
below and Corollary 1.

Lemma 3 (Wilson’s Theorem) For any prime p, (p − 1)! ≡ −1 (mod
p).

Proof: If p = 2, both sides ≡ 1 (mod 2), done. So assume p odd. Look at
S = {1, . . . , p− 1}, set of resp. foralla ∈ S, let a′ be the unique element of
S such that aa′ = 1 (mod p).

a = a′ iff a2 = 1 (mod p), i.e., iff a = 1 or a = p− 1. So,

∀a ∈ {2, . . . , p− 2}, a′ ̸= a and a′ ∈ {2, . . . , p− 1}.

⇒ (2)(3) · (p− 2) ≡ 1 (mod p).

⇒ (p− 1)! ≡ 1(p− 1) (mod p)

≡ −1 (mod p).

Proposition (Euler’s criterion) Let p be an odd prime, and let a ∈ Z with
(a, p) = 1. Then (

a

p

)
≡ a

p−1
2 (mod p)

Recall that the Little Fermat theorem says that

ap−1 ≡ +1 (mod p) since p ̸ |a;

so a
p−1
2 ≡ ±1 (mod p).

Corollary of Proposition (Strict multiplicativity)(
ab

p

)
=

(
a

p

)(
b

p

)
, ∀a, b ∈ Z with p ̸ |ab.
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Proposition ⇒ Corollary 1: By Euler,(
ab

p

)
≡ (ab)

p−1
2 (mod )

≡
(
a

p−1
2

)(
b

p−1
2

)
=

(
a

p

)(
b

p

)
.

Corollary 2 of Proposition: If p = odd prime, -1 is a square mod p iff
p ≡ 1 (mod 4).

Proposition ⇒ Corollary 2: By Euler, (−1
p
) = 1 iff (−1)

p−1
2 ≡ 1 (mod p).

Since p is odd, p ≡ 1 (mod 4) are -1 (mod 4).
p ≡ 1 (mod 4):
p = 4m+ 1, some m ∈ Z:

⇒ (−1)
p−1
2 = (−1)2m = 1

p ≡ −1 (mod 4):
p = 4m− 1:

(−1)
p−1
2 = (−1)2m−1 ≡ −1 (mod p).

Proof of proposition: By Fermat, ap−1 ≡ 1 (mod p). Since p is odd,
p−1
2
∈ Z and we can factor:

ap−1 − 1︸ ︷︷ ︸
≡0 by Fermat

=
(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)

⇒
(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
≡ 0 mod p

⇒ a
p−1
2 ≡ ±1 (mod p).

Now suppose a is a square mod p. Then ∃b such that a ≡ b2 (mod p). So

a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 (mod p).

So: (
a

p

)
= 1⇒ a

p−1
2 ≡ 1 (mod p).
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On the other hand, the congruence X
p−1
2 −1 ≡ 0 (mod p) has at most p−1

2

solutions mod p by Lagrange. We have just proved that, given any quadratic
residue a mod p,

a
p−1
2 ≡ 1 (mod p),

i.e., a is a solution of

X
p−1
2 − 1 ≡ 0 (mod p).

By lemma 1, there exists exactly p−1
2

quadratic residues mod p. Consequently,

X
p−1
2 − 1 ≡ 0 (mod p)

has exactly p−1
2

solutions, and each of them is a quadratic residue mod p. In
other words, if a is a quad. non-residue mod p, then a is not a solution of

X
p−1
2 ≡ 0 (mod p).

⇒ a
p−1
2 ≡ −1 (mod p) ≡

(
a

p

)
(mod p)

if a ̸≡ square(modp).

To summarize, we have the following properties of ( ·
p
):

(i) (ab
p
) = (a

p
)( b

p
) (Product formula)

(ii) (−1
p
) ≡ (−1)

p−1
2 (mod p), i.e., -1 is a square (mod p) iff p ≡ 1 (mod 4).

