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0. Proofs in Mathematics

It is not difficult to write mathematical proofs of statements, but
one needs some experience, especially since the high school courses do
not stress this aspect of Math. This is essential for the mathemati-
cal method, and so we will try to give a few selected ways of writing
proofs. It is very helpful to understand this aspect now just using in-
tegers, rational numbers, and (later) real numbers, before trying out
such arguments in Calculus proper.

First we need some preliminary notation. There is nothing compli-
cated here, just that one has to attain a bit of familiarity. Throughout
these Notes, we will mean by a set simply a collection X of objects
having a common property. (This is only a rough definition, but it will
do for our purposes in Ma 1a.) If x belongs to X, we will write x ∈ X.
If x1, x2, x3, . . . , xn, . . . are the elements of X, then we will write

X = {x1, x2, . . . , xn, . . . }.
The symbol ∅ will denote the empty set, which is a set with no element,
not to be confused with the set {0} consisting of 0. The symbol ∀ will
denote for all (or for every), and ∃ will mean there exists.

The union of two sets A,B is

A ∪B = {z | z ∈ A or z ∈ B},
and their intersection is

A ∩B = {z | z ∈ A and z ∈ B}.
These definitions can be extended to the case when there are more than
two sets.

A B A B A B

We say that a set C is a subset of another set A, denoted C ⊂ A,
if every element of C is also an element of A. For example, A ∩B is a
subset of A (and of B), while A and B are subsets of A ∪B.

The cardinality of a set A, denoted |A| (or #A) is, when it is finite,
the number of elements in it. If A is not finite, we will write |A| =
∞. There are different kinds of infinities, which we will discuss a bit
later. Given two sets A,B, the cardinality of their union is seen to
be the sum of the cardinalities of A and B minus the cardinality of



The Mathematical Method via Calculus 3

their intersection. In other words, we include the cardinality of A ∩ B
twice in |A| + |B|, so we have to exclude it once afterwards. This is a
simple instance of the inclusion-exclusion principle. Here is a pictorial
representation:

A B A B A B

A B A B A B| | | | | || |

Can you derive the formula for the cardinality of the union of three
sets by using this principle?

A

B

C

Find the area of each Shape

1

Check your Logic

This principle applies equally to computing the area of a union of
plane regions or to the probability of occurrence of one of the events.
(If X, Y are two events, their union symbolizes one of the events hap-
pening, while their intersection symbolizes both events occurring, all
at some prescribed time.) The formula is the same in these cases, with
A(X), resp. P(X), replacing |X|.

We will define the set of natural numbers to be

N = {1, 2, 3, . . . , },
which encompasses all the positive integers. Note that 0 is not in N.
We put

Z = {0, 1,−1, 2,−2, 3,−3, . . . },
which consists of all integers, positive, negative and zero. The set of
rational numbers is

Q =
{a

b
| a, b ∈ Z, b ̸= 0

}
,
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with the identification of a
b
with c

d
whenever ad = bc. Note that we can

add, subtract or multiply any two numbers a, b in Z, but we cannot
divide 1 by b, unless b = ±1. This is the reason for considering Q,
where we can form any ratio x/y, unless y = 0.

The set R of real numbers, which we will discuss later, contains Q as
a subset. Of course, N ⊂ Z ⊂ Q. We will write, as usual, a ≤ b (resp.
a ≥ b) to denote a is less than or equal to b (a is greater than or equal
to b). Similarly for a < b and a > b.

We write A =⇒ B to signify A implies B, when A and B are
statements asserting something. In plain English, this means that if A
is true, then B is true, often denoted in shorthand by if A, then B.
Note that if B is true, then one can say nothing about whether A is
true.

If A implies B and B implies A, then we write

A ⇐⇒ B,

and say A is true iff B is true, or just A iff B; here iff is shorthand for
if and only if.

¬A will mean Not A, the negation of A. If A says, for example, that
m is an even integer, then ¬A says that m is not an even integer, i.e.,
m is an odd integer. It is useful to observe that A =⇒ B is the same
as ¬B =⇒ ¬A.

0.1. Proof by direct verification. This is the least subtle way of
arriving at a proof of a statement, but nevertheless important to know.
Often it involves nothing more than applying definitions.

Example 1: Let us prove the following proposition:

x2 + y2 ≥ 2xy, ∀x, y ∈ Q.

Recall that
(x− y)2 = x2 − 2xy + y2,

and that the square of any number in Q, e.g., (x−y)2, is non-negative.
Thus

x2 − 2xy + y2 ≥ 0.

The assertion follows by adding 2xy to both sides.

Example 2: Let us now prove the following:
Proposition Any integer n has the same parity as its square, i.e., n
and n2 are both odd or both even.

Proof. Suppose first that n is even. Then as 2 divides it, we may
write n = 2m, for some integer m. Then n2 = (2m)2 = 4m2, which
is even. Next consider when n is odd. Then n − 1 is even, and so
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n − 1 = 2k for some integer k, which implies that n = 2k + 1. Then
n2 = (2k + 1)2 = 4k2 + 4k + 1, which is odd. Done!

0.2. Proof by contradiction. If we want to prove A =⇒ B, then
we can try to see if there will be a contradiction to something which is
known to be true if we assume that A does not imply B.

Example 1 The equation x2 − y2 = 1 cannot be solved with x, y
being positive integers.

Proof. Suppose there are positive integers x, y such that x2 − y2

equals 1. Then, factoring x2 − y2 as (x+ y)(x− y) we see, since x+ y
and x − y are integers too, that there are exactly two possibilities for
(x+y, x−y), namely (1, 1), (−1,−1). The second solution is not really
possible as x + y is positive. So we must have x + y = x − y = 1,
implying 2y = 0, which is impossible as y is a positive integer.

In other words, if we assume that the Proposition is false, then we
get a contradiction either to the positivity of x, y or to their integrality.
QED!

One can also see geometrically why m2−n2 ≥ 3 for positive integers
m,n with m > n.; in fact, this can be jazzed up to show that mk−nk ≥
k + 1 for any k > 1:

m

m

n

n m  −n   > 32 2

>

m  −n   > k+1. k k

General: 

1

m > n :

Geometric proof

If k = 3,  m  −n   > 43 3

k-dimensional cubes

m

n

n

m

m

>1

m > n  > 1 k >1,

Example 2 There is no rational number x such that x2 = 2.
Proof. Suppose not, and assume the existence of some x = a/b in

Q such that x2 = 2. If (a, b) works, then so will (−a, b), (a,−b), and
(−a,−b), as we are squaring x to get 2. So we may take a, b to be
positive, Similarly, if (a, b) works and if d divides both a and b, then
(a/d, b/d) will also work, and so we may take a, b to have no common
factor. (In other words, the greatest common divisor of a, b, denoted
gcd(a, b) is 1.) Then we have

a2

b2
= 2, i.e., a2 = 2b2.
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Since 2b2 is even, a2 must also be even, and this means a itself must be
even (by Example 2 of section 0.1). So we may write a = 2a1, with a1 a
positive integer. Now we get (2a1)

2 = 2b2, which yields, after dividing
by 2,

2a21 = b2.

Then b2, and hence b will be even. But this means 2 divides both a
and b, contradicting the way we chose them, namely with them being
relatively prime. This furnishes the desired contradiction, and so the
assertion that there is no

√
2 in Q is true. QED.

It is this fact, that Q does not contain square roots of 2, 3,, etc.,
which drives one to expand the number system further from Q.

0.3. Proof by Contrapositive. Suppose we want to prove thatA =⇒
B. In this method, we assume ¬B and try to prove ¬A. Note that we
are proving the contrapositive, namely ¬B =⇒ ¬A, which, as we saw
earlier, is equivalent to A =⇒ B. Note that this method is not the
same as proof by contradiction, where one assume that A holds but B
doesn’t, in order to arrive at a contradiction.

Example 1 Suppose x, y are rational numbers such that x+ y is not
an integer. Then either x or y is not an integer.

Proof. Consider rational numbers x, y. The negation of x or y is not
an integer is the statement: x and y are both integers. Let us assume
this. Then we need to prove the negation of x + y is not an integer,
which is x+ y is an integer. In other words, we need only check that if
x, y are in Z, then x+ y is in Z, which is true. QED.

0.4. Proof by Induction. Adding odd integers

1 = 1 1 + 3 + 5 + 7 = 16
1 + 3 = 4 1 + 3 + 5 + 7 + 9 = 25 Conjecture:

∑n
k=1(2k − 1) = n2

1 + 3 + 5 = 9 How can one prove this?

Note: if this is true for n− 1, what about for n? We have
n∑

k=1

(2k − 1) =
n−1∑
k=1

(2k − 1) + (2n− 1),

where the first term on the right is known to be (n− 1)2. So the right
hand side becomes

(n− 1)2 + 2n− 1 = n2 − 2n+ 1 + 2n− 1n2.

True for n!

This leads us to the following
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The method of Induction: Let P (n) be a property of natural
numbers n. The Principle of Induction, or P.O.I. for short, allows us
to conclude that P (n) is true for every n ≥ n1 if we can perform the
following steps for some integer n1 ∈ N:

(a) Prove that P (n1) is true
(b) Let n be an arbitrary fixed integer > n1. Assume that P (k) is

true for all k < n and prove that P (n) is true.

P (n1) ⇒ P (n1 + 1) ⇒ P (n1 + 2) ⇒ . . .

Usually, n1 = 1.

Example 1: Prove by induction the following:

P (n) : 12 + 22 + · · ·+ n2 = n3

3
+ n2

2
+ n

6

First check (a) with n1 = 1. P (1) is true because

12 = 1 = 1
3
+ 1

2
+ 1

6

Let’s check (b) for P (n), under the induction hypothesis that P (k) is
true for all k < n.

(∗) 12+· · ·+n2 =
(
12 + · · ·+ (n− 1)2

)
+n2 = (n−1)3

3
+ (n−1)2

2
+n−1

6
+n2.

Note that

(n− 1)3 = n3 − 3n2 + 3n− 1, and (n− 1)2 = n2 − 2n+ 1.

So the right hand side of (∗) is(
n3

3
− n2 + n− 1

3

)
+

(
n2

2
− n+

1

2

)
+

(
n
6
− 1

6

)
+ n2 + n

6
,

which simplifies as
n3

3
+ n2

2
+ n

6
.

Hence P (n) holds.

It is easy to wrongly apply induction, and it may be worthwhile to
consider the following:

False Example: All cats have the same color eyes.
Mathematically, this says, for any n ≥ 1:

P (n): For any collection of n cats, all of them have the same color
eyes.

Here is the argument:
P (1) is obviously true as we have only one cat to consider.
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Now assume that the statement is true for all k < n. Let us try to
prove P (n). Consider S := {C1, C2, . . . , Cn}, where we have indexed
the cats by C1, C2, etc. Consider the subsets

S1 := {C1, C2, . . . , Cn−1}, S2 := {Cn−1, Cn}.

By induction, both these sets consist of cats with the same color eyes.
Since Cn−1 is in both sets, every cat in S1 has the same color as either
in S2. So P (n) holds!

Of course this argument is fallacious, because in the “proof” of P (n),
we have implicitly assumed that n is at least 3. The argument clearly
fails when n = 2!

There is another Principle in Mathematics which is, for some people
like me, more believable than induction, and that is called the Princi-
ple of Well Ordering, or P.W.O for short. It says the following:

Every non-empty set S of positive integers has a least element.

Explicitly this says that there is an integer m in S such that every
k in S satisfies: m ≤ k. Of course, such an m must be unique, since if
m′ is another such, then m ≤ m′ and m′ ≤ m, implying that m′ = m.

Proposition Well Ordering implies Induction.

Proof. Suppose P (n) is an assertion about positive integers n such
that (a) P (1) holds, and (b) for every n > 1, if P (k) holds for all
k < n, then P (n) holds. Let S denote the set of all positive integers n
for which P (n) is false. If S is empty, then the Principle of Induction
holds for the property P , and there is nothing to do. So assume that S
is non-empty. Then by Well Ordering, S has a least element; call it m.
Since P (k) holds for all k outside S (by the definition of S), and since
m is the smallest number in S, P (k) must be true for all k < m. Then
by (b), P (m) must be true as well, contradicting the fact that m is in
S. So S must be empty, and the Proposition is proved.

It can be shown, see Apostol’s Calculus, volume I, page 37, for ex-
ample, that conversely, the Principle of Induction implies the Well Or-
dering Principle. So, despite the difference in their appearances, they
are equivalent principles. Feel free to use either in your Homework so-
lutions, midterm or Final exam.

0.5. Disproof by counterexample. Sometimes one has to deal with
a property which may or may not be true. Before trying to prove it,
it is always wise (in such situations) to see if one can disprove the
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assertion, and for this all one has to do is to produce one example,
called a counterexample, where the assertion fails.

Example 1 Prove the following or disprove it by giving a counterex-
ample:

If a, b, c are integers such that a | bc, i.e., if a divides the product bc,
then a divides b or a divides c.

Counterexample: Consider a = 6, b = 4 and c = 21. Then a
divides bc = 4(21) = 84, because 84 = 6(14), but a does not divide
either b or c.

There is one situation in which this assertion is true, and that is
when a is a prime number, which means a is an integer > 1 such that
the only positive integers dividing a are 1 and a.

0.6. The Pigeon Hole Principle. Suppose we have n objects (or
pigeons) and k boxes (or holes/ cages) to put them in. The pigeon hole
principle then asserts the following:

If n > k, then at least one box must have two objects.

This simple principle is very useful and comes in handy in a variety
of places.

For any rational (or real) number x, denote by ⌈x⌉ the ceiling of
x, i.e., the smallest integer greater than or equal to x. The floor of x,
denoted ⌊x⌋, is similarly defined as the largest integer less than or equal
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to x; this is also sometimes called the integral part of x, denoted by
[x]. The fractional part of x, denoted {x}, is x− [x], which is always
between 0 and 1.

Here is a more precise version of this principle:

If we put n objects in k boxes with n > k, then one of the
boxes must have at least ⌈n

k
⌉ objects.

This version is used in a lot of situations, some too difficult for this
course. For example, it is used in the proof of Kronecker’s theorem
which asserts that given any fixed irrational number α > 0, we can
approximate well any real number β between 0 and 1 by a fractional
part {nα} for a suitable positive integer n; the choice of n depends on
the level of precision one wants in approximating β. As a fun exercise,
you could try to (write a program and) compute the fractional parts
{n

√
2} for n ≤ 1000.



1 The Real Number System

The rational numbers are beautiful, but are not big enough for various pur-
poses, and the set R of real numbers was constructed in the late nineteenth
century, as a kind of an envelope of Q. (More later on this.) For a noncon-
structive approach, one starts with a list of axioms, called the Field axioms,
which R satisfies. This will not be sufficient to have R, and we will also need
order axioms, and the completeness axiom. In Math we like to build things
based on axioms, much like in experimental sciences one starts from facts
noticed in nature.

Field axioms: There exist two binary operations, called addition + and
multiplication ·, such that the following hold:

1) commutativity x+ y = y + x, xy = yx

2) associativity x+ (y + z) = (x+ y) + z, x(yz) = (xy)z

3) distributivity x(y + z) = xy + xz

4) Existence of 0, 1 such that x+ 0 = x, 1 · x = x,

5) Existence of negatives: For every x there exists y such that x+ y = 0.

6) Existence of reciprocals: For every x ̸= 0 there exists y such that xy = 1.

We are, by abuse of notation, writing xy instead of x · y.
A lot of properties can be derived from these axioms.

Example 1 a+ b = a+ c ⇒ b = c
Proof Ax. 5⇒ ∃y : a+ y = 0. Take y+ (a+ b) = y+ (a+ c) and use Ax.

2⇒ (y + a) + b = (y + a) + c ⇒ 0 + b = 0 + c Use Ax. 4 ⇒ b = c.

Example 2 (−1)(−1) = 1.
Proof. (by direct verification) By definition of negatives, (−1) + 1 = 0.

Hence

0 = ((−1) + 1)((−1) + 1) = (−1)(−1) + (−1)(1) + (1)(−1) + (1)(1),

where we have used the distributive property. By definition of the multiplica-
tive unit 1, (a)(1) = (1)(a) = a for any a. Taking a to be −1 and 1, we see

1



that (−1)(1) = (1)(−1) = −1 and (1)(1) = 1. Thus we get from the equation
above,

0 = (−1)(−1)− 1− 1 + 1 = (−1)(−1)− 1,

which implies, as asserted, that (−1)(−1) is 1. QED.

Note that it is not just R which satisfies the field axioms; Q does too. In
fact, there are many subsets F of R besides Q which satisfy the field axioms.
When such an F does, we call it a field. Here is a useful result:

Lemma Let F be a subset of R containing 0, 1 and such that for all x, y in
F , the numbers x + y, x − y, xy, and x/y (if y ̸= 0) lie in F . Then F is a
field, i.e., satisfies all the field axioms.

We are at this point inserting this Lemma without having built R. You
may take for granted that R can and will be constructed (soon).

Proof of Lemma. Given x, y, z in F , their sums and products of these lie
again in F , by hypothesis. Since F is a subset of R, the first three field axioms
involving commutativity, associativity and distributivity hold for x, y, z ∈ F
because they hold in R. Similarly, since 0 and 1 are assumed to be in F , for
every x in F , the identities giving the remaining three axioms also hold in F
because they hold in R. Again, the point is that to check that the identities
hold for a set of elements in F , it suffices to check that they hold in a larger
set, namely R. QED.

Example: Consider the collection F of all real numbers of the form x +
y
√
2, where x and y are rational numbers. Prove (by direct verification) that

F satisfies all the field axioms (just like R) under the usual addition and
multiplication.

We prove this using the Lemma above:
Since 0 = 0 + 0

√
2 and 1 = 1 + 0

√
2, it follows that F contains 0 and 1.

Let x and y be two elements of F . By definition of F , there are a, b, c and d
in Q, such that x = a+b

√
2 and y = c+d

√
2. Now x+y = (a+c)+(b+d)

√
2

and x− y = (a− c) + (b− d)
√
2, thus these numbers are in F . Furthermore,

xy = (ac + 2bd) + (ad + bc)
√
2 is in F as well. Assume now that y ̸= 0, i.e.

2



that either c or d is non zero (or both). Thus also c− d
√
2 ̸= 0. Then

1

y
=

1

c+ d
√
2
=

c− d
√
2

(c− d
√
2)(c+ d

√
2)

=
c− d

√
2

c2 − 2d2
and so

x

y
=

(a+ b
√
2)(c− d

√
2)

c2 − 2d2
=

(ac− 2bd) + (bc− ad)
√
2

c2 − 2d2

=
ac− 2bd

c2 − 2d2
+

bc− ad

c2 − 2d2

√
2 , which is in F .

The conditions of the lemma are satisfied and therefore F is a field.

Order axioms: Assume the existence of a subset R+ ⊂ R, the set of
positive numbers, which satisfies the following three order axioms:

7) If x and y are in R+, then x+ y, xy ∈ R+

8) For every x ̸= 0 either x ∈ R+ or −x ∈ R+, but not both.

9) 0 /∈ R+.

We now define
x < y means y − x ∈ R+

y > x means x < y
x ≤ y means x < y or x = y
x ≥ y means x > y or x = y

Examples:

1) (transitivity) (a < b) and (b < c) ⇒ (a < c)

Proof

As b− a > 0, c− b > 0, by Axiom 7), c− a = (b− a) + (c− b) is also
> 0. Hence a < c. QED.

2) (a < b) and (c > 0) ⇒ ac < bc.

Proof As b− a > 0, c > 0, by Axiom 7), (bc− ac) = (b− a)c is in R+.
So ac < bc.

3) If a ̸= 0 then a2 > 0.

Proof. If a > 0 then a2 > 0 by Axiom 7. If a2 ̸> 0, then, as a ̸= 0,
−a > 0 and (−a)(−a) > 0. This means a2 > 0, a contradiction. So we
may not take a2 to be negative..

3



Note: (−a)(−b) = ab follows from the associativity of multiplication. 2

All axioms we have so far are satisfied by Q.