Remark:
Thanks to (i) and the unique factorization in Z, in order to find (a

p
) for

any a ∈ Z with (a, p) = 1, we need only know(
−1
p

)
,

(
2

p

)
, and

(
q

p

)
, q ̸= p an odd prime.

We have already found a formula for (−1
p
).

As an application of (ii) we will prove the following, special case of Dirich-
let’s theorem:
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Proposition: There are infinitely many primes p which are congruent to 1
modulo 4.

Earlier we proved that there exists infinitely many primes ≡ 3 (mod 4) in
the following way: Suppose there exists a finite number of such primes. List
them as 3, p1, . . . , pr. Consider

N = 4p1 . . . pr + 3.

Factor N as q1, . . . qs, qj prime for all j. Since N is odd, each qj is an odd
prime. Moreover, since N ≡ 3 (mod 4), some qj must be ≡ 3 (mod 4). But
this qj cannot be among {3, p1, . . . , pr}. Done.

Suppose we tried this for primes ≡ 1 (mod 4). Assume there exists only
finitely many such primes p1, . . . , pm. Put N = 4p1 . . . pm + 1. Factor N as
q1 . . . qs. Since N is odd, each qj is an odd prime. But, if s is even, we cannot
hope to say that some qj must be ≡ 1 (mod 4). The method breaks down.

Proof of Proposition: Now we try again using (ii). As before start by
assuming there exists only a finite number of primes ≡ 1 (mod 4), say
p1, . . . , pm. Let N = 4(p1p2 . . . pm)

2 + 1. Factor N as q1 . . . qk, qj prime
for all j. Evidently, each qj is an odd prime because N is odd.

Claim: Every qj is ≡ 1 (mod 4).

Proof of Claim: Pick any odd prime qj dividing N . Then, since N =
(2p1 . . . pm)

2 + 1, we get −1 ≡ b2 (mod qj), where b = 2p1 . . . pm. By the
criterion (ii), -1 is a square mod qj iff qj ≡ 1 (mod 4). Hence the claim.

Back to the proof of Prop. So qj is a prime which is ≡ 1 (mod 4), and it
cannot be among {p1, . . . , pm} because if pi = qj for some i, we will get 1 ≡ 0
(mod qj), a contradiction, proving the proposition.

Remark: This proof tells us a way to generate new primes which are ≡ 1
(mod 4) from known ones. Here are some simple examples:

1. Start with 5, and consider N = 4(5)2 + 1 = 101; this is a prime.

2. Start with 13, and consider N = 4(13)2+1. Then N = 677, also prime.

3. Start with 17. N = 4(17)2 +1 = 1157 = (13)(89). Note: 13 and 89 are
both ≡ 1 (mod 4).
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Next Question: When is 2 a square mod p?

To answer this question, Gauss established the following:

Proposition A (Gauss’ Lemma) Fix a, prime to p. Let T be a subset of
N such that T ∪ (−T ) is a set of reps. for (Z/p)×. Given any t ∈ T , we can
then write at ≡ et(a)ta (mod p), where ta ∈ T and et(a) ∈ {±1}. Then(

a

p

)
=
∏
t∈T

et(a).

Proof: Let t, t′ be distinct numbers in T . Then at ̸≡ ±at′ (mod p), i.e.,
ta ̸≡ t′a. Hence the map T → T given by t → ta has to be a bijection, i.e.,
1-1 and onto. (This is also called a permutation, meaning a rearrangement,
of T .) We get

a(p−1)/2
∏
t∈T

t ≡
∏
t∈T

(at) ≡
∏
t∈T

et(a)ta (mod p)

≡

(∏
t∈T

et(a)

)(∏
t∈T

ta

)
(mod p)

≡

(∏
t∈T

et(a)

)(∏
t∈T

t

)
(mod p)

So

a
p−1
2

(∏
t∈T

t

)
≡

(∏
t∈T

et(a)

)(∏
t∈T

t

)
(mod p).

Cancelling (
∏

t∈T t), which is invertible mod p, from each side, we get

a
p−1
2 ≡

∏
t∈T

et(a)

Done because

a
p−1
2 ≡

(
a

p

)
mod p.

Remark: Very often one chooses T to be the “canonical” half set of reps for
(Z/p)×, namely T = {1, 2, . . . , p−1

2
}.
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Formulation (II) of Gauss’ Lemma: Let T = {1, 2, . . . , p−1
2
}, and a an

integer prime to p. For each j ∈ T , find the smallest positive residue āj of
aj mod p, which is well defined with āj ∈ {1, 2, . . . , p− 1}. Let

k = #{j ∈ T |āj ̸∈ T}.

Then (
a

p

)
= (−1)k.

Corollary of Gauss’ lemma: (
2

p

)
= (−1)n(p),

n(p) is the number of integers s such that

p− 1

4
< s ≤ p− 1

2
.

Explicitly, (
2

p

)
=

{
1, p = ±1 (mod 8)

−1, if p = ±5 (mod 8)

Proof of Corollary. Apply Gauss’ lemma to T = {1, 2, . . . , p−1
2
} with

a = 2. Then

et(2) =

{
1, if 2s ≤ p−1

2

−1, otherwise

Since
(

2
p

)
=
∏

s∈T et(2) (mod p), (2
p
) = (−1)n(p). The rest follows.

Definition: If x ∈ R, its integral part [x] is the largest integer ≤ x.

Proposition (Formulation III of Gauss’ Lemma) Let p odd prime, and
a be an odd integer with p ̸ |a. Then(

a

p

)
= (−1)t, where t =

(p−1)/2∑
j=1

[
ja

p
].
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This follows easily from the Formulation II of Gauss’s lemma with a little
book-keeping. We will indicate how this is done.

Proof: For every j ∈ {1, 2, . . . , p−1
2
}, it is easy to see that

aj = qjp+ āj, with 0 < āj < p.

Easy exercise:

qj =

[
aj

p

]
.

So āj = aj − [aj
p
].

Summing over all the j’s from 1 to p−1
2
, we get

p−1
2∑

j=1

aj =

p−1
2∑

j=1

[
aj

p

]
p+

k∑
i=1

ri +
k′∑
i=1

ℓi, (15)

where k′ = p−1
2
− k, {ri} = residues āj not in T , {ℓi} = residues in T .

Also
(p−1)

2∑
j=1

j =
k∑

i=1

(p− ri)−
k∑

i=1

ℓi. (16)

Subtracting equation (2) from equation (1), we get

(a− 1)

(p−1)
2∑

j=1

j = p

(p−1)/2∑
j=1

[
ja

p

]
− k

+ 2
k∑

i=1

ri.

And we have
(p−1)

2∑
j=1

j =
1

2

(
p− 1

2

)(
p+ 1

2

)
=
p2 − 1

8

Thus

(a− 1)︸ ︷︷ ︸
even since a is odd

(
p2 − 1

8

)
=

(p−1
2∑

j=1

[
ja

p

]
− k (mod 2)

Consequently, k has the same parity as

(p−1)
2∑

j=1

[
ja

p

]
.
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Review: Let p be a prime, a ∈ Z, p ̸ |a. Put(
a

p

)
=

{
1, a ≡ square mod p

−1, a ̸≡ square mod p

(Some also define
(

a
p

)
for all Z by setting (a

p
) = 0 if p|a.)

p = 2: Everything is a square mod p. So assume p odd from now on. One
has the multiplicativity property(

ab

p

)
=

(
a

p

)(
b

p

)
(*)

This follows from Euler’s result that(
a

p

)
≡ a

p−1
2 (mod p).

Note: Since p is odd, if a
p−1
2 ≡ b

p−1
2 (mod p), for some a, b prime to p, then

(a
b
) = ( b

p
). So (∗) reduces the problem to finding (a

p
) in the following three

cases
(i) a = −1
(ii) a = 2
(iii) a = q, an odd prime ̸= p

We have already proved

(i) (
−1
p

)
= (−1)

p−1
2 =

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ −1 (mod 4)

(ii) (
2

p

)
=

{
1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±5 (mod 8)

(iii) q: odd prime ̸= p. (
q

p

)
=?