A problem: Various geometric constructs, such as the length δ of the
diagonal of the unit square, are not rational.

Pythagoras’ theorem (from 6th Century BC) shows that δ2 = 2.
We have seen in the previous section that δ cannot be rational.
One would like to have a number system that includes numbers like

√
2.

Real numbers are commonly pictured as points of the line.
The last remaining axiom means that the line has no holes. Some say

the real numbers form a “continuum.”

Def. Suppose S is a nonempty set, and there exists B such that x ≤ B for
any x ∈ S. Then B is called an upper bound for S. If B ∈ S then B is
called the maximum element of S.
Def. A number B is called a least upper bound of a nonempty set S if B
has the following 2 properties:

(a) B is an upper bound for S.

(b) No number less than B is an upper bound for S.

Theorem 1.1 The least upper bound for a set S is uniquely defined.

Proof. If B1 and B2 are two least upper bounds then B1 ≤ B2 and
B2 ≤ B1 ⇒ B1 = B2. 2

The least upper bound B of S, if it exists, is called the supremum of S.
Notation: B = supS.

Continuity axiom 10. Every nonempty set S of real numbers which
is bounded above (has an upper bound) has a supremum: there exists B =
supS.

Note that B may or may not belong to S.
Similarly one defines lower bounds, the greatest lower bound, which is

called the infimum; notation

L = inf S.

Theorem 1.2 Every nonempty set S bounded from below has an infimum.

Proof. Apply the continuity axiom to -S. 2

4



The Archimedean property of R
Archimedes lived in the 3rd century BC.

Theorem 1.3 N is unbounded above.

Proof. Assume not. Then Axiom 10 ⇒ ∃B = supN. B − 1 is not an
upper bound ⇒ ∃n ∈ N : n > B − 1. Adding 1 we get n + 1 > B. But
n+ 1 ∈ N ⇒ contradiction. 2

Here is an important consequence:
Archimedean property If x > 0 and y is an arbitrary real number,

there exists n ∈ N : nx > y.
Proof. If not then y/x would have been an upper bound for N. 2

Geometrically: any line segment, no matter how long, may be covered by
a finite number of line segments of a given positive length, no matter how
small.

Existence of square roots

Theorem 1.4 Every nonnegative real number a has a unique nonnegative
square root.

Proof. If a = 0 then 0 is the only square root of a. Assume a > 0. Let
S = {x ∈ R+|x2 ≤ a}. Since (1 + a)2 > a, the number 1 + a is an upper
bound for S. Also, S ̸= ∅; a

1+a
∈ S because a2 ≤ a(1 + a)2 ⇔ ( a

1+a
)2 ≤ a. By

Ax. 10, there exists B = supS.

There are 3 possibilities: B2 > a, B2 < a, B2 = a.
Assume B2 > a. Let C = 1

2
(B + a

B
). Then C < B and C2 = 1

4
(B2 +

2a + ( a
B
)2) = a + (B2−a)2

4B2 > a. Hence, C is a smaller upper bound for S ⇒
contradiction.

Assume B2 < a. Choose C such that (C < B) and (C < a−B2

3B
) and

(C > 0). Then

(B + C)2 = B2 + C(2B + C) < B2 + 3BC < B2 + a−B2 = a.

Hence, B + C ∈ S and B + C > B. Contradiction. 2

We will prove later the existence, for any n > 1, of the nth roots of
positive numbers using more powerful techniques arising from Calculus.

5



Representation of real numbers by decimals

A real number of the form

r = a0 +
a1
10

+ · · ·+ an
10n

where a0 is a nonnegative integer and 0 ≤ ai ≤ 9, i = 1, 2, . . . , n, is usually
written as

r = a0 · a1a2 . . . an
This is a finite decimal representation of r. Not any real number, and
not even every rational number, can be represented in such a form. However,
we can approximate an arbitrary real x > 0 to any desired degree of accuracy
by finite decimals:

If x ̸∈ Z then ∃a0 such that a0 < x < a0+1. Divide the segment (a0, a0+1)
into 10 equal parts. If x is not a subdivision point then ∃a1 ∈ {0, . . . , 9} such
that a0 +

a1
10

< x < a0 +
a1+1
10

. Continuing like that, we get at the nth stage

a0 +
a1
10

+ · · ·+ an
10n

< x < a0 +
a1
10

+ · · ·+ an + 1

10
.

1 2

1.4 1.5

1.5

1.41 1.42

1.45

1.414 1.415

1.415

1.4145

2 = 1.414213562373095...

1.4

1.41

1.414

1.4142

If x is never a subdivision point, we say that x has the infinite decimal
representation

x = a0 · a1a2a3 . . .

6



For example, 1/3 = 0.333 . . .
In what sense does the decimal representation define x?
Consider the set

S = {a0, a0 · a1, a0 · a1a2, a0 · a1a2a3, . . . }

Then we can define x = supS.

Note that for a given x the decimal representation need not be uniquely
defined! For example,

1

2
= 0.500 . . . = 0.4999 . . .

This only happens when x is one of the subdivision points, that is, if it has
a finite decimal representation.

If x > 0 has decimal expansion a0·a1 . . . an . . . , one says that−a0.a1 . . . an . . .
is the decimal expansion of −x.

Decimal expansions will not have much of a role in our course.

We will revisit the construction of real numbers in the next section, and
learn how to think of them as limits of Cauchy sequences of rational numbers.

7



2 Sequences and series

We will first deal with sequences, and then study infinite series in terms of
the associated sequence of partial sums.

2.1 Sequences

By a sequence, we will mean a collection of numbers

a1, a2, a3, . . . , an, an+1, . . . ,

which is indexed by the set N of natural numbers. We will often denote it
simply as {an}.

A simple example to keep in mind is given by an = 1
n
, which appears to

decrease towards zero as n gets larger and larger. In this case we would like
to have 0 declared as the limit of the sequence. A quick example of a sequence
which does not tend to any limit is given by the sequence {1,−1, 1,−1, . . . },
because it just oscillates between two values; for this sequence, an = (−1)n+1,
which is certainly bounded.

Definition 2.1 A sequence {an} is said to converge, i.e., have a limit A,
iff for any ε > 0 there exists N = N(ε) > 0 s.t. for all n ≥ N we have
|an − A| < ε.

Notation: limn→∞ an = A, or an → A as n → ∞.

Two Remarks:

(i) It is immediate from the definition that for a sequence {an} to converge,
it is necessary that it be bounded. However, it is not sufficient, i.e.,
{an} could be bounded without being convergent. Indeed, look at the
example an = (−1)n+1 considered above.

(ii) It is only the tail of the sequence which matters for convergence. Other-
wise put, we can throw away any number of the terms of the sequence
occurring at the beginning without upsetting whether or not the later
terms bunch up near a limit point.

Lemma 2.2 If limn→∞ an = A and limn→∞ bn = B, then

1



1) limn→∞ (an + bn) = A+B

2) limn→∞ (can) = cA, for any c ∈ R

3) limn→∞ anbn = AB

4) limn→∞ an/bn = A/B, if B ̸= 0.

Proof of 1) For any ε > 0, choose N1 and N2 so that for n1 ≥ N1,
n2 ≥ N2, |an1 − A| < ε/2, |bn − B| < ε/2. Then for n ≥ max{N1, N2}, we
have

|an + bn − A−B| < ε
2
+ ε

2
= ε.

Hence A+B is the limit of an + bn as n → ∞. 2

Proofs of the remaining three assertions are similar. For the last one,
note that since {bn} converges to a non-zero number B, eventually all the
terms bn will necessarily be non-zero, as they will be very close to B. So, in
the sequence an/bn, we will just throw away some of the initial terms when
bn = 0, which doesn’t affect the limit as the bn occurring in the tail will all
be non-zero. 2

Example: We have limn→∞
1
n
= 0.

11
2

1
3

1
4

1
5

1
n

. . .0 1
N

1
n-ε       ε, 

( )
−ε ε

ε 0, N 0  so that n N :

Indeed, given ε > 0, we may choose an N ∈ N such that ∃N > 1
ε
, because

N is unbounded. This implies that for n ≥ N , we have | 1
n
− 0| ≤ 1

N
< ε.

Hence { 1
n
} converges to 0. 2

Definition A sequence is said to be monotone increasing, denoted an ↗, if
an+1 ≥ an for all n ≥ 1, andmonotone decreasing, denoted an ↘, if an+1 ≤ an
for n ≥ 1. We say {an} is monotone (or monotonic) if it is of one of these
two types.

Theorem 2.3 A bounded, monotonic sequence converges.

2



Proof. Assume bounded and an ↗. Let A = sup{an}. (We write sup for
supremum, which is the same as the least upper bound, and inf for infimum,
which is the greatest lower bound.) For any ε > 0, A − ε is not an upper
bound ⇒ ∃aN > A− ε. But an ≥ aN for n ≥ N ⇒ −ε < an − A ≤ 0 for all
n ≥ N . Hence {an} converges with limit A.

If {an} is (bounded and) monotone decreasing, then look at {bn}, with
bn = −an. Then this new sequence is monotone increasing and has a limit
B, which is the sup of {bn}. Then A = −B is the inf of {an}, and an → A
as n → ∞.

2

Example: limn→∞
1
2n

= 0. Indeed, the sequence is bounded and mono-
tone decreasing, hence ∃A such that limn→∞ 1/2n = A. Note that if we
multiply the terms of the sequence by 2, then this new sequence also con-
verges to A. On the other hand, by Lemma 1.2, part 2), this limit should be
2A. Then 2A = A, implying that A = 0. 2

A monotone increasing sequence which is bounded can be easily con-
structed by taking the negative of the sequence above. If we want the values
to also remain positive, we can consider the sequence f(n) = 1− 1

2n
:

f (n) = 1 − 1
2n

n
10 2 3 54 6 7

The sequence g(n) = 1
2n

having the limit 0 as n → ∞ is a special case of
a more general phenomenon:

Lemma 2.4 Let y be a positive real number. Then {yn} is unbounded if
y > 1, while

lim
n→∞

yn = 0 if y < 1.

3



Proof of Lemma. Suppose y > 1. Write y = 1+ t with t > 0. Then by
the binomial theorem (which can be proved by induction),

yn = (1 + t)n =
n∑

k=0

(
n
k

)
tk,

which is ≥ 1 + nt (as t > 0). Since 1 + nt is unbounded, i.e, larger than any
number for a big enough n, yn is also unbounded.

Now let y < 1. Then y−1 is > 1 and hence {y−n} is unbounded. This
implies that, for any ϵ > 0, yn is < ϵ for large enough n. Hence the sequence
yn converges to 0. 2

As an exercise, try to extend this Lemma and prove that for any y ∈ R
with |y| < 1, the sequence {yn} converges to 0.

Here is an example. Define a sequence {sn} by putting

sn = 1 +
1

1!
+

1

2!
+ . . .+

1

(n− 1)!
.

It is not hard to see that this sequence is bounded. Try to give a proof. (In
fact one can show that it is bounded by 3, but we do not need the best
possible bound at this point.) Clearly, sn+1 > sn, so the sequence is also
monotone increasing. So we may apply Theorem 1.3 above and conclude
that it converges to a limit e, say, in R. But it should be remarked that one
can show with more work that e is irrational. So there is a valuable lesson
to be learned here. Even though {an} is a bounded, monotone sequence of
rational numbers, there is no limit in Q; one has to go to the enlarged number
system R.

2.2 The Squeeze Principle

An efficient way to prove the convergence of a sequence is to see if it can be
squeezed between two other sequences which converge to the same limit.

Proposition 1 Suppose {an}, {bn}, {cn} are sequences of real numbers such
that

bn ≤ an ≤ cn, ∀ n ≥ 1.

4



Suppose moreover that the sequences {bn} and {cn} are convergent with the
same limit L, say. Then the sequence {an} converges as well, with

lim
n→∞

an = L.

n

1
n

1
n

sin n
n( )

1 2 3 4 5 6 7 8

sin 2n
n( ) n( ) 1

1

-1

0
13

Example: For any fixed real number x, consider the sequence {an}, with
an = sin(nx)

n
. Then, since sin(nx) takes values between −1 and 1, the hypothe-

ses of the Proposition are satisfied if we take bn = −1/n and cn = 1/n, since

an and bn both converge to zero. We conclude that { sin(nx)
n

} also converges
to 0, regardless of what x is.

Before giving a proof of Proposition 1, let us note the following useful
consequence for sequences {an} with non-negative terms, by taking bn = 0
for all n.

Corollary 2.5 Suppose {an}, {cn} are sequences of non-negative real num-
bers, with {cn} convergent, such that

an ≤ cn, ∀ n ≥ 1,

5



and
lim
n→∞

cn = 0.

Then the sequence {an} converges as well, with

lim
n→∞

an = 0..

Proof of Proposition 1. Pick any ε > 0. Then, the convergence of
{bn}, resp. {cn}, implies that we can find some N1 > 0, resp. N2 > 0, such
that for all n ≥ N1, resp. n ≥ N2,

|L− bn| < ε, resp. |L− cn| < ε.

Put N = max(N1, N2). Then for all n ≥ N , the fact that an is squeezed
between bn and cn implies that

|L− an| < ε.

Since ε was arbitrary, this shows the sequence {an} converges to the same
limit L. 2

2.3 Cauchy’s criterion

The main problem with the definition of convergence of a sequence is that
it is hard to verify it. For instance we need to have a candidate for the limit
to verify the condition for convergence. One wants a better way to check
for convergence. As seen above, boundedness is a necessary, but not suffi-
cient, condition, unless the sequence is also monotone. Is there a necessary
and sufficient condition? A nineteenth century French mathematician named
Augustin-Louis Cauchy gave an affirmative answer. (His criterion also works
for sequences of complex numbers.)

A sequence {an} is said to be a Cauchy sequence iff we can find, for every
positive ϵ, an N > 0 such that

(2.2.1) |am − an| < ϵ whenever n,m > N.

This is nice because it does not mention any limit.

Lemma 2.6 Every convergent sequence is Cauchy.

6



Proof. Suppose an → L. Pick any ϵ > 0. Then by definition, we can
find an N > 0 such that for all n > N , we have

|L− an| <
ϵ

2
.

Then for n,m > N , the triangle inequality gives

|am − an| ≤ |am − L|+ |L− an| <
ϵ

2
+

ϵ

2
= ϵ.

2

Here comes the beautiful result of Cauchy, which we just state without
proof:

Theorem 2.7 Every Cauchy sequence of real (resp. complex) numbers con-
verges in R (resp. C).

One can use Cauchy sequences to give a construction of R. (A description
of this, as well as a proof of Cauchy’s theorem will be in the expanded Notes,
which interested students could look up.)

2.4 Series: Basic Notions

Definition 2.8 A series
∑∞

k=1 ak converges if the sequence of partial sums
s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . . converges.

∞∑
k=1

sk = lim
n→∞

(a1 + · · ·+ an)

Note that, as seen with sequences, the convergence (or divergence) of a
series does not depend on the first finitely many terms; it depends only on
the “tail”.

Example: (Geometric Series) We have

∞∑
k=0

xk = 1
1−x

, for |x| < 1.

Indeed
∑n

k=0 x
k = 1−xn+1

1−x
, and xn+1 → 0 as n → ∞ by the argument of

the previous example.
Note that

∑∞
k=1 xk = x

1−x
. Here is a visualization for x = 1/2:

7



1
2

1
4

1
8

1
16 1

2
1
4

1
8

1
16

1

Start with a strip of length 1, 

1

and, at each step, take a half 

of the remaining strip:

step 1 step 2 step 3. . .

Lemma 2.9 If
∑

an and
∑

bn converge then
∑

(αan + βbn) also converges
for any α, β ∈ R.

This is a consequence of Lemma 2.2 and Definition 2.7.

Example: The harmonic series
∑∞

n=1
1
n
diverges. Indeed, note that∑2n

k=n+1
1
k
> n · 1

2n
= 1

2
. Thus

2S∑
n=1

1

n
=

2∑
1

+
4∑
3

+
8∑
5

+ · · ·+
2S∑

2S−1

>
S

2
⇒

the sequence of
partial sums
is unbounded.

1
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
16

1
10

1
15

1
2

1
2

1
2

>>>

For the same reason
∑∞

n=1
1

n+1
diverges, since it is the same series without

the first term.

What about
∑∞

n=1(
1
n
− 1

n+1
) =

∑∞
n=1

1
n(n+1)

?

Look at the partial sums

sn =
n∑

n=1

1
k(k+1)

= (1− 1
2
) + (1

2
− 1

3
) + · · ·+ ( 1

n
− 1

n+1
) = 1− 1

n+1
.

This is an example of a telescoping series
∞∑
n=1

an with an = bn − bn+1 n = 1, 2, . . . ,

with partial sums
∑N

n=1 an = bN − b1. If ∃ limn→∞ bn = B then
∑

n≥1 an =
B − b1.

Of course the series could start from n = 0 (when b0 makes sense).
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b0 b1 b2 b3 bN-1 bN

0

b 0

b 0

b 1 b 2
b 1

b 3
b 2

b N

b N-1

a =1 a =2 a =3 a =N a +1 a +...+a  =2 N
b  − 

N
b0

Telescoping
     series:

co
lo
r 
sa
m
p
le
r

. . .

. . .

Question: Is the series
∑∞

n=1(−1)n convergent?
Hope you can figure this out yourself.

2.5 Tests for convergence of series

Proposition 2 If
∑∞

n=1 an converges, then limn→∞ an = 0.

Proof. Since sn = (a1 + · · · + an) goes to a limit L as n → ∞, then the
same is true of sn−1, and since an = sn−sn−1, we must have an → L−L = 0.
2

This is a necessary condition.

Theorem 2.10 Assume that an ≥ 0 for any n ≥ 1. Then the series
∑

an
converges if and only if the sequence of its partial sums is bounded.

Proof The sequence of partial sums sn is monotone increasing because
an = sn − sn−1 is non-negative. We know that convergence implies bounded-
ness. Conversely, if the monotonic sequence {sn} is bounded, it is convergent
by Theorem 2.3. 2

Example:
∑∞

k=0 1/k! converges. Indeed, 1/k! ≤ 1/2k−1 for k ≥ 1, and
so

n∑
k=0

1

k!
≤ 1 +

n∑
k=1

1/2k−1 ≤ 1 +
∞∑
k=1

1/2k−1 = 3.

This limit is denoted by e; we saw it earlier.

The Comparison test Assume an ≥ 0 and bn ≥ 0 for all n ≥ 1. If
there exists a positive constant C such that an ≤ cbn for all n ≥ 1 then
convergence of

∑
bn implies convergence of

∑
an.

Proof.
∑n

k=1 ak ≤ c ·
∑n

k=1 bn. 2

9



Limit comparison test: Assume an > 0 and bn > 0 for all n ≥ 1, and
suppose that limn→∞ an/bn = 1. Then

∑
an converges if and only if

∑
bn

converges.

Proof. ∃N ∈ N such that for all n ≥ N , 1/2 < an
bn

< 3/2 ⇒ bn < 2an
and an < 2

3
bn. Since the convergence does not depend on finitely many first

terms, the result follows by applying the comparison test. 2

Example:
∑

1
n2 converges. Indeed, we showed before that

∑
1

n(n+1)

converges, and limn→∞
n(n+1)

n2 = limn→∞
(1+

1
n
)

1
= 1. 2

Theorem 2.11 (Root test). Let
∑∞

n=1 an be a series of nonnegative terms

such that a
1/n
n → R as n → ∞.

(a) If R < 1, the series converges.

(b) If R > 1, the series diverges.

(c) If R = 1, the test is inconclusive.

Proof. Assume R < 1 and choose x : R < x < 1. Then 0 ≤ a
1/n
n ≤ x is

satisfied for n ≥ N . Hence, an ≤ xn, and
∑

an < ∞ by the comparison test.
If R > 1, then an > 1 for infinitely many n, which implies an ̸→ 0.Hence

the series diverges. 2

For R = 1 we have two examples:
∑

1
n
and

∑
1
n2 .

Example:
∑

n/3n < ∞.

Theorem 2.12 (Ratio test) Let
∑∞

n=1 an be a series of positive terms such
that

an+1

an
→ L as n → ∞.

(a) If L < 1, the series converges.

(b) If L > 1, the series diverges,

(c) If L = 1, the test is inconclusive.
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Proof. Assume L < 1 and choose x : L < x < 1. Then an+1

an
< x for all

n ≥ N . This implies
an+1

xn+1
<

an
xn

for all n ≥ N.

Thus, the sequence an/x
n ↘ for n ≥ N ⇒ an

xn ≤ const. Now the comparison
test proves (a).

(b) follows from the fact that an is not decreasing.
(c) same 2 examples

∑
1
n
,
∑

1
n2 . 2

Example:
∑

2n

n!
converges. Indeed, 2n

n!
/ 2n+1

(n+1)!
= 2

(n+1)!
→ 0.

2.6 Absolute and Conditional Convergence

Now let us consider series some of whose terms may be negative.

Proposition 3
∑∞

n=1 an is convergent if
∑∞

n=1 |an| is convergent.

The converse is not true.

Proof. Let us prove that
∑

bn with bn = an + |an| converges. We have
bn = 0 or bn = 2|an|. Hence bn ≤ 2|an|, and by comparison test

∑
bn < ∞.

Since an = bn − |an|, we are done. 2

Definition 2.13 A series
∑

an is said to be absolutely convergent if∑
|an| converges. If

∑
an converges and

∑
|an| diverges then

∑
an is said

to be conditionally convergent.

Theorem 2.14 (Leibniz) If {an} is a monotonic decreasing sequence with
limit 0, then the alternating series

∑
(−1)n−1an converges. If S is its sum

and sn is its nth partial sum then

0 < |S − sn| < an+1 for all n ≥ 1.

Proof The partial sums s2n is monotone increasing because s2n+2−s2n =
a2n+1 − a2n+2 > 0. By a similar argument, s2n−1 ↘. Both sequences are
bounded from below by s2 and from above by s1. Denote S

′ = limn→∞ s2n, S
′ =

limn→∞ s2n−1. Then S ′ − S ′′ = lim(s2n − s2n−1) = lim(−a2n) = 0 ⇒ S ′ = S ′′.
Hence, the series

∑
an converges and its sum is S = S ′ = S ′′. Further,

0 < S − s2n ≤ s2n+1 − s2n = a2n+1,
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and
0 < s2n−1 − S ≤ s2n−1 − s2n = a2n.

2

a1

a2

a  −1 a2

a3
a4

a  −3 a4

an
an +1

< a1<

a  −1 a2

S
an

a  −3 a4

an +1

< an<

a  −n an+1

S
a  −n an+1

an +2
an +3

n

Example:
∑

(−1)n/n is conditionally convergent.

Example: (James Gregory 1672, Gottfried Wilhelm Leibniz 1673)

π
4
= 1− 1

3
+ 1

5
− 1

7
+ · · ·+ (−1)n−1

2n−1
+ . . . .

This gives a very slowly convergent approximation for π by cutting off
the tail at some large enough N .

Leibniz was a founder of Optimism: “Our universe is the best possible
one God could have made.” Some think incorrectly that he was mocked by
Voltaire for this philosophy in Candide.

2.7 Power Series

Definition 2.15 A power series is an infinite series of the form
∞∑
n=0

an(z − a)n = a0 + (z − a)a1 + (z − a)2a2 + . . .

Proposition 4 Assume that the power series
∑

anz
n converges for a par-

ticular z ̸= 0, say for z = z1. Then the series converges absolutely for every
z with |z| < |z1|.

Proof. Since
∑

anz
n
1 converges, anz

n
1 → 0 ⇒ |anzn1 | < 1 for n ≥ N . If

|z| < |z1| then

|anzn| = |anzn1 |
∣∣∣∣znzn1

∣∣∣∣ ≤ ∣∣∣∣ zz1
∣∣∣∣n for n ≥ N

Since
∑

| z
z1
|n < ∞, by the comparison test,

∑
anz

n converges. 2
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Theorem 2.16 Assume that the power series
∑

anz
n converges for at least

one z ̸= 0, say z = z1, and that it diverges for at least one z, say z = z2. Then
there exists a positive real number ρ, called the radius of convergence, such
that the series converges absolutely if |z| < r and diverges if |z| > r.

Proof. Denote by A the set of positive z for which
∑

anz
n converge.

We know that A ̸= ∅ and A ≤ |z2|. Set r = supA. If |z| < r then there exists
x ∈ (|z|, r) such that

∑
anx

n converges ⇒ by the previous theorem
∑

anz
n

absolutely converges. 2

Example: S :=
∑

zn

n
. Its radius of convergence is 1. Thus S converges

whenever |z| < 1 and diverges when |z| > 1.
It is tricky understand what happens when |z| = 1. If z ∈ R, then we are

reduced to consider exactly two boundary cases, i.e., when ρ = 1, which are
(i) the harmonic series

∑∞
n=1

1
n
, which diverges, and (ii) the alternating series∑∞

n=1(−1)n 1
n
, which converges by Leinbniz. So both situations can occur at

the radius of convergence. The problem gets even more interesting if we allow
z to be a complex number. Then z = eiθ for some angle θ ∈ R (which can be
taken to be between 0 and 2π (with 0 included), and by de Moivre’s theorem,

zn = einθ = cos(nθ) + i sin(nθ).

Consequently, the series splits up into a sum of two infinite series:

S =
∞∑
n=1

zn

n
=

∞∑
n=1

cos(nθ)

n
+ i

∞∑
n=1

sin(nθ)

n
.

When θ = 0, the first part, called the real part of S, is the harmonic series
(which diverges), and the second part, said to be (i times) the imaginary
part of S, is zero. It turns out that for any θ strictly between 0 and 2π, S
converges.
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3 Limits of functions, Continuity

After introducing the basic notions on functions, limits and continuity, we
will go on to Bolzano’s theorem, and the Intermediate Value Theorem (IVT)
which follows from it, as well as the Extremal Value Theorem (EVT).

3.1 Functions

Def A function f is a set of ordered pairs (x, y), with x, y ∈ R, such that no
two (ordered pairs) have the same first member.

By definition, the second member y is determined by x, one may unam-
biguously write y as f(x), where f denotes the assignment x 7→ y. The set
of all x (for which f is defined) is called the domain of f , and the set of the
corresponding y is called the image (or range) of f .
Notation: f : X → Y , where X is the domain, and Y contains the range.

One can plot the ordered pairs {(x, y = f(x))} (defining a function f) in
the Cartesian plane R2 = {(x, y) |x, y ∈ R}, and the resulting figure is called
the graph of f . It will be useful to become aware of the graphs of a number
of standard functions, such as the ones below.

Examples:

(i) The identity function: f(x) = x;

(ii) Constant function: f(x) = c, for all x ∈ R,
with c a fixed real number;

(iii) Linear function: f = ax+ b, for constants a, b;

(iv) Polynomial function of degree n ≥ 0: f(x) =
∑n

j=0 ajx
j,

with a1, . . . , an ∈ R, an ̸= 0;

(v) Upper semicircle function: f(x) =
√
r2 − x2,

X = {x ∈ R | − r ≤ x ≤ r}, r: radius > 0;

(vi) The integral part function: f(x) = [x], the largest integer not greater
than x, X = R, Image(f) = Z.
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We will call a function f one-to-one, or injective, iff for every y in the
range, there is a unique x such that f(x) = y. The function f : X → Y
is said to be onto, or surjective, iff Y is the image of f , i.e., for every y in
Y , there is an x ∈ X such that y = f(x). Note that the linear function
example above is injective on X = R iff a ̸= 0, in which case it is onto all
of R. Sometimes f is not an injective function on its natural domain X, but
becomes one when restricted to a (large enough) subset X1 of X. (It is always
injective if restricted to one point, but this is not interesting!) For example,
the upper semicircle function is injective on {x | 0 ≤ x ≤ r}; the graph of
this restriction is a quarter circle of radius r (in the first quadrant of R2).

3.2 Open, closed and compact subsets of R
By an interval, we will mean a subset I of R such that if a, b are in I, then
any number x between a and b is in I. Examples are, for a < b ∈ R, the
open interval

(a, b) = {x ∈ R | a < x < b},

the closed interval

[a, b] = {x ∈ R | a ≤ x ≤ b},

the half-open intervals

[a, b) = {x ∈ R | a ≤ x < b}, (a, b] = {x ∈ R | a < x ≤ b},

the infinite open intervals

(a,∞) = {x ∈ R | a < x < ∞},

(−∞, b) = {x ∈ R | −∞ < x < b},

and so on.

Definition 3.1 Any open interval containing a point a as its midpoint will
be called a standard neighborhood of a.

We will usually drop the adjective “standard.”
Notation: N(a, r) = {x ∈ R| |x− a| < r} = (a− r, a+ r).
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By an open set in R, we will mean a subset U which contains a neigh-
borhood of every point in U . One can check that open intervals are open, as
are arbitrary unions of open intervals and finite intersections of them. The
empty set ∅ and R are open, too.

The complement of a set X in R, denoted Xc, is the set R \ X :=
{z ∈ R | z ̸∈ X}. Clearly, R and ∅ are complements of each other, while the
complement of an open interval (a, b) is the union (−∞, a] ∪ [b,∞).

By a closed set in R, we will mean a subset F whose complement F c

is open. Try to verify that closed intervals are closed, as are finite unions of
closed intervals, and arbitrary intersections of them. The empty set and R
are closed, too. Prove that these two sets are the only subsets of R which are
both open and closed.

By a compact set in R, we will mean a subset C of R which is both
closed and bounded. (Again, when we say “bounded,” we mean it is bounded
from above and below.) The closed interval [a, b], with a < b in R, is evi-
dently compact. The complement of an open interval (a, b) is closed, but not
bounded, so non-compact. And (a, b) itself is bounded but not closed, and so
not compact. Compact sets play a very important role in Calculus of one and
several variables, as well as in (higher) Mathematical Analysis and Geometry.

3.3 Limits

Let a ∈ R. Assume that f is a function defined on some neighborhood of a
except possibly at a.

Definition 3.2 f has limit A as x → a iff for every neighborhood N1(A)
there exists a neighborhood N2(a) such that f(x) ∈ N1(A) if x ∈ N2(a)−{a}.
Equivalently, ∀ε > 0, there exists a δ > 0 such that for all x ̸= a, |x−a| < δ,
we have |f(x)− A| < ε.

Notation: limx→a f(x) = A, or f(x) → A as x → a.

Theorem 3.3 The following statements are equivalent:

(i) limx→a f(x) = A

(ii) For every sequence {an}∞n=1 ⊂ Domain (f), an ̸= a, such that limn→∞ an =
a, we have limn→∞ f(an) = A.

3



Proof (i) ⇒ (ii): Given ε > 0, pick δ > 0 such that |x − a| < δ implies
|f(x) − A| < ε, which is possible by (i). Let {an} be a sequence with limit
a, so that we may choose an N > 0 such that an ∈ N(a, δ) for n ≥ N . Then
f(an) ∈ N(A, ε) for n ≥ N , and so (i) holds.

(ii) ⇒ (i): Let us prove this by contra-positive, i.e., assume ¬(i) (= Not
(i)) and deduce ¬(ii). Pick ε for which δ does not exist, i.e., for every δ > 0,
∃x = x(δ) such that |x− a| < δ, but |f(x)− A| ≥ ε. Then picking δ = 1

n
we

can construct a sequence an = x(δn) in N(a, 1
n
) s. t. |f(an) − A| ≥ ε. Then

an → a but f(an) ̸→ A. So (ii) does not hold when (i) doesn’t. 2

Right and Left limits: limx→a+ , resp. limx→a− .
These are defined just as above except for requiring that f(x) ∈ N1(A)

only for all x ∈ N2(a)∩{x > a}, resp. x ∈ N2(a)∩{x < a}. This is equivalent
to taking (all possible) sequences an > a, resp. an < a. Clearly, the limit as
x → a exists iff the right and left limits both exist and are equal.

Examples

(1) The limit of a constant function is the same constant.

(2) Limit of the identity function limx→a x = a. (In the proof, take δ = ε.)

(3) limx→k− [x] = k − 1, limx→k+ [x] = k, so limx→k[x] does not exist.

Theorem 3.4 Let A = limx→a f(x) and B = limx→a g(x). Then

lim
x→a

f(x) + g(x)
f(x)g(x)
f(x)/g(x)

 =

 A+B
AB

A/B if B ̸= 0


Proof: Follows from the corresponding statement for sequences.

Theorem 3.5 (The squeeze principle) If f(x) ≤ g(x) ≤ h(x) in some
neighborhood of a (not including a), and if limx→a f(x) = limx→a h(x) = A,
then limx→a g(x) = A.

Proof Follows from the corresponding statement for sequences. 2
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Lemma 3.6 (a) We have

lim
x→0

x sin(1/x) = 0.

(b)

lim
x→0

sinx

x
= 1.

Proof: (a) To prove this, note that for any x, −1 ≤ sin(1/x) ≤ 1, implying
that x sin(1/x) is squeezed between −x and x, both of which tend to 0 as
x → 0. Thus, by the squeeze principle above, x sin(1/x) tends to 0 as x → 0.

(b) Typically, people tend to use a circular argument involving L’Hôpital’s
rule. Here is a (correct) geometric argument: Consider the unit circle C with
center at the origin O. By definition, sin x is the y-coordinate of the point
P = P (x) on C at an angle x from the x-axis in the counterclockwise direc-
tion. (Note that sinx is periodic with period 2π, so we may take x ∈ [0, 2π).)
We are interested in x near zero. Suppose x > 0. Let Q denote the point
on the x-axis cut by the vertical drawn downwards from P , so that the line
segment OQ, resp. PQ, has length cosx, resp. sin x. Let B be the point
(1, 0), and A the point where the vertical drawn upwards from B meets the
extension of the line OP , so that OP and OB have length 1. Evidently, the
triangles OPQ and OAB are similar, implying that

|AB|
sinx

=
1

cos x
, i.e., |AB| = sin x

cos x
.

Now look at the angular sector S bounded between OP and OB, which
contains the triangle OPQ and is contained in the triangle OAB. Hence
the area of S, which is x/2, is squeezed between the areas of the triangular
regions OPQ and OAB. We get

1

2
sinx cosx <

1

2
x <

sin x

2 cos x
.

Dividing throughout by sinx/2, which is positive as x is in the first quadrant
(by virtue of being positive and near 0), we obtain

cos x <
x

sinx
<

1

cosx
.
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A
1

cos x

sin x

x

O

P

B

A

1
x/2

cos x/2
sin x/2

tan x

sin x <  x  < tan x

Since both cos x and its inverse go to 1 as x → 0, we see that by the squeeze
lemma, x

sinx
goes to 1 as x goes to 0+. So the right limit exists and equals 1.

The left limit also follows the same argument (but with x < 0), which will
be left as an exercise. 2

We end this section by looking also at limits of functions as x → ∞ and
x → −∞. The definition is analogous to the one for sequences. For instance,
we say that f(x) has a finite limit A ∈ R as x → ∞ iff for every ε > 0, we
can find a T > 0 such that whenever x > T , |f(x)−A| < ε. To compute such
limits (for x large), it is useful to look for dominant terms. For example, if
f(x) is a polynomial function a0 + a1x + · · · + anx

n, with an ̸= 0, then the
highest order term, namely anx

n, dominates. To give an example, consider
the limit (of a rational function)

L := lim
x→∞

2x2 − 35x+ 16

5x2 + 12x+ 1
.

We may rewrite the quotient inside the limit as

x2(2− 35/x+ 16/x2)

x2(5 + 12/x+ 1/x2)
=

2− 35/x+ 16/x2

5 + 12/x+ 1/x2
.

Since 5/x, 16/x2, 12/x, and 1/x2 all go to zero as x → ∞, and since 5 +
12/x + 1/x2 approaches 5 ̸= 0 as x → ∞, we see, by applying Theorem 3.4
that

L =
2

5
.

Put another way, we may substitute u = 1/x, and the limit we want amounts
to finding the limit of the quotient, now viewed as a function of u, as u goes
to 0.
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Similarly, if we look at the rational function f(x) = x3−1
x3+1

, we see that it
has the limit 1 as x → ∞; same limit when x → −∞. However, this function
is not defined at x = −1, and it goes to ∞ if we approach −1 from the left
and goes to −∞ if we approach it from the right, as seen in the graph:

1 2 3 4

1

2

3

4

-1-2-3-4
-1

-2

-3

-4

x  − 13

x  + 13

This method applies to more than rational functions. For example, we
may modify the example above to consider

L′ := lim
x→∞

2x2 − 35x cosx+ 16

5x2 + 12x+ 1
.

Then the quotient inside the limit can be simplified (as above) to obtain

2− 35 cos x/x+ 16/x2

5 + 12/x+ 1/x2
.

To finish, note that (by the squeeze principle) the limit

lim
x→∞

cos x

x
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must be 0 as 1/x and −1/x both goes to ∞ while cos x remains squeezed
between −1 and 1. Consequently,

L′ =
2

5
(= L).

3.4 Continuity

Definition 3.7 A function f is continuous at a point a if f is defined at
a and limx→a f(x) = f(a).

Equivalently, ∀ε > 0, ∃ δ > 0 such that ∀x, |x − a| < δ we have |f(x) −
f(a)| < ε. In the examples above, (1) and (2) are continuous everywhere,
while [x] is continuous on R \ Z. At the integral points we have jump
discontinuities-when both left and right limits exist but not equal.

Removable discontinuity-left and right limits are the same but not
equal to f(a).

Here is a picture of some standard examples of discontinuous functions,
where the discontinuity is not removable: In the last graph (on the right),

the function is even unbounded.
Exercise: Can you find a function f which is discontinuous at every point
of R, or just at every point of Q?

Lemma 3.8 Polynomials are continuous functions, rational functions are
continuous wherever defined.

This follows from Theorem 3.4 and the definition of continuity.

Trigonometric functions such as sin x, cos x, and tanx are continuous
where they are defined. (The proof of continuity of sinx was discussed in
class.)
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Proposition 1 (composition) Assume f is continuous at a and g is con-
tinuous at b = f(a). Then the composite function g ◦ f : x 7→ g(f(x)) is
continuous at a.

Proof. For any N1(g(b)), there exist N2(b) : g(N2(b)) ⊂ N1(g(b)) and
N3(a) : f(N3(a)) ⊂ N2(b). Thus g ◦ f(N3(a)) ⊂ N1(g(q)). 2

Example f(x) = (x3 + 1)4 is continuous everywhere.

The following Proposition follows from Theorem 3.3 (and the definition
of continuity).

Proposition 2 Suppose f is continuous at a, and that there is a sequence
{xn} converging to a. Then the sequence {f(xn)} converges to f(a).

This result provides a useful way to prove that certain functions are dis-
continuous by considering its contra-positive. In other words, if lim

n→∞
xn = a

and lim
n→∞

f(xn) ̸= f(a), then f cannot be continuous at a. Try to use this idea

to prove that the function f(x) = sin(1/x) (for x ̸= 0) cannot be extended
in any way to be continuous at 0.

If f is a function on a set X ⊂ R, the subset Xdc of X consisting of points
a in X where f is discontinuous will be called the set of discontinuities of
f .

We will denote by C(X) the collection of all continuous functions φ on
X.

3.5 Bolzano and IVT

Bolzano’s theorem: Let f be continuous at each point of the closed in-
terval, and assume that f(a) and f(b) have opposite signs. Then there is at
least one c in the open interval (a, b) such that f(c) = 0.