To solve (iii) Gauss introduced his law of quadratic reciprocity, which
we will study in the next chapter.
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16 The Quadratic Reciprocity Law

Fix an odd prime p. If q is another odd prime, a fundamental question, as

we saw in the previous section, is to know the sign of
(

q
p

)
, i.e., whether or

not q is a square mod p. This is a very hard thing to know in general. But

Gauss noticed something remarkable, namely that knowing
(

q
p

)
is equivalent

to knowing
(

p
q

)
; they need not be equal however. He found the precise law

which governs this relationship, called the Quadratic Reciprocity Law. Gauss
was very proud of this result and gave several proofs. We will give one of
his proofs, which incidentally introduces a very basic, ubiquitous sum in
Mathematics called the Gauss sum. We will also give an alternate proof,
which is in some sense more clever than the first, due to Eisenstein.

Theorem (Gauss) (Quadratic reciprocity) Let p, q be distinct odd primes.
Then (

q

p

)
= (−1)

(q−1)(p−1)
4

(
p

q

)
.

Explicitly,(
q

p

)
= ε

(
p

q

)
, where ε =

{
1, if p or q is ≡ 1 (mod 4)

−1, if p and q are ≡ 3 (mod 4)

This theorem is very useful in computations.

Example: (
37

691

)
= 1

It is not easy to establish this by computing (37)
691−1

2 (mod 691). But one
can do it fast by appealing to quadratic reciprocity:(

37

691

)
= (−1)(

37−1
2 )( 691−1

2 )︸ ︷︷ ︸
1

(
691

37

)

=

(
691

37

)
;
691

37
= 18

25

37

=

(
25

37

)
=

(
5

37

)2

= 1
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Proof I of Theorem: p, q odd primes, p ̸= q. Put

ξ = e
2πi
q ∈ C

Then
ξq = 1, but ξm ̸= 1 if m < q.

ξ is called a primitive qth root of unity in C. All powers of ξ will be on the
unit circle. In fact, we get a regular q-gon by connecting the q points

1, ξ, . . . , ξq−1.

If the q points are connected to the center of the circle, one divides the circle
into wedges – cyclotomy, a Greek word meaning circle cutting, or more
appropriately, circle division.

Put

R = {α = a0 + a1ξ + · · ·+ aq−1ξ
q−1|a0, a1, . . . , aq−1 ∈ Z}.

Clearly, R ⊃ Z, hence R has 0 and 1. Let

α =

q−1∑
i=0

aiξ
i, β =

q−1∑
i=0

biξ
i

be in R. Then

α± β =

q−1∑
i=0

(ai ± bi)ξi ∈ R.

Since ξq = 1, given any n ∈ Z we can write n = ℓq + r, 0 ≤ r ≤ q − 1 by
Euclidean algorithm in Z, and conclude that

ξn = ξr.

So R contains all the integral powers of ξ. Then it also contains finite integral
linear combinations of such powers. Consequently,

αβ ∈ R if α, β ∈ R.

So R is very much like Z. It is a q-dimensional analog of Z. This allows us to
define the divisibility in R. To be precise, if α, β ∈ R, we say that β divides
α, β|α iff ∃γ ∈ R such that α = βγ.
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In particular, since p ∈ R, it makes sense to ask if p divides some number
in R.

Definition: Let α, β ∈ R. We say that

α ≡ β (mod p) iff p|(α− β) in R.

This allows us to do “congruence arithmetic” mod p in R.

To study ( q
p
), Gauss introduced the following Gauss Sum:

Sq =
∑

a mod q

(
a

q

)
ξa.

Clearly, Sq ∈ R.

We will follow the convention that

q | a ⇒
(
a

q

)
= 0.

Aside: (Not necessary for the proof of Quadratic Reciprocity, but interest-
ing)

Sq =

q−1
2∑

a=1

((
a

q

)
ξa +

(
−a
q

)
ξ−a︸ ︷︷ ︸

(−1
q )(

a
q )ξ̄a

)

So (
−1
q

)
= 1 ⇒ Sq =

q−1
2∑

a=1

(
a

q

)
(ξa + ξ̄a) ∈ R

and (
−1
q

)
= −1 ⇒ Sq ∈ iR

In other words, Sq is real in the first case and purely imaginary in the second.

Lemma 1:
S2
q = (−1)

q−1
2 q
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Proof of Lemma 1:

S2
q =

( ∑
a mod q

(
a

q

)
ξa

)( ∑
b mod q

(
b

q

)
ξb

)

=
∑

a mod q

∑
b mod q

(
a

q

)(
b

q

)
ξaξb

=
∑

a mod q

∑
b mod q

(
ab

q

)
ξa+b

=
∑

c mod q

ξc

( ∑
a mod q

(
a(c− a)

q

))
So

S2
q =

∑
c mod q

ξc
∑

a mod q

(
ac− a2

q

)
=
∑

c mod q

ξc
∑

a mod q

(
−a2(1− a′c)

q

)
,

where the second sum runs over a prime to q, with a′a ≡ 1 (mod q).
But (

−a2(1− a′c)
q

)
=

(
−1
q

)
︸ ︷︷ ︸
(−1)

q−1
2

(
a2

q

)
︸ ︷︷ ︸

=1

(
1− a′c
q

)

⇒ S2
q = (−1)

q−1
2

∑
c mod q

ξcf(c),

where

f(c) =
∑

a mod q

(
1− a′c
q

)
a ̸≡ 0 mod q

We now need to evaluate f(c), and there are two cases.

c ≡ 0 (mod q):

f(0) =
∑

a mod q

a̸≡0 (mod q)

(
1

q

)

⇒ f(0) = q − 1
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c ̸≡ 0 (mod q): Note that, in this case, the set

{1− a′c|a mod q, a ̸≡ 0 mod q}

runs over elements of Z/q − {1} exactly once. Indeed, given any b ∈ Z/q,
b ̸≡ 1 (mod q), we can solve a′ + b ≡ 1 (mod q), and the solution is unique.

Therefore,

f(c) =
∑

b mod q

b ̸≡1 (mod q)

(
b

q

)
.

We proved earlier that ∑
b mod q

(
b

q

)
= 0

so

f(c) = −
(
1

q

)
= −1,

when c ̸≡ 0 (mod q).
Consequently

S2
q = (−1)

q−1
2

(q − 1) + (−1)
∑

c mod q

c̸≡0 mod q

ξc


Claim:

∑
c mod q ξ

c = 0.

Proof of claim:∑
c mod q

ξc =
∑

(c−1) mod q

ξc =
∑

c mod q

ξc+1 = ξ
∑

c mod q

ξc

⇒ (1− ξ)︸ ︷︷ ︸
̸=0

∑
c mod q

ξc = 0⇒
∑

c mod q

ξc = 0 as claimed.

Proof 2 of claim: ∑
c mod q

ξc = 1 + ξ + · · ·+ ξq−1 =
1− ξq

1− ξ

= 0 since ξq = 1.
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By claim,

S2
q = (−1)

q−1
2

(
(q − 1) + (−1)(0− 1)︸ ︷︷ ︸

+1

)
= (−1)

q−1
2 q.

This proves Lemma 1.

Lemma 2: Sp−1
q ≡ (p

q
) (mod p)

(This happens in R mod p)

Proof of Lemma 2:

Sp
q =

( ∑
a mod q

(
a

q

)
ξa
)p

=
∑

a mod q

(
a

q

)p

ξap + pw,w ∈ R.

Note that (a
q
)p = (a

q
) because (a

q
) = ±1 and p is odd.

In other words,

Sp
q ≡

∑
a mod q

(
a

q

)
ξap (mod p).