To prove this, we need the following

Lemma 3.9 Let f be continuous at c, and suppose that f(c) ̸= 0. Then there
is an interval (c− δ), c+ δ) around c where f has the same sign as f(c).
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Proof of Lemma. Pick ε = |f(c)|/2 in the definition of continuity to see
that, for suitable δ > 0, |f(x) − f(c)| < |f(c)|/2 whenever |x − c| < δ.
Consequently, for all x ∈ (c− δ, c+ δ), f(x) has the same sign as f(c). 2

Proof of Bolzano’s theorem Assume f(a) < 0 and f(b) > 0. We will find
the largest c for which f(c) = 0. Let B denote the set of all those points x
in the interval [a, b] for which f(x) ≤ 0. It is nonempty because f(a) < 0,
and it is evidently bounded. Let c = supB. We’ll show f(c) = 0. If f(c) > 0
then it is positive in a neighborhood of c by the Lemma above, implying that
some c′ < c is an upper bound for B, which contradicts the fact that c is the
least upper bound. So f(c) > 0 is impossible. Similarly, if f(c) < 0, then f is
negative in a neighborhood of c, implying that ∃ c′′ > c which belongs to B.
Then c is not an upper bound for B, giving us a contradiction, once again.
Hence f(c) = 0. 2

A consequence of Bolzano’s theorem is the fact that any odd degree poly-
nomial f(x) admites a real root, i.e., a real number a such that f(a) = 0.
(Of course this is false for f of even degree, in fact already for the quadratic
polynomial x2 + t if t > 0.) Indeed, if f has odd degree, then its sign is
opposite for x large positive and x large negative; check this! In particular, if
f(x) is cubic, it has a root; in fact the number of roots is between 1 and 3:

111-1 -1 -1

x  3 x  − x  3 x  − x  3 2

Theorem 3.10 (Intermediate Value Theorem or IVT) Let f ∈ C([a, b]).
Choose two arbitrary points x1 < x2 in [a, b] with f(x1) ̸= f(x2). Then f
takes every value between f(x1) and f(x2) somewhere in the interval (x1, x2).

Proof We may assume that f(x1) < f(x2), as otherwise we may consider
−f . If t ∈ (f(x1), f(x2)), consider the function g(x) = f(x)−t. Then g(x1) <
0 and g(x2) > 0, and we may apply Bolzano’s theorem to g(x) and find a
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point c in the interval such that g(c) = 0, which implies, by the definition of
g, that f(x) = t. 2

Theorem 3.11 If n is a positive integer and if a > 0, then there exists
exactly one positive b, denoted n

√
a, such that bn = a.

Proof Choose c > 1: 0 < a < c, and consider f(x) = xn on [0, c]. Since
0 < a < c < cn = f(c), by intermediate value thus ∃ b ∈ (0, c) such that
f(b) = a. It is unique because f is strictly increasing. 2

Consider a function f with domain A and range R. For each x in A there
is exactly one y = f(x). Assume that for each y ∈ B there exists only one x
such that y = f(x). Then we can construct a new function g : B → A such
that g(y) = x means f(x) = y. The new function g is called the inverse
function, or just inverse of f . (It is important to note that g is not the
multiplicative inverse 1/f .)

Theorem 3.12 Assume f is strictly increasing and continuous on [a, b]. Let
c = f(a), d = f(b), and let g be the inverse of f . Then

(a) g is strictly increasing on [c, d].

(b) g is continuous on [c, d].

Proof. (a) Since f is strictly increasing, we have

(∗) x1 < x2 ⇔ f(x1) < f(x2),

for all x1, x2 in [a, b]. If we put yj = f(xj) ∈ [c, d], then by definition, xj =
g(yj), and hence (∗) is the same as the equivalence

(∗∗) g(y1) < g(y2) ⇔ y1 < y2.

Since c = f(a) and d = f(c), every point in [c, d] is in f([a, b]) by IVT, (∗∗)
holds for all y1 < y2 in [c, d]. Thus g is strictly increasing on [c, d].

(b) Choose a point y0 ∈ (c, d). We need to show that for every ε > 0
there exists δ > 0 such that

g(y0)− ε < g(y) < g(y0) + ε whenever y0 − δ < y < y0 + δ.

Set x0 = g(y0) so that f(x0) = y0. Set

δ = min{f(x0)− f(x0 − ε), f(x0 + ε)− f(x0)}.

It works! 2
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Corollary 3.13 Let n ∈ N. Then the n-th root function f(x) = n
√
x is

continuous on R+, and, if n is odd, it is also (defined and) continuous on R.

3.6 Max/Min and EVT

Definition 3.14 The function f is said to have an absolute maximum
(resp. absolute minimum) on the set S if there is at least one point c ∈ S
such that f(x) ≤ f(c) (resp. f(x) ≥ f(c)), for all x ∈ S.

If there is no confusion, we will abbreviate and just say maximum and
minimum. (Later, we will introduce local maximum and local minimum.)

Example f(x) = 1/x has no absolute maximum or minimum on (0, 1).

By an extremum we will mean either a maximum or a minimum.

Theorem 3.15 Let f ∈ C([a, b]). Then f is bounded on [a, b].

Proof Assume f is unbounded. Let c be the midpoint of [a, b]. Then f is
unbounded either on [a, c] or [c, b]. Denote the corresponding interval by
[a1, b1]. Continuing the procedure, we get, for any n ≥ 1, a nested sequence
of subintervals

[an, bn] ⊂ [an−1, bn−1] ⊂ · · · ⊂ [a1, b1] ⊂ [a, b], with bn − an = b−a
2n

.

Let A be the sequence {an} of real number, which is bounded since each
an ∈ [a, b]. Put α = supA ∈ [a, b]. By the continuity of f at α, there is an open
interval I = (α− δ, α+ δ) such that |f(x)− f(α)| < 1 ⇒ |f(x)| < 1+ |f(α)|,
which means f is bounded on this interval I. But [an, bn] is contained in
(α − δ, α + δ) for n large enough. To be precise, this happens when an ∈
[α − δ, α] and (b − a)/2n < δ. Contradiction, because f was unbounded on
[an, bn] by construction! So f must be bounded on [a, b]. 2

Theorem 3.16 (Extremal Value Theorem for continuous functions or EVT)
Assume f is continuous on a closed interval [a, b]. Then there exists points c
and d in [a, b] such that

f(c) = sup f = max f, and f(d) = inf f = min f.
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Proof It suffices to prove the first one, since then we may replace f by −f ,
reversing the roles of sup and inf (and max and min). Set M = sup f and
g(x) = M −f(x). Suppose M is not attained at any point. Then g(x) > 0 on
[a, b]. Hence, 1/g(x) is well defined and continuous on [a, b], which implies,
by Theorem 3.15, that it is bounded on [a, b]. Consequently, for some C > 0,

1
M−f(x)

< C, or equivalently, f(x) < M − 1
C
, which contradicts the fact that

M = sup f . Hence M must be realized at some point, call it c, in [a, b]. Then,
evidently, f attain its maximum on [a, b] at c. 2

Here is a very powerful general result, which we will note without proof:

Theorem 3.17 If f is a continuous function on a compact set C in R, then
the image f(C) is also compact.

Recall that a subset of R is compact iff it is closed and bounded. In par-
ticular, as noted earlier, any closed interval [a, b], with a < b in R, is compact.
Thus Theorem 3.17 asserts that f([a, b]) is bounded (which is Theorem 3.15)
and is closed (which implies Theorem 3.16).
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4 Differential Calculus

4.1 Basic Notions

Definition 4.1 The function f defined on a neighborhood of a ∈ R is called
differentiable at a if the limit

lim
h→0

f(a+ h)− f(a)

h

exists. It is called the derivative of f at a and is denoted as f ′(a) (or as
df
dx
(a).)

Recall that a neighborhood of a point a contains some open interval
I = (a− t, a+ t), and the limit above makes sense because for h sufficiently
close to 0, a + h lies in I. Note that h can be positive and negative. If one
restricts to h > 0, then the corresponding limit is called the right derivative
of f at a, and similarly for the left derivative (where h < 0). The derivative
exits at a iff both the right and left derivatives exist and are equal.

Examples:

1) Derivative of a constant function exists at any a and equals 0.

2) f(x) = mx+ b ⇒ f ′(a) = m for any a ∈ R.

3) f(x) = xn. Recall the binomial formula:

(a+ h)n =
n∑

j=0

(
n

j

)
an−jhj = an + nan−1h+O(h2),

where O(h2) denotes the sum of terms of order at least h2. Hence

f ′(a) = lim
h→0

(a+ h)n − an

h
= lim

h→0
{nan−1 +O(h)} = nan−1.

4) f(x) = sinx. Since sin y − sin x = 2 sin y−x
2

cos y+x
2
, we have, for any

a ∈ R,

f ′(a) = lim
h→0

sin(a+ h)− sin(a)

h
= lim

h→0

sin(h/2)

h/2
cos

(
a+

h

2

)
= cos a.
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Similarly, (cosx)′ = − sinx.

5) f(x) = x
1
n , for n ∈ N. Set u = (a+ h)

1
n and v = a

1
n . Then

f(a+ h)− f(a)

h
=

u− v

un − vn
=

1

un−1 + un−2v + · · ·+ vn−1
,

which goes to 1
n
a

1
n
−1 as h → 0.

We say that f is differentiable on an open interval I iff f is differen-
tiable at every point in I. In this case, we may treat f ′ as a function on I.
In general f ′ may not be continuous, and if it is so at a (resp. on I), we will
say that f is C1, meaning it is continuously differentiable at a (resp. on
I).

We will say that f is twice differentiable at a iff f and f ′ are both
differentiable at a. We put f ′′ = (f ′)′ and call it the second derivative.
This way we can define the third and fourth derivatives, and in fact, for any
n ∈ N, the n-th derivative of f , denoted by f (n), as the derivative of f (n−1).

f is said to be Cn at a (or on I) iff all the derivatives f (j) exist for
j ≤ n and are continuous at a (resp. on I). Finally, one says that f is
C∞, or infinitely differentiable, iff f (n) exists for every n. The simplest
examples of infinitely differentiable functions on all of R are polynomials and
the sine and cosine functions. The same holds for rational functions and
other trigonometric functions at the set of points where they are defined.
For example, f(x) = x2+x−3

x−1
is defined at every point x ̸= 1 in R, and it is

C∞ there, while tanx is defined and C∞ at every point x where cos x is not
0, i.e., when x is not of the form (2k + 1)π/2, for k ∈ Z.

4.2 Geometric Interpretation of the derivative

Let f be any function defined around a. Given any h close to 0, one may
consider the line, called the secant line, joining the points (a, f(a)) and
(a+ h, f(a+ h)), whose slope mh is given by

mh =
f(a+ h)− f(a)

h
,

and as we let h approach zero, either from the right or from the left, the two
points coalesce in the limit, and the existence of the derivative guarantees a
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uniquely defined line T passing through (a, f(a)), which touches the graph
at this point without cutting across it in a small neighborhood. This line,
called the tangent line to the graph passing through (a, f(a)), has slope m
given by

m = lim
h→0

mh.

Consequently, existence of the derivative at a is equivalent to the existence
of a well defined tangent line T at (a, f(a)), and its slope m is none other
than the derivative f ′(a).

We can in fact write down the equation of the tangent line T as

y − f(a) = f ′(a)(x− a).

You may easily check that this is correct, as the equation is forced by the
two facts that (i) the slope is f ′(a), and (ii) T passes through (a, f(a)). Of
course this equation could be rearranged as

y = f ′(a)x+ (f(a)− f ′(a)a).

The normal N to the graph of y = f(x) at P = (a, f(a)) is the line
perpendicular to T and passing through P . When f ′(a) = 0, T is horizontal,
and the equation of N is given by x = a. And when f ′(a) ̸= 0, N is not
vertical and its the slope is given by −1/f ′(a). (So what is the equation of
N?)

4.3 Basic Properties of the Derivative

Theorem 4.2 If f is differentiable at a, then f is continuous at a.

Proof f(a+ h) = f(a) + h · (f(a+h)−f(a)
h

), and the existence f ′(a) implies
that lim

h→0
f(a+ h) = f(a), proving the continuity of f at a. 2

Remark: Note that f(x) = |x| is continuous at 0 but not differentiable
there; the right derivative is 1 (which is the slope of the line y = x), and the
left derivative is −1 (=slope of the line y = −x). Clearly, the function is
differentiable, even C∞, at every a ̸= 0.

Theorem 4.3 Suppose f, g are differentiable at a. Then

1) (f + g)′(a) = f ′(a) + g′(a)
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2) (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

3) (f
g
)′(a) = f ′(a)g(a)−f(a)g′(a)

g2(a)
, if g(a) ̸= 0.

Proof 1) is immediate from the definition. Let us prove 2). We have

f(a+ h)g(a+ h)− f(a)g(a)

h
= g(a)

f(a+ h)− f(a)

h
+f(a+h)

g(a+ h)− g(a)

h
,

from which the assertion follows by letting h → 0. 2

3) Thanks to 2), it is enough to prove (1/g)′ = −g′/g2.

1/g(a+ h)− 1/g(a)

h
= −g(a+ h)− g(a)

h
· 1

g(a)g(a+ h)
→ − g′(a)

g(a)2
.

2

Example: f(x) = xr, r ∈ Q. Then, at any x in R, f ′(x) = rxr−1. For
r = 1

n
, this has been proved. Then extend to m

n
by induction on m. For Q−,

the assertion follows from Q+.

Theorem 4.4 (Chain rule) Let φ = g ◦f (“the composite function”), with f
differentiable at a and g differentiable at b := f(a). Then φ is differentiable
at a, and φ′(a) = g′(b) · f ′(a).

Proof Set k = f(a + h) − f(a). Then k → 0 as h → 0, because f is
continuous at a. Also, since b = f(a), we have

f(a+ h) = b+ k, and φ(a+ h) = g(b+ k).

We are using here the fact: φ(x) = g(f(x)). Thus

φ(a+ h)− φ(a)

h
=

g(b+ k)− g(b)

h
.

We may rewrite the right hand side, using the definition of k, as

g(b+ k)− g(b)

k
· f(a+ h)− f(a)

h

Here is a reasonable looking, but false, proof of the Chain rule. Since k
goes to 0 when h does, we can try to argue that

lim
h→0

φ(a+ h)− φ(a)

h
=

(
lim
k→0

g(b+ k)− g(b)

k

)
·
(
lim
h→0

f(a+ h)− f(a)

h

)
,
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which equals g′(b)f ′(a), as desired. The problem is that it may happen that
k = 0 for infinitely many h near zero, preventing us from taking the limit
of the first quotient as h → 0 since then we would be dividing by zero. For
example, look at the function f(x) = x2 sin(1/x) when x ̸= 0 and f(0) = 0,
which is differentiable (see below) at a = 0, but f(h) becomes zero infinitely
often as h gets close to 0.

Here is a way we can overcome this problem by modifying the argument
as follows. Put

G(t) =
g(b+ t)− g(b)

t
− g′(b), if t ̸= 0

Then
g(b+ t)− g(b) = t(G(t) + g′(b)), ∀ t ̸= 0.

Now extend G to all of R by setting G(0) = 0. Then, since g is differentiable
at a, G is continuous at 0. We then have (by setting t = k),

φ(a+ h)− φ(a)

h
=

k

h
(G(k) + g′(b)).

(This way we are not dividing by k, and so we can take the limit we want.)

When h → 0, we have k
h
= f(a+h)−f(a)

h
→ f ′(a). Also, and G(k) → 0, since

k = k(h) → 0 and G is continuous at 0. Hence, the right hand side (of the
last displayed equation) tends to g′(b)f ′(a). 2

Examples:

1) (cos(x3))′ = −3x2 sin(x3).

2) ((g(x)n)′g(x)n−1 · g′(x).

3) x2 + y2 = r2 ⇒ 2x+ 2yy′ = 0 ⇒ y′ = −x
y
= +̄ x√

r2−x2

Hence, (±
√
r2 − x2)′ = +̄ x√

r2−x2

4.4 An interesting class of Examples

Let us consider, for each integer m ≥ 0, the function fm on D := R \ {0}
defined by

fm(x) = xm sin(1/x),
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which, by applying the product and quotient rules, is seen to be differentiable,
even C∞ (by using induction in addition), on D. It is natural to extend fm
to all of R by putting

fm(0) = 0.

It was remarked earlier (in class) that f0 is not continuous at 0, as sin(1/x)
wildly fluctuates near zero and does not approach 0 as x goes to 0. (It’s useful
to look at the graph!) But f1 is continuous at 0, since lim

x→0
x sin(1/x) = 0 =

f1(0) (as seen in the previous chapter when we dealt with limits of functions).

On the other hand, the ratio h sin(1/h)
h

, being just sin(1/h), has no limit as

h → 0, proving that f1 is not differentiable at 0. However, the limit lim
h→0

f2(h)
h

does exist, since f2(h)
h

= h sin(1/h), proving that f2 is differentiable at 0. It is
a quick thing to check that f ′

2 is not continuous at 0, i.e., f2 is differentiable
but not C1 at 0. It is also not hard to do one more step and show that f3 is
C1 at 0, but is not twice differentiable.

This process can be continued ad infinitum, and it will be left as an
exercise to prove (try induction!) the following (for every non-negative integer
m):

f2m is m-times differentiable, but is not Cm, at 0, while f2m+1 is Cm, but
is not (m+ 1)-times differentiable, at 0.

4.5 Local Extrema

Definition 4.5 A function f defined on a set S is said to have a local max-
imum (minimum) at a point c ∈ S if there exists an interval I ∋ c such that
f(x) ≤ f(c) for all x ∈ I ∩ S.

A local maximum or minimum is called an extreme value, or an ex-
tremum, of f .

Some call local extrema relative extrema.

This definition makes sense even if f is not continuous around a. However,
if f is continuous and a is a local maximum, we see that the function increases
to the left of a and decreases to the right. Similarly, if a is a local minimum,
f decreases to the left and increases to the right of a.

Iff is moreover differentiable around a, if a is a local maximum, f ′(x) will
necessarily be positive for x < a and x close to a, while f ′(x) is negative for
x > a and x near a. We have a similar criterion for a local minimum.
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Theorem 4.6 Let f be defined on an open interval I, and assume that f
has a local extremum at a ∈ I. If f is differentiable at a, then f ′(a) = 0.

Proof Set Q(x) = f(x)−f(a)
x−a

if x ̸= a, and Q(a) = f ′(a). The assumption
that f is differentiable at a then implies that Q is continuous at a. We’ll show
that Q(a) = 0. If Q(a) > 0 then by sign-preserving property of continuous
functions, Q > 0 on some neighborhood of a. Then f(x) > f(a) if x > a and
f(x) < f(a) if x < a. This contradicts the fact that a is a local extremum.
Similarly, Q(a) < 0 leads to a contradiction again, leaving us no choice ut to
have Q(a) = f ′(a) = 0. 2

Examples: 1) f(x) = x3. f ′(0) = 0, but this point is not a local
extremum!

2) f(x) = |x|. f(0) is an extremum but f is not differentiable at 0.

Definition 4.7 A real number a is a critical point of a differentiable func-
tion f (around a) iff f ′(a) = 0. It is called an inflection point if f ′(a) = 0,
but a is not a local extremum.

Proposition 1 Assume f is continuous on [a, b] and differentiable on (a, b).
Then

(a) If f ′(x) > 0 on (, a, b) then f is strictly increasing on [a, b];

(b) If f ′(x) < 0 on (a, b) then f is strictly decreasing on [a, b];

(c) If f ′(x) ≡ 0 then f ≡ constant.

Proof Use f(y)− f(x) = f ′(c)(y − x). 2

Corollary 4.8 Let f be continuous on [a, b] and differentiable on (a, b). If
f ′(x) changes sign at c ∈ (a, b) the c is a local extremum.

Theorem 4.9 (The second derivative test) Let c be a critical point of
f in an open interval (a, b). Assume that f is twice differentiable on (a, b).
Then
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(a) If f ′′ is negative in (a, b), f has a local max at c.

(b) If f ′′ is positive in (a, b), f has a local min at c.

Proof f ′(c) = 0 and f ′ decreases or increases ⇒ it changes sign at c. 2

Note that if f(x) = xk, with k = 2, 3, 4, it has a critical point at x = 0,
which is a local minimum for k = 2 and k = 4, but is an inflection point for
k = 3, since the second derivative changes sign there.

4.6 A simple example

Consider the function f(x) = 3x3 − x + 1 on the interval [−2, 3]. Being a
polynomial, it is clearly continuous on [−2, 3] and twice differentiable on the
open interval (−2, 3), even on all of R. Let us find all the local extrema and
also the absolute extrema of f on [−2, 3].

Since f ′(x) = 9x2 − 1, the critical points are given by (3x)2 = 1, i.e.,
3x = ±1. In other words, x = 1/3 and x = −1/3 are the sole critical points,
and they both lie in (−2, 3). We have

f(1/3) = 3(1/3)3−(1/3)+1 = 7/9, f(−1/3) = 3(−1/3)3−(−1/3)+1 = 11/9.

Moreover, since f ′′(x) = 18x, we have

f ′′(1/3) = 6 > 0, and f ′′(−1/3) = −6 < 0.

Hence x = 1/3 is a local minimum and x = −1/3 is a local maximum. f has
no inflection point, even though it seems close to g(x) = 9x3 which has an
inflection point at x = 0.

It remains to find the absolute extrema of f on [−2, 3]. We see that f
increases to the left of x = −1/3 decreases on [−1/3, 1/3], and increases again
to the right of x = 1/3. (Just look at the sign of f ′(x), for example.) So the
absolute extrema will either occur at the critical points or at the boundary
points x = −2 and x = 3. Recall that f , being continuous on the closed
interval I = [−2, 3], attains its (absolute) extrema on I. Direct checking
gives

f(−2) = 3(−2)3 − (−2) + 1 = −21, and f(3) = 3(3)3 − (3) + 1 = 79.
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Hence f has absolute minimum at x = −2 (with value −21), and it has
absolute maximum at x = 3 (with value 79).

Neither local extremum is an absolute extremum in this example. But if
we look at the (even simpler) example f(x) = x2 − x + 1 on [−2, 4], there
is, since f ′(x) = 2x − 1, a unique critical point at x = 1/2. And since
f ′′(x) = 2 > 0 at every x, this critical point is a local minimum. Check that
f(1/2) = 3/4. Now, at the end points, we have f(−2) = 7 and f(4) = 13.
Thus the absolute maximum of f occurs at the right boundary point x = 4
(with value 13), while the absolute minimum occurs at the critical point
x = 1/2 (with value 3/4). Hence, in this example, the unique local minimum
is also the absolute minimum.

4.7 The Mean Value Theorem

Let C[a, b]∩D(a, b) denote the collecion of functions f which are continuous
on [a, b] and differentiable on (a, b).

Rolle’s theorem (1690) Let f be in C[a, b] ∩ D(a, b). Assume that f(a) =
f(b). Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof Assume f ′ ̸= 0 on (a, b). Then f must take its absolute maximum
and minimum at a and b. Since f(a) = f(b), we have min f = max f ⇒ f ≡
const ⇒ f ′ ≡ 0. Contradiction. 2

Example f(x) = |x| on (−1,+1). There are no points where f ′(x) = 0!

Corollary 4.10 (Mean-value theorem for derivatives) Assume that f ∈
C[a, b] ∩ D(a, b). Then ∃c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a)

In the applications to Mechanics, this gives the attainment (at a particular
time) of the average speed.

Proof Set h(x) = f(x)(b − a) − x(f(b) − f(a)) and apply Rolle’s
theorem. 2

Cauchy’s mean-value formula: Let f, g ∈ C[a, b] ∩ D(a, b). Then ∃C ∈
(a, b) · f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

Proof Set h(x) = f(x)(g(b)−g(a))−g(x)(f(b)−f(a)) and apply Rolle’s
theorem 2
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Derivative test for convexity: Assume f is continuous on [a, b] and
differentiable on (a, b). If f ′ is increasing on (a, b) (e.g., if f ′′ ≥ 0), then f is
convex on [a, b]. (Similarly, if decreasing, then concave.)

Proof Take x < y in [a, b] and let z = αy + (1 − α)x, 0 < α < 1. We
want to prove that f(z) ≤ αf(y) + (1 + α)f(x), which is equivalent to

(1− α)(f(z)− f(x)) ≤ α(f(y)− f(z))

By the mean-value theorem, ∃c ∈ (x, z) and d ∈ (z, y):

f(z)− f(x) = f ′(c)(z − x) and f(y)− f(z) = f ′(d)(y − z)

We have f ′(c) ≤ f ′(d) by the hypothesis. Also,

(1− α)(z − x) = α(y − z)

so we have

(1−α)(f(z)− f(x)) = (1−α)f ′(c)(z− x) ≤ αf ′(d)(y− z) = α(f(y)− f(z))

2
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5 Integration

We will first discuss the question of integrability of bounded functions on
closed intervals, followed by the integrability of continuous functions (which
are nicer), and then move on to bounded functions with negligible disconti-
nuities.

The main tool will be to approximate the integral from above by the
upper sum and from below by the lower sum, relative to various parti-
tions. This method was introduced by the famous nineteenth century German
mathematician Riemann, and it is customary to call these sums Riemann
sums.

5.1 Basic Notions

Definition 5.1 If f is a bounded function on a closed interval [a, b], then the
span of f on [a, b] is given by

spanf ([a, b]) = supf ([a, b])− inff ([a, b]),

where supf ([a, b]) (resp. inff ([a, b])) denotes the supremum (resp. infimum)
of the values of f on [a.b].

If f is continuous on [a, b], then we know that it is bounded, and moreover,
sup = max and inf = min (of f([a, b])).

Definition 5.2 A partition of a closed interval [a, b] is a collection of points
t0, t1, t2, . . . , tn such that

t0 = a < t1 < t2 < · · · < tn−1 < b = tn.

Definition 5.3 A function S defined on [a, b] is called a step function if
there is a partition P = {t0, . . . , tn} of [a, b], and constants c1, c2, . . . , cn such
that such that

S(x) = cj if x ∈ [tj−1, tj),

and S(b) = cn.

A proper definition of integration must allow such a (step) function to be

integrable, with its integral over [a, b], denoted
∫ b

a
S, being the sum

∑n
j=1 cj(tj−

tj−1).
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Definition 5.4 If P, P ′ are partitions of [a, b], we will say that P ′ is a re-
finement of P iff the set of points in P is contained in the set of points of
P ′.

For example, P : t0 = 0 < t1 = 1
2
< t2 == 1 and P ′ : t′0 = 0 < t′1 = 1

4
<

t′2 = 1
2
< t′3 = 3

4
< t′4 = 1 are both partitions of [0, 1], with P ′ a refinement

of P .
It is clear from the definition that given any two partitions P, P ′ of [a, b],

we can find a third partition P ′′ which is simultaneously a refinement of P
and of P ′. Such a P ′′ is called a common refinement of P, P ′.

Remark: The sum and the product of two step functions are also seen
to be step functions, by considering suitable refinements.

Here is a quick definition of integrability:

Definition 5.5 A bounded function f on [a, b] is integrable iff for every
ε > 0, we can find a partition P = t0 = a < t1 < t2 < · · · < tn−1 < b = tn
such that the sum

∆f (P ) :=
n∑

j=1

(tj − tj−1)spanf ([tj−1, tj])

is less than ε.

Note that, for each ε > 0, the choice of P may depend on ε.

Clearly, ∆f (P ) is the area caught between the upper and lower Riemann
sums. We want this area to be as small as possible for f to be integrable.
Equivalently, we want to choose a sequence {Pn} of partitions such that
∆f (Pn) → 0 as n → ∞.

0area

a b a b a b

as n ∞
n

The obvious question now is to ask if there are integrable functions. One
such example is given by the constant function f(x) = c, for all x ∈ [a, b].
Then for any partition P = {a = t0 < t1 < . . . < tn = b}, the sup and inf of
f on each subinterval [tj−1, tj] coincide, making ∆f (P ) zero.

2



Lemma 5.6 Every step function S is integrable on [a, b].

Proof. Let S be the step functions associated to a partition P := t0 =
a < t1 < t2 < · · · < tn−1 < b = tn and constants cj, so that S(x) = cj if
x ∈ [tj−1, tj) and S(b) = cn. There is a jump in the value of S at each tj for
j ∈ {1, 2, . . . , n − 1}. This is harmless and can be taken care of as follows.
For any ε > 0, consider a refinement of P given by

P ′ : a = t′0 < t′1 = t1−δ < t′2 = t1 < t′3 = t2−δ < t′4 = t2 < · · · < t′2n−2 = tn−1 < t′2n−1 = tn = b,

where

δ = ε/(n− 1)µ, with µ = max{c1, . . . , cn} −min{c1, . . . , cn}.

Then, since the span of f is zero on each [t′2i − t′2i+1], we get

∆f (P ) <

n−1∑
j=1

δ(cj − cj−1) < ε,

as each cj − cj−1 < µ. 2

5.2 Upper and Lower Sums

One can interpret ∆f (P ) for each partition P of [a, b] as the difference be-
tween certain upper and lower sums of Riemann.

Definition 5.7 The upper, resp. lower, sum of f over [a, b] relative to the
partition P = {a = t0 < t1 < . . . < tn = b} is given by

U(f, P ) =
r∑

j=1

(tj − tj−1)supf ([tj−1, tj])

resp.

L(f, P ) =
r∑

j=1

(tj − tj−1)inff ([tj−1, tj]),
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Of course we have, for all P ,

L(f, P ) ≤ U(f, P ), and ∆f (P ) = U(f, P )− L(f, P ).

More importantly, it is clear from the definition that if P ′ is a refinement
of P , then

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).

Put
L(f) = {L(f, P ) | P partition of [a, b]} ⊆ R

and
U(f) = {U(f, P ) | P partition of [a, b]} ⊆ R.

Lemma 5.8 L(f) admits a sup, denoted I(f), called the lower integral of
f over [a, b]. Similarly, U(f) admits an inf, denoted I(f), called the upper
integral.

Proof. Thanks to the discussion in Chapter 1, all we have to do is
show that L(f) (resp. U(f)) is bounded from above (resp. below). So we
will be done if we show that given any two partitions P, P ′ of [a, b], we have
L(f, P ) ≤ U(f, P ′), as then L(f) will have U(f, P ′) as an upper bound
and U(f) will have L(f, P ) as a lower bound. Choose a third partition P ′′

which refines P and P ′ simultaneously. Then we have L(f, P ) ≤ L(f, P ′′) ≤
U(f, P ′′) ≤ U(f, P ′). Done.

2

We always have
I(f) ≤ I(f).

Lemma 5.9 A bounded function f is integrable over [a, b] iff I(f) = I(f).

Proof Suppose f is integrable. Then, by definition, ∆f (P ) = U(f, P ) −
L(f, P ) becomes arbitrarily small as P goes through a sequence of refine-
ments. This forces the equality I(f) = I(f) in the limit. Conversely, given
this equality, the difference U(f, P ) − L(f, P ) must become less than any
given ε > 0, for a suitably refined P . 2
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When such an equality holds, we will simply write I(f) for I(f) (= I(f)),
and call it the integral of f over [a, b].

Quite often we will also write

I(f) =

b∫
a

f or

b∫
a

f(x) dx.

In practice one is loathe to consider all partitions P of [a, b]. The following
lemma tells us something useful in this regard.

Lemma 5.10 Let f be a bounded function on [a, b]. Suppose {Pn} is an
infinite sequence of partitions, with each Pn being a refinement of Pn−1, such
that the corresponding sequences {U(f, Pn)} and {L(f, Pn)} both converge to

a common limit λ in R. Then f is integrable with λ =
b∫
a

f(x)dx.

Note that for such a step function f defined by (P, {cj}), we have an
explicit formula for the integral, namely

b∫
a

f(x)dx =
n∑

j=1

cj (tj − tj−1).

5.3 Integrability of monotone functions

Let f : A → R be a function, with A a subset of R. Recall that f is
monotone increasing (resp. monotone decreasing), iff we have

x1, x2 ∈ A, x1 < x2 =⇒ f(x1) ≤ f(x2) (resp. f(x1) ≥ f(x2)).

A monotone function f on a closed interval [a, b] is bounded on [a, b]. This
is clear because f is bounded by f(a) on one side and by f(b) on the other.

Theorem 5.11 Let f be a monotone function on [a, b]. Then f is integrable.
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Proof. Suppose f is monotone increasing on [a, b]. For n ≥ 1, let Pn = {a =
t0 < t1 < . . . < tn = b} be the n-th standard partition (or equal partition)
with

tj+1 − tj =
b− a

n
∀ j ≤ n− 1.

Since f is increasing, f(tj) is, for each j, the inf of the values of f on the
subinterval [tj, tj+1], and f(tj+1) is the sup. Hence

L(f, Pn) =
b− a

n
(f(t0) + f(t1) + . . .+ f(tn−1))

and

U(f, Pn) =
b− a

n
(f(t1) + f(t2) + . . .+ f(tn)) .

It follows by telescoping that

∆f (Pn) = U(f, Pn)− L(f, Pn) =
b− a

n
(f(b)− f(a)) .

As n goes to infinity, this difference goes to zero. Hence f is integrable by
Lemma 5.6.

2

5.4 Computation of
b∫
a

xsdx

The function f(x) = xm is a monotone increasing function for any m > 0.
So by Theorem 5.11, it is integrable on any closed interval [a, b]. There is a
well known formula for the value of the integral, which can be derived in a
myriad of ways. We will give two proofs in this chapter, and here is the first
one – due to Riemann, which uses partitions P = a = t0 < t1 < . . . < tn = b
where the subintervals [ti, ti+1] are not of equal length, but where the ratios
ti+1/ti are kept constant.

Riemann’s method, unlike the one we will describe later in section 5.7,
is very general, and works also for xs for any real exponent s ̸= −1, as long
as the limits a, b are positive. We have encountered xs before for rational s,
and also ey for any real y (via the infinite series defining it). F.32or those
who know about logarithms and exponentials, xs is defined for any real s and
positive x as es log x; here log x denotes the natural logarithm of x, which some
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denote by ln(x). It is problematic to define xs for general s and negative x,
except when s is an integer, because numbers like (−1)1/2 are not in R.

Proposition 1 Let s, a, b be real numbers with s ̸= −1 and a < b. If s is not
an integer, assume that a is positive. Then

b∫
a

xsdx =
bs+1 − as+1

s+ 1
.

We will prove this result below only for positive integer values of s, but
we will make a remark after the proof about what one needs for the extension
to general s.

When s = −1, one cannot divide by s + 1 and the Proposition cannot
hold as stated. It may be useful to note that for any b > 1,

b∫
1

1

x
dx = log b.

If you are not familiar with the logarithm, you may take this as the definition
of log b.

Proof of Proposition for positive integral exponents:
We will take s to be a positive integer m. (The assertion is obvious for

m = 0.) We will also assume, for simplicity of exposition, that a > 0, even
though the asserted formula holds equally well when a ≤ 0. Write

(5.4.1) f(x) = xm.

Put

(5.4.2) u = b/a > 1,

and define, for each n ≥ 1, a partition

(5.4.3) Pn : a = t0 < t1 < t2 < . . . < tn−1 < tn = b

such that for each j ≤ n,
tj = auj/n.

7



Then we have, for all j < n,

(5.4.4)
tj+1

tj
= u(j+1)/n−j/n = u1/n,

which is independent of j.
The lower sum is given, for each n, by

(5.4.5) L(f, Pn) =
n−1∑
j=0

(tj+1 − tj)t
m
j = (u1/n − 1)

n−1∑
j=0

tm+1
j ,

where we have used (5.4.4). By the definition of tj and the fact that
n−1∑
j=0

zj =

1−zn

1−z
, the expression on the right of (5.4.5) becomes

am+1(u1/n − 1)
n−1∑
j=0

uj(m+1)/n = −am+1 (1− u1/n)(1− um+1)

1− u(m+1)/n
.

Since −am+1(1− um+1) equals bm+1 − am+1, we get
(5.4.6)

L(f, Pn) = (bm+1−am+1)
1− u1/n

1− u(m+1)/n
= (bm+1−am+1)

1

1 + u1/n + u2/n + . . .+ um/n
.

We know that as n → ∞, uj/n goes to 1 for any fixed j. This shows that

(5.4.7) lim
n→∞

1

1 + u1/n + u2/n + . . .+ um/n
=

1

m+ 1
.

Consequently, by (5.4.6),

(5.4.8) lim
n→∞

L(f, Pn) =
bm+1 − am+1

m+ 1
.

On the other hand, since tmj+1 = um/ntmj , the corresponding upper sum is

(5.4.9) U(f, Pn) =
n−1∑
j=0

(tj+1 − tj)(u
m/ntmj ) = um/nL(f, Pn).

And since um/n → 1 as n → ∞, (5.4.8) and (5.4.9) imply that we have

lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn) =
bm+1 − am+1

m+ 1
.

8



It follows then (see Lemma 5.2.8) that the (definite) integral of xm over [a, b]
equals this common limit. Incidentally, this computation shows explicitly
that f(x) = xm is integrable and we don’t really need to refer to Theorem
5.11 (from the previous section).

2

Now suppose we want to prove the full force of the Proposition, i.e., treat
the case of an arbitrary real exponent s ̸= −1, by this method. Proceeding
as above, we will get

(5.4.6) L(f, Pn) = (bs+1 − as+1)ϕs(n),

where

ϕs(n) =
1− u1/n

1− u(s+1)/n
,

and
U(f, Pn) = us/nL(f, Pn).

As before, us/n goes to 1 as n → ∞. So the whole argument will go through
if we can establish the following limit:

lim
n→∞

ϕs(n) =
1

s+ 1
.

This can be done, but we will not do it here. In any case, you should feel free
to use the Proposition for all s ̸= −1.

5.5 Example of a non-integrable, bounded function

Define a function
f : [0, 1] → R

by the following recipe. If x is irrational, set f(x) = 0, and if x is rational,
put f(x) = 1.

This certainly defines a bounded function on [0.1], and one is led to wonder
about the integrability of f .

Proposition 5.5.2 This f is not integrable.

Proof. Let P be any partition of [0, 1] given by 0 = t0 < t1 < . . . <
tn = 1. By a basic property of R, we know that there is a rational number

9



0 1

f

x

f (x) ={ 1, x rational
0, x irrrational

U(f, p  ) = 1
L(f, p  ) = 0

n

n
{np

n

between any two real numbers. So in every subinterval [tj, tj+1] there will
be some rational number qj (in fact infinitely many), with f(qj) = 1 by
definition. Consequently,

U(f, P ) =
n−1∑
j=0

1 · (tj+1 − tj) = (t0 − t1) + (t1 − t2) + . . .+ (tn−1 − tn) = 1,

because t0 = 0 and tn = 1.
On the other hand, every interval [c, d] in R must contain an irrational

number y. Let us give a proof. If c or d is irrational, then we may take y to be
that number, so we can assume that c and d are rational. Then the number
y = c+ (d− c)

√
2/2 is irrational and lies in [c, d]. Consequently, for every j,

there is an irrational yj in [tj, tj+1], which implies that

L(f, P ) = 0.

Hence
U(f, P )− L(f, P ) = 1,

and this is independent of the partition P . So f is not integrable.
2

It should be noted, however, that there are non-zero integrable, bounded
functions f on [0, 1] which are supported on Q, i.e., f(x) is zero for irrational
numbers x. But they are not constant on the rational numbers.

5.6 Properties of integrals

The integral
b∫
a

f(x)dx is often called a definite integral because it has a

definite value, assuming that f is integrable. One calls f the integrand, a

10



the lower limit and b the upper limit. It is customary to use the convention

(5.6.1)

a∫
b

f(x)dx = −
b∫

a

f(x)dx.

The definite integral has many nice properties as f or [a, b] varies, making
our life very pleasant, which we want to discuss in this section.

Proposition 2 (Linearity in the integrand) If f, g are integrable over [a, b],
so is any linear combination αf + βg, with α, β ∈ R, and moreover,

b∫
a

{αf(x) + βg(x)}dx = α

b∫
a

f(x)dx + β

b∫
a

g(x)dx.

Proof. If P is any partition, it is immediate from the definition that

L(αf + βg, P ) = αL(f, P ) + βL(g, P )

and
U(αf + βg, P ) = αU(f, P ) + βU(g, P ).