Since p ̸= q, p is invertible mod q, and the map a 7→ ap is a permutation of
Z/q, also ap ≡ 0 (mod q) iff a ≡ 0 (mod q). so the sum over a mod q can be
replaced with the same over ap mod q. Write b for ap mod q. Then

a ≡ bp′ (mod q), where pp′ ≡ 1( mod q).

⇒ Sp
q ≡

∑
b mod q

(
bp′

q

)
ξb (mod p) (*)

But (
bp′

q

)
=

(
b

q

)(
p′

q

)
.
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Since p′p ≡ 1 (mod q),(
p′

q

)(
p

q

)
=

(
1

q

)
= 1⇒

(
p′

q

)
=

(
p

q

)
So (

bp′

q

)
=

(
b

q

)(
p

q

)
.

So (∗) gives

Sp
q ≡

(
p

q

) ∑
b mod q

(
b

q

)
ξb︸ ︷︷ ︸

Sq

(mod p)

⇒ Sp−1
q ≡

(
p

q

)
(mod p)

This is justified because

Sq ̸≡ 0 (mod p),

which follows from Lemma 1.

Proof of Theorem: We will compute Sp−1
q in 2 different ways. On the one

hand, by using Lemma 1,

Sp−1
q = (S2

q )
p−1
2 =

(
(−1)

q−1
2 q

) p−1
2

≡
Euler

(
(−1) q−1

2 q

p

)
(mod p)

⇒ Sp−1 ≡
(
−1
p

) q−1
2
(
q

p

)
(mod p,

i.e.,

Sp−1 ≡ (−1)(
p−1
2 )( q−1

2 )
(
q

p

)
(mod p).

On the other hand, by Lemma 2,

Sp−1 ≡
(
p

q

)
(mod p).
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Putting them together we get(
p

q

)
= (−1)(

p−1
2 )( q−1

2 )
(
q

p

)
.

Example:
Is 29 a square mod 43 ?: As 29 and 43 are distinct odd primes, we

have by definition 29 is a square mod 43 iff
(
29
43

)
= 1. By the Quadratic

Reciprocity Law (QRL),(
29

43

)
= (−1)

28(42)
4

(
43

29

)
=

(
43

29

)
=

(
14

29

)
=

(
2

29

)(
7

29

)
(

2

29

)
= −1 as 29 ≡ 5 (mod 8)(

29

43

)
= −

(
7

29

)
=︸︷︷︸

QRL

−(−1)
6(28)

4

(
29

7

)
= −

(
29

7

)
= −

(
1

7

)
= −1

So 29 is not a square mod 43.

Remarks:

1. Though QRL gives an effective way to know whether q is a square mod
p or not, when q is a square, it gives no procedure to find the square
root, which can be a problem.

2. One can use QRL to check whether a number q is a prime, similar to
the way one uses Fermat’s little theorem. For example, one can show
that m = 1729 is not a prime by looking at

y : = 11864 (mod 1729)

Note: 864 = 1729−1
2

. So, if m is a prime, y ≡ ( 11
1729

) (mod m).

Since 1729 ≡ 1 (mod 4), by QRL,(
11

1729

)
=

(
1729

11

)
=

(
2

11

)
= −1
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as 11 ≡ 3 (mod 8). on the other hand, one can check using PARI, or
by successively squaring mod m = 1729, that

11864 ≡ 1 (mod m).

(This is part of a homework problem.) Get a contradiction! So the only
possibility is that 1729 is not a prime (which is easy to verify directly
as 1729 = 13 · 133 = 13 · 7 · 17). But this method is helpful, when it
works, for larger numbers.

A historical remark: G.H. Hardy went to see S. Ramanujan, when the
latter was dying of TB in England. Then Ramanujan asked Hardy if the
number of the taxicab Hardy came in was an interesting number. Hardy
said “No, not so interesting, just 1729”. Ramanujan replied immediately,
saying, “On the contrary, that number is very interesting because it is the
first number which can be written as a sum of 2 cubes in two different ways”.
Indeed we have

1729 = 103 + 93 = 123 + 13,

and no smaller whole number can be written this way in two different ways.
(Can you verify it?)