It follows then that

I(αf + βg) = αI(f) + βI(g)

and
I(αf + βg) = αI(f) + βI(g).

Since f, g are integrable, I(f) = I(f) and I(g) = I(g). So the lower and
upper integrals of αf + βg coincide, proving the assertion. 2

Proposition 3 (Additivity in the limits) Let a, b, c are real numbers with
a < b < c, and let f be integrable on [a, c]. Then f is integrable on [a, b] and
[b, c], and moreover,

c∫
a

f(x)dx =

b∫
a

f(x)dx +

c∫
b

f(x)dx.

11



Proof. Given partitions P, P ′ of [a, b], [c, d] respectively, P ∪ P ′ defines a
partition of [a, c]. And if P ′′ is a partition of [a, c], then we can refine it by
adding b to get a partition of the type P ∪ P ′, with P (resp. P ′) being a
partition of [a, b] (resp. [b, c]). It follows easily that the lower (resp. upper)
integral of f over [a, c] is the sum of the lower (resp. upper) integrals of f
over [a, b] and [b, c]; whence the assertion.

2

If c is any real number , the function x → x+ c is called translation by
c. The following Proposition describes the translation invariance of the
definite integral.

Proposition 4 Suppose f is integrable on [a, b] and c ∈ R. Then the c-
translate of f , given by x → f(x+ c), is integrable on [a− c, b− c], and

b−c∫
a−c

f(x+ c)dx =

b∫
a

f(x)dx.

For any c ∈ R, the function x → cx is called the homothety (or stretch-
ing) by c. Some also use the terms expansion and contraction when c > 1
and 0 < c < 1. The following Proposition describes the behavior under
homothety.

Proposition 5 Suppose f integrable on [ac, bc]. Then the function x →
f(cx) is integrable on [a, b] and

bc∫
ac

f(x)dx = c

b∫
a

f(cx)dx.

5.7 Even and odd functions, and the integral of xm

revisited

In section 5.4 we established the following identity for any m ≥ 0 and any
[a, b]:

(∗)
b∫

a

xmdx =
bm+1 − am+1

m+ 1
.
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In view of the linearity property of the integral (see Proposition 2), we see
that if we have any polynomial

f(x) = c0 + c1x+ . . .+ cnx
n,

then f is integrable over any [a, b]. Furthermore, we have the explicit for-
mula

(∗∗)
b∫

a

f(x)dx = c0x+ c1
x2

2
+ . . .+ cn

xn+1

n+ 1
.

We will now give an alternate proof of (∗) for 0 < a < b.

We first need a Lemma, which is of independent interest. We will call a
function f(x) even, resp. odd, iff f(−x) = f(x), resp. f(−x) = −f(x), for
all x. Note that xj is even if j is even and it is odd if j is odd. Also, cos x is
even while sin x is odd.

Lemma 5.12 Let f(x) be an integrable function of [−a, a], for some a > 0.
Then

f even =⇒
a∫

−a

f(x)dx = 2

a∫
0

f(x)dx,

f odd =⇒
a∫

−a

f(x)dx = 0.

Proof. By Proposition 5 (applied with c = −1) and the convention (5.6.1),

∫ 0

−a

f(x)dx =

a∫
0

f(−x)dx,

which equals

(5.12) (−1)r
a∫

0

f(x)dx,

13



with r being 1, resp. −1, when f is even, resp. odd. The lemma now follows
by Proposition 3, which implies that

a∫
−a

f(x)dx =

0∫
−a

f(x)dx+

a∫
0

f(x)dx.

2

Now let us begin the alternate proof of (∗). Put

Im =

1∫
0

xmdx.

The key is to show that

(5.7.2) Im =
1

m+ 1
.

Indeed, we can use Proposition 5 to deduce that

(5.7.3)

b∫
0

xmdx = b

1∫
0

(bx)mdx = bm+1Im,

and combining this with Proposition 3, we get

(5.7.4)

b∫
a

xmdx =

b∫
0

xmdx−
a∫

0

xmdx = (bm+1 − am+1)Im,

as desired. So it suffices to just prove (5.7.2).
By the translation invariance (Proposition 4) of definite integrals, we get

(5.7.5)

b∫
−b

(x+ b)mdx =

2b∫
0

xmdx = 2m+1bm+1Im.

By the binomial theorem,

(x+ b)m =
m∑
j=0

(
m

j

)
xjbm−j.
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and so by (5.7.5),

(5.7.6) 2m+1bm+1Im =
m∑
j=0

(
m

j

)
bm−j

b∫
−b

xjdx.

By Lemma 5.12,
b∫

−b

xjdx equals 0 if j is odd, and twice
b∫
0

xjdx = 2bj+1Ij (by

5.7.3) when j is even.
Since (∗) is true for m = 0, we can take m > 0 and assume, by induction,

that (∗) holds for all j < m. Then we get from the above, the following:

(5.7.7) 2mIm =
m∑

j=0, j even

(
m

j

)
Ij = ϵmIm +

m−1∑
j=0, j even

(
m

j

)
1

j + 1
,

where ϵm is 1 if m is even and 0 if m is odd. On the other hand,(
m

j

)
1

j + 1
=

m!

(j + 1)!(m− j)!
=

(
m+ 1

j + 1

)
1

m+ 1
,

so that

(5.7.8)
m−1∑

j=0, j even

(
m

j

)
1

j + 1
=

1

m+ 1

m∑
k=0, k odd

(
m+ 1

k

)
.

Next we note that for any integer r ≥ 1,

r∑
k=0, k odd

(
r

k

)
=

1

2
(1− (−1)r) = 2r−1.

(Check this!) Consequently,

(5.7.9)
m∑

k=0, k odd

(
m+ 1

k

)
= 2m − ϵm.

Combining (5.7.7.), (5.7.8) and (5.7.9), we get

2mIm = ϵmIm +
2m

m+ 1
− ϵm

1

m+ 1
.
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When m is odd, ϵm = 0 and hence

2mIm =
2m

m+ 1
.

When m is even, ϵm = 1 and we get

2mIm = Im +
2m

m+ 1
− 1

m+ 1
.

In either case,

Im =
1

m+ 1
,

as asserted.
2

5.8 Trigonometric functions

The following result is basic.

Proposition 6 Let [a, b] be any closed interval. Then the functions sinx and
cos x are integrable on [a, b]. Explicitly,

b∫
a

sin xdx = cos a− cos b

and
b∫

a

cosxdx = sin b− sin a.

Proof. By the periodicity and additivity of the integral (see section 5.6),
we may assume that 0 ≤ a < b ≤ 2π. Moreover, for 0 ≤ x ≤ π, the oddness
of sin x implies, when used in conjunction with its periodicity, that

(5.8.1) sin(π + x) = − sin(−π − x) = − sin(π − x),

while the evenness of cosx implies

cos(π + x) = cos(−π + x) = cos(π − x).
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Moreover, the trigonometric definition of sinx and cosx gives immediately
the following identities:

(5.8.2) sin(π − x) = sinx

and
cos(π − x) = − cosx.

Thanks to (5.8.1) and (5.8.2) it suffices to prove the assertion of the
Theorem when 0 ≤ a < b ≤ π/2. Furthermore, since

b∫
a

f(x)dx =

b∫
0

f(x)dx−
a∫

0

f(x)dx

for any function f(x), it suffices to prove for any a in (0, π/2] that the func-
tions sin x and cos x are integrable on [0, a], and that

(5.8.3)

a∫
0

sin x dx = 1− cos a and

a∫
0

cosx dx = sin a.

We will prove the formula for the integral of sinx over [0, a] and leave the
proof of the corresponding one for cosx to the reader.

For every n ≥ 1, define a partition Pn of [0, a] to be given by

(5.8.4) 0 = t0 < t1 =
a

n
< t2 =

2a

n
< . . . < tn = a,

so that tj+1 − tj =
a
n
for all j ≤ n− 1.

Since sin x is a monotone increasing function in [0, π/2], the upper and
lower sums are given by

(5.8.5) U(sin x, Pn) =
a

n

n−1∑
j=0

sin(
(j + 1)a

n
)

and

L(sinx, Pn) =
a

n

n−1∑
j=0

sin(
ja

n
).
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By the addition theorem for cosx (part (d) of Theorem 5.8.1), we have

(5.8.6) 2 sin x sin y = cos(x− y)− cos(x+ y).

In particular, when y = a
2n

and x = (j+1)a
n

, we get

(5.8.7) 2 sin(
a

n
) sin(

(j + 1)a

n
) = cos(

(2j + 1)a

2n
)− cos(

(2j + 3)a

2n
).

Applying this in conjunction with (5.8.5), we get

U(sin x, Pn) =
a/2n

sin( a
2n
)

(
(cos(

a

2n
)− cos(

3a

2n
)) + . . .+ (cos(

(2n− 1)a

2n
)− cos(

(2n+ 1)a

2n
))

)
,

which simplifies to

(5.8.8) U(sin x, Pn) =
a

2n sin( a
2n
)

(
cos(

a

2n
)− cos(

(2n+ 1)a

2n
)

)
.

By Proposition 5.8.2,

(5.8.9) lim
n→∞

sin( a
2n
)

a
2n

= 1.

Also, since cos 0 = 1,

(5.8.10) lim
n→∞

cos(
a

2n
)− cos(

(2n+ 1)a

2n
) = 1− cos a.

Combining (5.8.8) through (5.8.10), we get

(5.8.11) lim
n→∞

U(sin x, Pn) = 1− cos a.

The analog of (5.8.8) for the n-th lower sum is

(5.8.12) L(sinx, Pn) =
a

2n sin( a
2n
)

(
1)− cos(

(2n− 1)a

2n
)

)
.

We get the same limit, namely

(5.8.13) lim
n→∞

L(sinx, Pn) = 1− cos a.

In view of (5.8.11), (5.8.12), the desired identity (5.8.3) follows for the sine
integral. The argument is entirely analogous for the cosine integral.

2

18



5.9 Functions with discontinuities

One is very often interested in being able to integrate bounded functions
over [a, b] which are continuous except on a subset which is very small, for
example outside a finite set. To be precise, we say that a subset Y of R is
negligible, or that it has measure zero, iff for every ε > 0, we can find a
countable number of closed intervals J1, J2, . . . such that

(i) Y ⊂ ∪∞
i=1Ji, and

(ii)
∑∞

i=1 ℓ(Ji) < ε,

where ℓ(Ji) denotes the length of Ji.
If we can do this with just a finite number of closed intervals {Ji} (for

each ε), then we will say that Y has content zero. Of course, being of
content zero is stronger than having measure zero.

Examples:
(1) Any finite set of points in R has content zero. (Proof is obvious!)

(2) Any subset Y of R which contains a non-empty open interval (a, b) is
not negligible.

Proof of (2). It suffices to show that (a, b) has non-zero measure for
a < b in R. Suppose (a, b) is covered by a finite union of a countable collection
of closed intervals J1, J2, . . . in R. Then clearly,

S : =
m∑
i=1

ℓ(Ji) ≥ b− a.

So we can never make S less than b− a. 2

(3) The set N of natural numbers is negligible in R.
Indeed, given ε > 0, choose δ > 0 such that δ < 6ε/π2, and choose the

intervals Jn = (− δ
2n2 ,

δ
2n2 ) surrounding n. Then N ⊂ ∪nJn and∑

n

ℓ(Jn) = δ
∑
n≥1

1

n2
< ε.
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Theorem 5.13 Let f be a bounded function on [a, b] which is continuous
except on a subset Y of measure zero. Then f is integrable on [a, b].

Proof when Y has content zero. Let M > 0 be such that |f(x)| ≤ M ,
for all x ∈ [a, b]. Since Y has content zero, we can find a finite number of
closed subintervals J1, J2, . . . , Jn of [a, b] such that

(i) Y ⊆ ∪n
m=1 Jm, and

(ii)
∑n

m=1 ℓ(Jm) <
ε

4M
.

We may assume that the closed intervals Jm are mutually disjoint except
possibly at the endpoints. Extend {J1, . . . , Jn} to a partition P : a = t0 <
t1 < · · · < tr = b of [a, b], meaning that each Jm is some [ti−1, ti]. Applying
the small span theorem, we may suppose that if some [tj−1, tj] is not some
Jm, then spanf ([tj−1, tj]) <

ε
2(b−a)

. (We can apply this theorem because f is

continuous outside the union of J1, . . . , Jn.) Let Jn+1, . . . , Jr be the intervals
[tj−1, tj] which are not one of the Jm. So we have

U(f, P )− L(f, P ) ≤ 2M
n∑

i=1

ℓ(Ji) +
r∑

i=n+1

spanf (Ji)ℓ(Ji),

which is

< (2M)

(
ε

2M

)
+

ε

2ℓ([a, b])

r∑
i=n+1

ℓ(Ji) ≤ ε

2
+

ε

2
= ε,

because
∑r

i=n+1 ℓ(Ji) ≤ b− a.
2

Even though we proved this result only for Y of content zero, it is correct
for any Y of measure zero as well, and you should feel free to use it in that
generality.
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Remark: We can use this theorem to define the integral of a continuous
function f on any compact set B in R if the boundary of B is negli-
gible. Indeed, in such a case, we may enclose B in a closed interval [a, b] and
define a function f̃ on [a, b] by making it equal f on B and 0 on [a, b] − B.
Then f̃ will be continuous on all of [a, b] except on the boundary of B, which
has content zero. So f̃ is integrable on [a, b]. Since f̃ is 0 outside B, it is
reasonable to set ∫

B

f =

b∫
a

f̃ .
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6 Fundamental Theorems, Substitution, In-

tegration by Parts, and Polar Coordinates

So far we have separately learnt the basics of integration and differentiation.
But they are not unrelated. In fact, they are inverse operations. This is
what we will try to explore in the first section, via the two fundamental
theorems of Calculus. After that we will discuss the two main methods one
uses for integrating somewhat complicated functions, namely integration
by substitution and integration by parts. The final section will discuss
integration in polar coordinates, which comes up when there is radial
symmetry.

6.1 The fundamental theorems

Suppose f is an integrable function on a closed interval [a, b]. Then we can
consider the signed area function A on [a, b] (relative to f) defined by the
definite integral of f from a to x, i.e.,

(6.1.1) A(x) =

x∫
a

f(t)dt.

The reason for the signed area terminology is that f is not assumed to be
≥ 0, so a priori A(x) could be negative.

It is extremely interesting to know how A(x) varies with x. What condi-
tions does one need to put on f to make sure that A is continuous, or even
differentiable? The continuity part of the question is easy to answer.

Lemma 6.1 Let f, A be as above. Then A is a continuous function on [a, b].

Proof. Let c be any point in [a, b]. Then f is continuous at c iff we have

lim
h→0

A(c+ h) = A(c).

Of course, in taking the limit, we consider all small enough h for which c+h
lies in [a, b], and then let h go to zero. By the additivity of the integral, we
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have (using (6.1.1)),

A(c+ h)− A(c) =

∫
I(c,h)

f(t)dt,

where I(c, h) denotes the closed interval between c and c+h. Clearly, I(c, h)
is [c, c + h], resp. [c + h, c], if h is positive, resp. negative. When h goes to
zero, I(c, h) shrinks to the point {c}, and so

lim
h→0

A(c+ h)− A(c) = 0,

which is what we needed to show.
2

Remark 6.1.2: The general moral to remember is that, just as in real life,

Integration is good and Differentiation is bad !

Indeed, as seen in this Lemma, integration makes functions better; here it
takes an integrable, but not necessarily a continuous, function f , and from
it obtains a continuous function. The Theorem below says that if f is in
addition continuous, then its integral is even differentiable. Differentiation,
on the other hand, makes functions worse. The derivative of a differentiable
function f is often not differentiable (think of f(x) = sign(x)x2 at x = 0); in
fact, f ′ need not even be continuous (think of f(x) = x2 sin(1/x) when x ̸= 0
and = 0 when x = 0).

A satisfactory answer to the question of differentiability of the integral is
given by the following important result, which comes with an appropriately
honorific title:

Theorem 6.2 (The first fundamental theorem of Calculus) Let f be
an integrable function on [a, b], and let A be the function defined by (6.1.1).
Pick any point c in (a, b), and suppose that f is continuous at c. Then A is
differentiable there and moreover,

A′(c) = f(c).

Some would write this symbolically as

(6.1.3)
d

dx

x∫
a

f(t)dt = f(x).

2



In plain words, this says that differentiating the integral gives back the
original as long as the original function is continuous at the point in question.

Proof. To know if A(x) is differentiable at c, we need to evaluate the
limit

(6.1.4) L = lim
h→0

A(c+ h)− A(c)

h
.

By the additivity of the definite integral, we have

(6.1.5) A(c+ h)− A(c) =

∫
I(c,h)

f(x)dx,

where I(c, h) is as in the proof of Lemma 6.1.
Denote by M(c, h), resp. m(c, h), the supremum, resp. infimum, of the

values of f over I(c, h). Then the following bounds evidently hold:

(6.1.6) hm(c, h) ≤
∫

I(c,h)

f(x)dx ≤ hM(c, h).

Combining (6.1.4), (6.1.5) and (6.1.6), we get for all small h,

(6.1.7) lim
h→0

m(c, h) ≤ L ≤ lim
h→0

M(c, h).

But by hypothesis, f is continuous at c. Then both m(c, h) and M(c, h)
will tend to f(c) as h goes to 0, which proves the Theorem in view of (6.1.7)
and the squeeze theorem.

(Draw pictures to convince yourselves that if f is not continuous, then
these limits, even if they exist, need not equal f(c).)

2

Let f be any function on an open interval I. Suppose there is a differ-
entiable function ϕ on I such that ϕ′(x) = f(x) for all x in I. Then we will
call ϕ a primitive of f on I. Note that the primitive is not unique. Indeed,
for any constant α, the function ϕ + α will have the same derivative as ϕ.
Intuitively, one feels immediately that the notion of a primitive should be
tied up with the notion of an integral. The following very important and
oft-used result makes this expected relationship precise.

3



Theorem 6.3 (The second fundamental theorem of Calculus) Sup-
pose f, ϕ are functions on [a, b], with f integrable on [a, b] and ϕ a primitive
of f on (a, b), with ϕ defined and continuous at the endpoints a, b. Then

ϕ(b)− ϕ(a) =

b∫
a

f(x)dx.

One can rewrite this, perhaps more expressively, as

ϕ(b)− ϕ(a) =

b∫
a

d

dx
ϕdx.

Proof. Choose any partition

P : a = t0 < t1 < . . . < tn = b,

and set, for each j ∈ {1, 2, . . . , n},

(6.1.8) Mj = sup(f([tj−1, tj])) and mj = inf(f([tj−1, tj])).

By definition,

(6.1.9)
n∑

j=1

(tj − tj−1)mj ≤
b∫

a

f(x)dx ≤
n∑

j=1

(tj − tj−1)mj.

On the other hand, the Mean Value Theorem gives us, for each j, a
number cj in [tj−1, tj] such that

(6.1.10) ϕ′(cj) =
ϕ(tj)− ϕ(tj−1)

tj − tj−1

.

Since ϕ is by hypothesis the primitive of f on (a, b), f(cj) = ϕ′(cj) for each
j. Moreover,

(6.1.11) mj ≤ f(cj) ≤ Mj,

and

(6.1.12)
n∑

j=1

ϕ(tj)− ϕ(tj−1) = ϕ(b)− ϕ(a).
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Combining (6.1.10), (6.1.11) and (6.1.12), we obtain

(6.1.13)
n∑

j=1

(tj − tj−1)mj ≤ ϕ(b)− ϕ(a) ≤
n∑

j=1

(tj − tj−1)mj.

Since (6.1.9) and (6.1.13) hold for every partition P , and since f is inte-
grable on [a, b], the assertion of the Theorem follows.

2

6.2 The indefinite integral

Suppose ϕ is a primitive of a function f on an open interval I, i.e., which
yields f back upon differentiation. It is not unusual to set, following Leibnitz,

(6.2.1)

∫
f(x)dx = ϕ(x).

This is called an indefinite integral because there are no limits and ϕ is
non-unique. So one can think of such an indefinite integral as a function of
x which is unique only up to addition of an arbitrary constant. One has, in
other words, an equality for all scalars C∫

f(x)dx =

∫
f(x)dx+ C.

It could be a bit unsettling to work with such an indefinite, nebulous function
at first, but one learns soon enough that it is a useful concept to be aware
of.

In many Calculus texts one finds formulas like∫
cos xdx = sinx+ C

and ∫
1

x
dx = log x+ C.

All they mean is that sinx and log x are the primitives of cosx and 1
x
, i.e.,

d

dx
sin x = cos x
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and
d

dx
log x =

1

x
.

Of course the situation is completely different in the case of definite inte-
grals.

6.3 Integration by substitution

There are a host of techniques which are useful in evaluating various definite
integrals. We will single out two of them in this chapter and analyze them.
The first one is the method of substitution, which one should always try
first before trying others.

Theorem 6.4 Let [a, b] be a closed interval and g a function differentiable
on an open interval containing [a, b], with g′ continuous on [a, b]. Also let f
be a continuous function on g([a, b]). Then we have the identity

b∫
a

f(g(x))g′(x)dx =

g(b)∫
g(a)

f(u)du.

Proof. Let ϕ denote a primitive of f , which exists because the continuity
assumption on f makes it integrable on [a, b]. Then we have, by the second
fundamental theorem of Calculus,

(6.3.1)

g(b)∫
g(a)

f(u)du = ϕ(g(b))− ϕ(g(a)) = (ϕ ◦ g)(b)− (ϕ ◦ g)(a).

On the other hand, by the chain rule applied to the composite function ϕ◦g,
we have

(6.3.2) (ϕ ◦ g)′(x) = (ϕ′ ◦ g)(x) · g′(x) = (f ◦ g)(x) · g′(x).

Consequently,

(6.3.3)

b∫
a

f(g(x))g′(x)dx =

b∫
a

(ϕ ◦ g)′(x)dx.
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Applying the second fundamental theorem of Calculus again, the right hand
side of (6.3.3) is the same as

(6.3.4) (ϕ ◦ g)(b)− (ϕ ◦ g)(a).

The Theorem now follows by combining (6.3.1), (6.3.3) and (6.3.4).
2

Before giving some examples let us note that powers of sinx and cosx,
as well as polynomials, are differentiable on R with continuous derivatives.
In fact we can differentiate them any number of times; one says they are
infinitely differentiable. The same holds for ratios of such functions or their
combinations, as long as the denominator is non-zero in the interval of inter-
est.

Examples: (1) Let

I =

π/2∫
0

sin3x cosxdx.

Thanks to the remark above on the infinite differentiability of the functions
in the integrand, we are allowed to apply Theorem 6.4 here, with

g(x) = sinx and f(u) = u3.

Then, since g′(x) = cosx (as proved earlier, g(0) = 0 and g(π/2) = 1, we
obtain

I =

1∫
0

u3du =
1

4
.

(2) Put

I =

π/4∫
0

cos2 xdx.

Recall that
cos2 x− sin2 x = cos 2x.

Since cos2 x+ sin2 x = 1, we get

cos2 x =
1 + cos 2x

2
.
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Using this and the easy integral
∫ π/4

0
dx = π/4, we get

I =
π

8
+ J, with J =

1

2

∫
cos 2xdx.

Put g(x) = 2x and f(u) = cosu, which are both infinitely differentiable on
all of R, and use Theorem 6.4 to conclude that, since g′(x) = 2, g(0) = 0 and
g(π/4) = π/2,

J =
1

4

π/4∫
0

cosudu =
sin(π/4)− sin 0)

4
=

1

4
√
2
,

This implies that

I =
π

8
+

1

4
√
2

=
π +

√
2

8
.

(3) Evaluate

I =

1∫
0

√
1− x2dx.

Here we use the substitution theorem in the reverse direction. The basic idea
is that

√
1− x2 would simplify if x were sin t or cos t. Put

g(t) = sin t and f(u) =
√
u.

Then g is differentiable everywhere with g′(t) = cos t being continuous on
[0, 1]. We chose the interval [0, 1] because g(0) = 0 and g(π/2) = 1, giving
us the limits of integration of I. Also, f is continuous on g([0, π/2]) = [0, 1].
(At the end point 0, the continuity of f means it is right continuous there.
This is good, because f is not defined to the left of 0.) So we have satisfied
all the hypotheses of Theorem 6.4 and we may apply it to get

I =

π/2∫
0

f(g(t))g′(t)dt =

π/2∫
0

√
1− sin2 t cos tdt.

But √
1− sin2 t =

√
cos2 t = | cos t|,
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which is just cos t, because the cosine function is non-negative in the interval
[0, π/2]. Hence

I =

∫ π/2

0

cos2 tdt.

We just evaluated the integral of cos2 t in the previous example, albeit with
different limits. In any case, proceeding as in that example, we get

I =
π

4
+

sin(π/2)− sin 0

4
=

π − 1

4
.

6.4 Integration by parts

Some consider this the most important technique in Calculus. Its use is per-
vasive.

Theorem 6.5 Let [a, b] be a closed interval and let f, g be differentiable func-
tions in an open interval around [a, b] such that f ′, g′ continuous on [a, b].
Then we have

b∫
a

f(x)g′(x)dx = f(x)g(x)|ba −
b∫

a

f ′(x)g(x)dx.

The notation used above signifies

(6.4.1) f(x)g(x)|ba := f(b)g(b)− f(a)g(a).

Proof. By the product rule,

(6.4.2) (fg)′(x) = f(x)g′(x) + f ′(x)g′(x)

for all x where f and g are both differentiable. Subtracting f ′(x)g(x) from
both sides and integrating over [a, b] we get

(6.4.3)

b∫
a

f(x)g′(x)dx =

b∫
a

(fg)′(x)dx−
b∫

a

f ′(x)g(x)dx.
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But by the second fundamental theorem of Calculus,

(6.4.4)

b∫
a

(fg)′(x)dx = (fg)(b)− (fg)(a).

The assertion now follows by combining (6.4.3) and (6.4.4).
2

An Example: Evaluate, for any integer n ≥ 0,

In =

π/2∫
0

cosn xdx.

First note that

I0 =

π/2∫
0

1 · dx =
π

2

and

I1 =

π/2∫
0

cosxdx = sin(π/2)− sin 0 = 1,

because sin(π/2) = 1 and sin 0 = 0.
We have already solved the n = 2 case in the previous section using

substitution, but we will not use it here. Integration by parts is more powerful!
So we may suppose that n > 1. Put

f(x) = cosn−1 x and g(x) = sin x.

Then, as noted earlier, f and g are infinitely differentiable on all of R, with

f ′(x) = (n− 1) cosn−2 x · (− sinx) and g′(x) = cosx,

where the first formula comes from the chain rule. Now we may apply The-
orem 6.5 and obtain

In =
(
cosn−1(x) sin x

)
|π/20 − (n− 1)

π/2∫
0

cosn−2x(− sinx) · sin xdx.
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Note that n − 1 ̸= 0 as n > 1 and cos θ sin θ is 0 if θ is 0 or π/2. Therefore
the first term on the right is zero, and we get

In = (n− 1)

π/2∫
0

cosn−2 x sin2 xdx.

Since sin2 x = 1− cos2 x, we get

In = (n− 1)In−2 + (n− 1)In,

which translates into the neat recursive relation

In =
n− 1

n
In−2.

In particular,

I2 =
1

2
I0 =

π

4
, I4 =

3

4
I2 =

3π

16
, . . .

and

I3 =
2

3
I1 =

2

3
, I5 =

4

5
I3 =

8

15
.

It will be left as a nice exercise for the reader to find closed expressions for
I2n and I2n−1.

6.5 Polar coordinates

So far we have confined ourselves to rectilinear coordinates on the plane,
which are often called Cartesian coordinates to honor René Descartes who
introduced them. Simply put, we identify each point P on the plane by the
pair (x, y), where x (resp. y) is the distance between the origin O and the
point where the x-axis (resp. y-axis) meets the perpendicular to it from P .
Instead one can look at the pair (r, θ), where r is the distance from P to the
origin, measured on the line L connecting O to P , and the angle between
the x-axis and L, measured in the counterclockwise direction. By definition
r ≥ 0, and we will take θ to lie in [0, 2π). In particular, the angle is taken to
be zero, and not 2π or 4π or −2π, for any point lying on the positive x-axis.
It should also be noted that as defined, the angle does not make much sense
for the origin; we take (r, θ) to be (0, 0) for it.
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The quantities r, θ are called the polar coordinates of P . It is easy to
see that

(6.5.1) x = r cos θ and y = r sin θ.

In the reverse direction, one can almost recover (r, θ) from (x, y) by the easily
verified formulae

(6.5.2) r =
√

x2 + y2 and tan θ =
y

x
.

We said almost, because we do not know at the moment to what extent
tan θ determines θ. We will come back to this question after studying inverse
functions.

Sometimes the equation defining a curve, or a region, in the plane becomes
simpler when we use polar coordinates, and this is the reason for studying
them. For example, the circle centered at O defined by the equation x2+y2 =
a2 can be easily described as the graph of r = a. The region inside the
circle is simply r ≤ a. The rule of thumb is that whenever there is circular
symmetry in a given situation, it is better to use polar coordinates.

Suppose S is an angular sector, i.e., the region bounded by θ = a, θ = b
and r = ρ, with b− a ∈ [0, 2π]. ρ is called the radius, and b− a the angle,
of s. Using the definition of π as the area of the region inside the unit circle,
one can show

(6.5.3) A(S) =
1

2
(b− a)ρ2.

We will accept this as a basic fact.

The main problem here will be to understand the radial sets, and to
know when they are measurable. Such a set is given as the region bounded
by θ = a, θ = b and r = f(θ), where f is a function of [a, b] and b−a ∈ [0, 2π].
One can use Calculus to find the area of R under a hypothesis on f .

Let us call a function f on [a, b] square-integrable iff f 2 is integrable
on [a, b]. Note that every continuous function on [a, b] is square-integrable.

Proposition 1 Let R be a radial set bounded by θ = a, θ = b and r = f(θ),
where f is a square-integrable function of [a, b] and b− a ∈ [0, 2π]. Then

A(R) =
1

2

b∫
a

f(θ)2dθ.
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Proof. Pick any partition

P : a = t0 < t1 < . . . < tn = b.

For every integer j with 1 ≤ j ≤ n, write

(6.5.4) mj = inf f([tj−1, tj]) and Mj = sup f([tj−1, tj]),

and denote by Sj, resp. S
′
j, the angular sector of radius mj, resp. Mj, between

θ = tj−1 and θ = tj. Then

(6.5.5)
1

2
L(f 2, P ) =

1

2

n∑
j=1

(Tj − tj−1)m
2
j =

n∑
j=1

A(Sj)

and
1

2
U(f 2, P ) =

1

2

n∑
j=1

(Tj − tj−1)M
2
j =

n∑
j=1

A(S ′
j).

It follows that

(6.5.6)
1

2
L(f 2, P ) ≤ A(R) ≤ 1

2
U(f 2, P ).

Since f2 is integrable on [a, b] by hypothesis, the upper sums and lower sums
(of f 2) converge to a common limit, which is the integral of f2 over [a, b].
Now the assertion of the Proposition 1 follows by virtue of (6.5.6).

2

As an example, let us look at the region R bounded by the spiral of
Archimedes:

0 ≤ θ ≤ 2π, r = θ.

Since f(θ) = θ is square-integrable we may apply Proposition 1 and deduce
that

A(R) =
1

2

2π∫
0

θ2dθ =
1

2

(2π)3

3
=

4π3

3
.

Remark: It is more subtle to find the arc length of curves in the plane,
and this will be treated in Ma1c.
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7 Improper Integrals, Exp, Log, Arcsin, and

the Integral Test for Series

We have now attained a good level of understanding of integration of nice
functions f over closed intervals [a, b]. In practice one often wants to extend
the domain of integration and consider unbounded intervals such as [a,∞)
and (−∞, b]. The simplest non-trivial examples are the infinite trumpets
defined by the areas under the graphs of xt for t > 0, i.e., the improper
integrals

At =

∞∫
1

1

xt
dx.

We will see below that At has a well defined meaning if t > 1, but becomes
unbounded for t ≤ 1.

One is also interested in integrals of functions f over finite intervals with
f being unbounded. The natural examples are given (for t > 0) by

Bt =

1∫
0

1

xt
dx.

Here it turns out that Bt is well defined, i.e., has a finite value, if and only if
t < 1. In particular, neither A1 nor B1 makes sense. Moreover,

At +Bt =

∞∫
0

1

xt
dx

is unbounded for every t > 0.

7.1 Improper Integrals

Let f be a function defined on the interior of a possibly infinite interval J
such that either its upper endpoint – call it b, is ∞ or f becomes unbounded
as one approaches b. But suppose that the lower endpoint – call it a, is finite
and that f(a) is defined. In the former case the interval is unbounded, while
in the latter case the interval is bounded, but the function is unbounded. We

1



will say that the integral of f over J exists iff the following two conditions
hold:
(7.1.1)

(i) For every u ∈ (a, b), f is integrable on [a, u]; and

(ii) the limit

lim
u→b, u<b

u∫
a

f(x)dx

exists.

When this limit exists, we will call it the integral of f over J and write
it symbolically as

(7.1.2)

b∫
a

f(x)dx.

Sometimes we will also say that the integral (7.1.2) converges when it makes
sense.

Similarly, if a is either −∞ or is a finite point where f becomes un-
bounded, but with b a finite point where f is defined, one sets

(7.1.3)

b∫
a

f(x)dx = lim
u→a, u>a

b∫
u

f(x)dx

when the limit on the right makes sense.

Lemma 7.1 We have

∞∫
a

f(x)dx =

c∫
a

f(x)dx+

∞∫
c

f(x)dx ∀ c ∈ (a,∞)

and
b∫

−∞

f(x)dx =

c∫
−∞

f(x)dx+

b∫
c

f(x)dx ∀ c ∈ (−∞, b),

whenever the integrals make sense.
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Proof. We will prove the first additivity formula and leave the other
as an exercise for the reader. Pick any c ∈ (a,∞). or all real numbers u > c,
we have by the usual additivity formula,

u∫
a

f(x)dx =

c∫
a

f(x)dx+

u∫
c

f(x)dx.

Thus
∞∫
a

f(x)dx = lim
u→∞

 c∫
a

f(x)dx+

u∫
c

f(x)dx

 ,

which equals

c∫
a

f(x)dx+ lim
u→∞

u∫
c

f(x)dx =

c∫
a

f(x)dx+

∞∫
c

f(x)dx.

2

If J is an interval with both of its endpoints being problematic, we will
choose a point c in (a, b) and put

(7.1.4)

b∫
a

f(x)dx =

c∫
a

f(x)dx+

b∫
c

f(x)dx

if both the improper integrals on the right make sense. One can check using
Lemma 7.1 above that this definition is independent of the choice of c.

When an improper integral does not make sense, we will call it divergent.
Otherwise it is convergent.

Proposition 1 Let t be a positive real number. Then for t > 1,

(A)

∞∫
1

1

xt
dx =

1

t− 1
,

with the improper integral on the left being divergent for t ≤ 1.
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On the other hand, if t ∈ (0, 1),

(B)

1∫
0

1

xt
dx =

1

1− t
,

with the improper integral on the left being divergent for t ≥ 1.

Proof. We learnt in section 5.4 that for all a, b ∈ R with a < b, and for
all t ̸= 1:

b∫
a

1

xt
dx =

b1−t − a1−t

1− t
.

Hence for t > 1,

lim
u→∞

∫ u

1

1

xt
dx = lim

u→∞

1

(1− t)ut−1
+

1

t− 1
=

1

t− 1
,

because the term 1
ut−1 goes to zero as u goes to ∞. If t < 1, this term goes to

∞ as u goes to ∞, and so the integral is divergent. Finally let t = 1. Then
we cannot use the above formula. But for each N ≥ 1, we have the inequality

N∑
n=1

1

n
≤

N∫
1

1

x
dx.

The reason is that the sum on the left is a lower Riemann sum for the function
f(x) = 1

x
over the interval [1, N ] relative to the partition P : 1 < 2 < . . . <

N . So, if the improper integral of this function exists over [1,∞), the infinite
series

∞∑
n=1

1

n
= lim

N→∞

N∑
n=1

1

n

must converge. But we have seen in Chapter 2 that this series diverges. So
the integral is divergent for t = 1, and (A) is proved in all cases.

The proof of (B) is very similar and will be left as an exercise.
2
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7.2 Inverse functions

Suppose f is a function with domainX and image (or range) Y . By definition,
given any x in X, there is a unique y in Y such that f(x) = y. But this
definition of a function is not egalitarian, because it does not require that a
unique number x be sent to y by f ; so y is special but x is not. A really nice
kind of a function is what one calls a one-to-one (or injective) function.
By definition, f is such a function iff

(7.2.1) f(x) = f(x′) =⇒ x = x′.

In such a case, we can define an inverse function g with domain Y and
range X, given by

(7.2.2) g(y) = x iff f(x) = y.

Clearly, when such an inverse function g exists, one has

(7.2.3) g ◦ f = 1X and f ◦ g = 1Y ,

where 1X , resp. 1Y , denotes the identity function on X, resp. Y .
We will be concerned in this chapter with X, Y which are subsets of the

real numbers.

Proposition 2 Let f be a one-to-one function with domain X ⊂ R and
range Y , with inverse g. Suppose in addition that f is differentiable at x with
f ′(x) ̸= 0. Then g is differentiable at y = f(x) and we have

g′(y) =
1

f ′(x)

for all x in X with y = f(x).

Note that if we know a priori that f and g are both differentiable, then
this is easy to prove. Indeed, in that case their composite function g◦f , which
is the identity on X, would be differentiable. By differentiating the identity

g(f(x)) = x
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with respect to x, and applying the chain rule, we get

g′(f(x)) · f ′(x) = 1,

because the derivative of x is 1. Done.

Proof. We have to compute the limit

L = lim
h→0

g(y + h)− g(y)

h
.

Since f is differentiable, it is in particular continuous, which implies that

lim
h′→0

f(x+ h′) = f(x).

So, if we set
h = f(x+ h′)− f(x),

then h → 0 when h′ → 0. Writing y = f(x), we then get, after applying g to
y + h = f(x+ h′),

g(y + h) = x+ h′,

or in other words,
h′ = g(y + h)− g(y).

We claim that, since f is one-to-one, we must also have h′ → 0 when
h → 0. Suppose not. Then for some ε > 0, |h′| = |g(y + h) − g(y)| is ≥ ε
for all h close to 0. But this will lead to f sending two distinct numbers,
with x+ h′ being one of them, to the same number y + h; the other number
will be close to x, of distance less than ε. This contradicts the fact that f is
one-to-one. Hence the Claim.

Hence

L = lim
h′→0

h′

f(x+ h′)− f(x)
,

which is the inverse of f ′(x). It makes sense because f ′(x) is by assumption
non-zero.

2

Note that this proof shows that g is not differentiable at any point y =
f(x) if f ′ is zero at x.
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It is helpful to note that many a function is not one-to-one in its maximal
domain, but becomes one when restricted to a smaller domain. To give a
simple example, the squaring function

f(x) = x2

is defined everywhere on R. But it is not one-to-one, because f(a) = f(−a).
However, if we restrict to the subset R+ of non-negative real numbers, f is
one-to-one and so we may define its inverse to be the square-root function

g(y) =
√
y, ∀ y ∈ R+.

Another example is provided by the sine function, which is periodic of
period 2π and hence not one-to-one on R. But it becomes one when restricted
to [−π/2, π/2].

7.3 The natural logarithm

For any x > 0, its natural logarithm is defined by the definite integral

(7.3.1) log x =

x∫
1

dt

t
.

Some write ln(x) instead, and some others write loge x. When 0 < x < 1,
this signifies the negative of integral of 1

t
from x to 1. Consequently, log x is

positive if x > 1, negative if x < 1 and equals 0 at x = 1.