Here is an intriguing second proof of quadratic reciprocity due to Eisen-
stein. First we need his trignometric lemma below:

Lemma: Let n be a positive, odd integer. Then

sinnx

sin x
= (−4)

n−1
2

(n−1)
2∏

j=1

(
sin2 x− sin2 2πj

n

)

Note that both sides are polynomials in sin2 x, so it suffices to check that
they have the same roots and the same constant term.

Example: (n = 3)
Write LHS (resp. RHS) for the expression on the left (resp. right) hand
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side of the identity claimed in the Lemma. Then

LHS =
sin 3x

sinx
=

sin(2x+ x)

sinx

=
sin 2x cos x+ cos 2x sin x

sin x

=
2 sin x cos2 x+ (1− 2 sin2 x) sin x

sin x
= 2(1− sin2 x) + (1− 2 sin2 x) = 3− 4 sin2 x

RHS = −4(sin2 x− (sin
2π

3
)2) = −4

(
sin2 x− 3

4

)
= 3− 4 sin2 x.

Sketch of proof of lemma: Use induction on n to show that

sinnx

sinx
= fn(sin

2 x),

where fn is a polynomial in sin2 x of degree n−1
2
.

(f0(t) = 1, f3(t) = 3− 4t, . . . )

On the other hand, the RHS of lemma is also of the form gn(sin
2 x), where

gn is the explicitly given polynomial in sin2 x of degree n−1
2
.

So it suffices to show that fn and gn have the same roots and that the

leading coefficient of fn is (−4)
n−1
2 . So when we use induction on n, check

that the leading coefficient is (−4)
(n−1)

2 and that its roots are{
sin2 2πj

n

∣∣∣∣1 ≤ j ≤ n− 1

2

}
.

Alternatively, check the constant coefficient by checking at x→ 0.

Now recall Gauss’s lemma:(
q

p

)
=
∏
s∈S

es(q)

where S = {1, 2, . . . , p−1
2
} and es(q) ∈ {±1} defined by

qs = es(q)s
′ (modp), with s′ ∈ S.
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Applying the function sin(2πx
p
) to both sides, we get

sin

(
2πqs

p

)
= sin

(
2πes(q)s

′

p

)
= es(q) sin

(
2πs′

p

)
since sin is an odd function. So

es(q) =
sin
(

2πqs
p

)
sin
(

2πs′

p

)
By Gauss’s lemma,

(
q

p

)
=
∏
s∈S

sin
(

2πqs
p

)
sin
(

2πs′

p

)
=

∏
s∈S sin

(
2πqs
p

)
∏

s∈S sin
(

2πs′

p

) .
Note the map s 7→ s′ is a permutation of S. So,∏

s∈S

sin

(
2πs′

p

)
=
∏
s∈S

sin

(
2πs

p

)

⇒
(
q

p

)
=

(p−1)
2∏

i=1

(
sin 2πiq

p

)
sin 2πi

p

(1)

Applying Eisenstein’s trigonometric lemma with n = q and substituting in
(1), we get

(2)

(
q

p

)
= (−4)(

p−1
2 )( q−1

2 )

(p−1)
2∏

j=1

(q−1)
2∏

i=1

(
sin2

(
2πi

p

)
− sin2

(
2πj

p

))
We can get everything we need from this without computing the sines:
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Reversing the roles of p and q, we get

(3)

(
p

q

)
= (−4)(

p−1
2 )( q−1

2 )

p−1
2∏

j=1

q−1
2∏

i=1

(
sin2

(
2πj

p

)
− sin2

(
2πi

p

))
Comparing (2) and (3), we see that(

q

p

)
= (−1)

(p−1)
2

(q−1)
2

(
p

q

)
,

which is the quadratic reciprocity law.
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