Proposition 3 (a) log 1 = 0.

(b) log x is differentiable everywhere in its domain R+ = (0,∞) with deriva-
tive 1

x
.

(c) (addition theorem) For all x, y > 0,

log(xy) = log x+ log y.

(d) log x is a strictly increasing function.
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(e) log x becomes unbounded in the positive direction when x goes to ∞ and
it is unbounded in the negative direction when x goes to 0.

(f) log x is integrable on any finite subinterval of R+, and its indefinite
integral is given by ∫

log x dx = x log x− x+ C.

(g) log x goes to −∞ (resp. ∞) slowly when x goes to 0 (resp. ∞); more
precisely,

(i) lim
x→0

x log x = 0

and

(ii) lim
x→∞

log x

x
= 0.

(h) The improper integral of log x over (0, b] exists for any b > 0, with

b∫
0

log x dx = b log b− b.

Property (c) is very important, because it can be used to transform
multiplicative problems into additive ones. This was the motivation
for their introduction by Napier in 1616. Property (b) is also important.
Indeed, if we assume only the properties (a),(c),(d),(e) for a function f on
R+, there are lots of functions (logarithms) which satisfy these properties. But
the situation becomes rigidified with a unique solution once one requires
(b) as well. This is why log is called the natural logarithm. The other
(unnatural) choices will be introduced towards the end of the next section.

Proof. (a): This is immediate from the definition.
(b): For any x, the function 1

t
is continuous on [0, x], hence by the First

Fundamental Theorem of Calculus, log x is differentiable with derivative 1/x.
(c): Fix any y > 0 and consider the function of x defined by

ℓ(x) = log(xy) on {x > 0}.
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Since it is the composite of the differentiable functions x → xy and u → log u,
ℓ is also differentiable. Applying the chain rule, we get

ℓ′(x) = y

(
1

yx

)
=

1

x
.

Thus ℓ and log both have the same derivative, and so their difference must
be independent of x. Write

ℓ(x) = log x+ c.

Evaluating at x = 1, and noting that log 1 = 0 and λ(1) = log x, we see that
c must be log x, proving the addition formula.
(d): As we saw in Chapter 4, a differentiable function f is strictly increasing
iff its derivative is positive everywhere. When f(x) = log x, the derivative,
as we saw above, is 1/x, which is positive for x > 0. This proves (d).
(e): As log x is strictly increasing and since it vanishes at 1, its value at any
number x0 > 1, for instance at x0 = 2, is positive. By the addition theorem
and induction, we see that for any positive integer n,

(7.3.2) log(xn
0 ) = n log x0.

Consequently, as n goes to ∞, log(xn
0 ) goes to ∞ as well. This proves that

log x is unbounded in the positive direction. For the negative direction, note
that for any positive x1 < 1, log x1 is negative (since log 1 = 0 and log x is
increasing). Applying (8,2,3) with x0 replaced by x1, we deduce that log(x

n
1 )

goes to −∞ as n goes to ∞. Done.
(f) Since log x is continuous, it is integrable on any finite interval in (0,∞).
Moreover, by integration by parts,∫

log x dx = x log x−
∫

x
d

dx
(log x)dx.

The assertion (f) now follows since the expression on the right is x log x −
x+ C.
(g): Put

L = lim
x→0

x log x

and

u =
1

x
, f(u) = − log

(
1

u

)
, and g(u) = u.
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Then we have

L = − lim
u→∞

f(u)

g(u)
.

Then by (e), f(u) and g(u) approach ∞ as u goes to ∞, and both these
functions are differentiable at any positive u. (All one needs is that they are
differentiable for large u.) Since u′(x) = − 1

x2 = −u2 and f(u) = − log x, we
have by the chain rule,

f ′(u) =
df/dx

du/dx
=

−1/x

−u2
=

1

u
.

Since g′(u) = 1 for all u, we then get

lim
u→∞

f ′(u)

g′(u)
= 0.

So we may apply L’Hopital’s rule (see the Appendix to this chapter), and
conclude that

L = − lim
u→∞

f ′(u)

g′(u)
= 0,

giving (i). The proof of (ii) is similar and will be left for the reader to check.
(h): The improper integral of log x exists over (0, b] iff the following limit
exists:

L = lim
x→0

b∫
x

log t dt.

Thanks to (f), we have

b∫
x

log t dt = (t log t− t)|bx = (b log b− b)− x log x+ x.

To prove (h) we need to show that

lim
x→0

(x log x− x) = 0,

which is a consequence of (g).
2
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Remark on infinite products: Suppose x1, x2, . . . , xn, . . . is an infinite
sequence of positive real numbers. Often we will want to consider infinite
products of the form

P :=
∞∏
n=1

xn,

which may not in general converge to a finite real number. Since the logarithm
function converts multiplication into addition, it is convenient to consider the
log of this product P , and consider the infinite series

logP :=
∞∑
n=1

log(xn).

We will say that P converges when logP does.

7.4 The exponential function

In view of the discussion in section 7.2, and the fact (see parts (d), (e) of
Proposition 3) that log x is a strictly increasing function with domain R+

and range R, we can define the exponential function, exp(x) for short, to
be the inverse function of log x. Note that exp(x) has domain R and range
R+.

Proposition 4 (a) exp(0) = 1.

(b) exp(x) is differentiable everywhere in R with derivative exp(x).

(c) (addition theorem) For all x, y ∈ R,

exp(x+ y) = exp(x) exp(y).

(d) exp(x) is a strictly increasing function.

(e) exp(x) becomes unbounded in the positive direction when x goes to ∞
and it goes to 0 when x goes to −∞.
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(f) exp(x) is integrable on any finite subinterval of R+, and its indefinite
integral is given by ∫

exp(x) dx = exp(x) + C.

(g) As x goes to ∞ (resp. −∞), exp(x) goes to ∞ (resp. 0) faster than
any polynomial p(x) goes to ∞ (resp. −∞), i.e.,

(i) lim
x→∞

p(x)

exp(x)
= 0

and

(ii) lim
x→−∞

p(x) exp(x) = 0.

(h) The improper integral of exp(x) over (−∞, b] exists for any b > 0,
with

b∫
−∞

exp(x) dx = exp(b).

Proof. (a): Since log 1 = 0, and as exp ◦ log is the identity function,
we see that

exp(0) = exp(log 1) = 1.

(b): Note that the derivative 1
x
of log x is nowhere zero on its domain R+.

So we may apply Proposition 2 with f = log, g = exp and y = log x to get
the everywhere differentiability of exp, with

(7.4.1)
d

dy
exp(y) =

1

(log x)′
=

1

1/x
= x = exp(y).

(c): Fix x, y in R. Then we can find (unique) u, v in R+ such that

x = log u and y = log v.

Applying part (c) of Proposition 3, we then obtain

exp(x+ y) = exp(log u+ log v) = exp(log(uv)) = uv.
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The assertion follows because u = exp(x) and v = exp(y).
(d): Let x > y be arbitrary in R. Write x = log u, y = log v as above. Since
log is strictly increasing, we need u > v. Since u = exp(x) and v = exp(v),
we are done.
(e): Suppose exp(x) is bounded from above as x goes to infinity, i.e., suppose
there is a positive number M such that exp(x) < M for all x > 0. Then,
since log is a strictly increasing function, x = log(exp(x)) would be less than
log(M) for all positive x, which is absurd. So exp(x) must be unbounded as
x becomes large. To show that exp(x) approaches 0 as x goes to −∞, we
need to show that for any ε > 0, there exists −T < 0 such that

(7.4.2) exp(x) < ε whenever x < −T.

Applying the logarithm to both inequalities, writing −T = log u for a unique
u ∈ (0, 1) and ε′ = exp(ε), and using the fact that log is a one-to-one function,
we see that (7.4.2) is equivalent to the statement

(7.4.3) x < ε′ whenever log x < log u,

which evidently holds by the properties of the logarithm. Hence exp(x) goes
to 0 as x goes to −∞.
(f) Since exp(x) is continuous, it is integrable on any finite subinterval of
R. In fact, since exp(x) is its own derivative, it is its own primitive as well,
proving the assertion.
(g): To prove (i), it suffices to show that for any j ≥ 0, the limit

L = lim
x→∞

xj

exp(x)

exists and equals 0. When j = 0 this follows from (e), while the assertion
for j > 1 follows from the case j = 1, which we will assume to be the case
from here on. It then suffices to show that the function exp(x)/x goes to
∞ as x goes to ∞. By taking logarithms, this becomes equivalent to the
statement that x/ log x goes to ∞ as log x, and hence x, goes to ∞, which is
what we proved in our proof of the limit (i) of Proposition 3, part (g). (One
can also apply, with care, L’Hopital’s rule directly to the quotient x/ exp(x)
and thereby establish (i).) The proof of (ii) is similar and will be left for the
reader to check.
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(h): The improper integral of exp(x) exists over (−∞, b] iff the following
limit exists:

L = lim
x→−∞

b∫
x

exp(t)dt.

Thanks to (f), we have

b∫
x

exp(t) dt = exp(b)− exp(x).

To prove (h) we need only show that

lim
x→−∞

exp(x) = 0,

which is a consequence of (e).
2

How many differentiable functions are there which are derivatives (and
hence primitives) of themselves? This is answered by the following

Lemma 7.2 Let f be any differentiable function on an open interval (a, b),
possibly of infinite length, satisfying f ′(x) = f(x) for all x in (a, b). Then
there exists a scalar c such that

f(x) = c exp(x) ∀x ∈ (a, b).

Moreover, if f(0) = 1, then f(x) equals exp(x) on this interval.

Proof. Define a function h on (a, b) by

h(x) =
f(x)

exp(x)
,

which makes sense because exp never vanishes anywhere.
Since f and exp are differentiable, so is h, and by the quotient rule we

have

h′(x) =
f ′(x) exp(x)− f(x) exp′(x)

exp(x)2
=

f(x) exp(x)− f(x) exp(x)

exp(x)2
= 0,
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because f and exp are derivatives of themselves. Therefore h(x) must be a
constant c, say. The Lemma now follows.

2

Definition Put
e = exp(1).

Equivalently, e is the unique, positive real number whose natural loga-
rithm is 1. It is not hard to see that, to a first approximation, 2 < e < 4.
One can do much better with some work, of course, and also show that e is
irrational, even transcendental.

A natural question now arises. We have worked with the power function
ax before, for any positive real number a, which satisfies the same addition
rule as exp x, i.e.,

(7.4.4) ax+y = ax · ay.

. What is the relationship between ex and exp(x). The answer is very satis-
fying.

Proposition 5 For all x in R, we have

exp(x) = ex.

We will need the following:

Lemma 7.3 log(ex) = x, for all x ∈ R.

Proof. This is clear for x an integer m. Since we have for any n > 0,

1 = log(e) = log((e1/n)n) = n log(e1/n),

we deduce that log(e1/n) = 1/n. Consequently,

log(em/n) =
m

n
, ∀ m/n ∈ Q.

For any real number x, ex is defined to be the limit limαn→x eαn , where αn

is a sequence of rational numbers αn coverging to x. Since u → log(u) is a
continuous function, we get

log( lim
αn→x

eαn) = lim
αn→x

log(eαn) = lim
αn→x

αn = x.
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2

Proof of Proposition 5. Applying Lemma 7.3, and using the fact that
exp(x) is the inverse function of logarithm, we get

log(exp(x)) = x = log(ex), ∀ x ∈ R.

Since log is one-to-one, we must have exp(x) = ex. 2

Just like exp(x), the power function ax is, for any positive number a, a
strictly increasing function. One calls the inverse of ax by the name loga-
rithm to the base a and denotes it by loga y. Then loga satisfies many of
the properties of log, but its derivative is not 1/x (if a ̸= e).

Proposition 6 Fix a > 0. Then

d

dx
(ax) = ax log a,

and
d

dy
(loga y) =

1

y log a
.

Proof. Note that

ax = exp(log(ax)) = ex log a,

which is the composite of x → x log a and u → eu. Applying the chain rule,
we obtain

d

dx
(ax) = ex log a · log a = ax log a.

The formula for the derivative of loga y follows from this and Proposition 2.
2

The basic hyperbolic functions are defined as follows:

(7.4.5) sinh x =
ex − e−x

2
, coshx =

ex + e−x

2
, tanh(x) =

sinh x

coshx
.

The other hyperbolic functions are given by the inverses of these.
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7.5 arcsin, arccos, arctan, et al

The sine function, which is defined and differentiable everywhere on R,
is periodic with period 2π and is therefore not a one-to-one function. It
however becomes injective when the domain is restricted to [−π/2, π/2].
One calls the corresponding inverse function the arcsine function, denoted
arcsin x. Clearly, the domain of arcsinx is [−1, 1] and the range is [−π/2, π/2].
Moreover, since the derivative cosx of sinx is non-zero, in fact positive, in
(−π/2, π/2), we may apply Proposition 2 and deduce that the arcsine func-
tion is differentiable on (−π/2, π/2), with

(7.5.1)
d

dy
(arcsin y) =

1

cos x
=

1√
1− sin2 x

=
1√

1− y2
,

where y = sin x.

One notes similarly that cosx, resp. tan x, is one-to-one on [0, π], resp.
(−π/2, π/2), and defines its inverse function arccosx, resp. arctanx, with
domain [−1, 1] and range [0, π]. Arguing as above, we see that arccosx is
differentiable on (0, π) and arctanx is differentiable on (−π/2, π/2), with

(7.5.2)
d

dy
(arccosx) = − 1√

1− y2

and

(7.5.3)
d

dy
(arctanx) =

1

1 + y2

Consequently, we obtain

(7.5.4)

∫
dy

1 + y2
= arctan y + C

and

(7.5.5)

∫
dy√
1− y2

= arcsin y + C.

This incidentally brings to a close our quest to integrate arbitrary rational
functions, which we began in the previous chapter, where we reduced the
problem to the evaluation of the integral on the left of (7.5.4).
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It should be notes that it is a miracle that we can evaluate the reciprocal
of the square root of 1− y2 (for −1 ≤ y ≤ 1) in terms of arcsin y. If one tried
to integrate 1√

f(y)
for a polynomial f of degree n > 2, the problem becomes

forbiddingly difficult. Even for n = 3, one needs to use elliptic functions.

7.6 A useful substitution

A very useful substitution to deal with trigonometric integrals is to set

(7.6.1) u = tan(x/2),

which implies that
x = 2arctanu.

Note that

(7.6.2)
du

dx
=

1

2
sec2(x/2) =

1

2
(1 + tan2(x/2)) =

1 + u2

2
,

(7.6.3) dx =
2

1 + u2
du,

(7.6.4) sin x = 2 sin(x/2) cos(x/2) = 2
tan(x/2)

sec2(x/2)
=

2u

1 + u2
,

and since cos2(x/2) + sin2(x/2) = 1,

(7.6.5) cosx =
cos2(x/2)− sin2(x/2)

cos2(x/2) + sin2(x/2)
=

1− tan2(x/2)

1 + tan2(x/2)
=

1− u2

1 + u2
.

For example, suppose we have to integrate

I =

∫
dx

1− sin x
.

Using the substitution above, which is justifiable here, we get

I =

∫
1

1− 2u/(1 + u2)

2

1 + u2
du =

∫
2

du

1− 2u+ u2
.
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Since
1

1− 2u+ u2
=

1

(1− u)2
=

d

du

(
1

1− u

)
,

we get

I =

∫
d

(
1

1− u

)
=

1

1− u
+ C =

1

1− tan(x/2)
+ C .

The idea behind this important substitution due to the Nineteenth cen-
tury German mathematician Weierstrass is that there are two natural
paramatrizations of the unit circle in the plane (with center at the
origin). The first way is the well known one of representing any point on
this circle as (cos θ, sin θ), with θ ∈ [0, 2π). The other one is to represent
it as (1−u2

1+u2 ,
2u

1+u2 ), which has the advantage that the coordinates are rational
functions of the free parameter u. This plays a fundamental role, not just in
Calculus, but also in the mathematical area called Algebraic Geometry.

7.7 The integral test for infinite series

When we discussed the question of convergence of infinite series in chapter 2,
we gave various tests one could use for this purpose, at least for series with
non-negative coefficients. Here is another test, which can at times be helpful.

Proposition 7 Consider an infinite series

S =
∞∑
n=1

an,

whose coefficients satisfy
an = f(n),

for some non-negative, monotone decreasing function f on the infinite inter-
val [1,∞). Then S converges iff the improper integral

I =

∞∫
1

f(x)dx

converges.
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Proof. For any integer N > 1, consider the partition

PN : 1 < 2 < . . . < N

of the closed interval [0, N ]. Then, since f is monotone decreasing, the upper
and lower sums are given by

U(f, PN) = a1 + a2 + . . .+ aN−1

and
L(f, PN) = a2 + . . .+ aN−1 + aN .

Suppose f is integrable over [1,∞). Then it is integrable over [1, N ] and

a2 + a3 + . . .+ aN ≤
N∫
1

f(x)dx ≤ a1 + . . .+ aN−2 + aN−1.

As N goes to infinity, this gives

S − a1 ≤
∞∫
1

f(x)dx,

which implies that S is convergent.
To prove the converse we need to be a bit more wily. Suppose S converges.

Note that f is integrable over [1,∞) iff the series

T =
∞∑
n=1

bn

converges, where

bn =

n+1∫
n

f(x)dx

But since f is monotone decreasing over each interval [n, n + 1], the area
under the graph of f is bounded above (resp. below) by the area under the
constant function x 7→ f(n) = an (resp. x 7→ f(n + 1) = an+1). Thus we
have, for every n ≥ 1,

an+1 ≤ bn ≤ an.
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Summing from n = 1 to ∞ and using the comparison test (see chapter 2),
we get

S − a1 ≤ T ≤ S.

Thus T converges as well.
2

As a consequence we see that for any positive real number t, the series

St =
∞∑
n=1

1

nt

converges iff the improper integral

It =

∞∫
1

x−tdx

converges. We have already seen that It is convergent iff t > 1. So the same
holds for St. But recall that in the special case t = 1,we deduced the diver-
gence of I1 from that of S1.

Appendix: L’Hôpital’s Rule

It appears that the most popular mathematician for Calculus students is
Marquis de L’Hôpital, who was prolific during the end of the seventeenth
century. Everyone likes to use his rule, but two things must be taken due note
of. The first is that, as with any other theorem, one has to make sure that all
the hypotheses hold before applying it. The second is a bit more subtle. One
should not use it when it leads to a circular reasoning, for example when the
numerator or the denominator of the limit L in question, which goes to 0 or
∞ as the case might be, is differentiable as needed, but to prove it one needs
the limit L to exist in the first place. Here is an example to illustrate this
point. Consider the following two statements:

(I) The function ex is differentiable with derivative ex.

(II) The limit

L = lim
t→0

et − 1

t
equals 1.
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When presented with the limit L one is tempted to prove that it is 1 by
using L’Hôpital’s rule. Indeed, if we accept that it is applicable here, then,
since et is by (I) differentiable with derivative et, and since the limit

L1 = lim
t→0

et

1

equals e0 = 1, one thinks that the problem is solved. But not so fast! This
method assumes (I) and how does one prove it? Well, one has to show the
following:

lim
h→0

ex+h − ex

h
= ex.

But since ex+h is exeh, one has to show that

lim
h→0

eh − 1

h
= 1,

which is the assertion (II). So (I) and (II) are equivalent and one cannot
prove one using the other, unless one has found a different way to prove one
of them. So if one uses the L’Hoˆpital’s rule to evaluate L, one has to show
why ex is differentiable without using L as a tool, which can be done. Of
course one defines the exponential function exp(x) as the inverse function of
the logarithm and the fact that the derivative of log x is 1/x implies, as we
saw earlier, that exp(x) is differentiable with derivative exp(x). But we then
have to show, by another method, that ex is the same as exp(x). If one is not
careful one will be drawn into a delicate spider web.

This is not to scare you into not using L’Hôpital’s rule. Just make sure
before using it that you can satisfy the hypotheses and that there are no
circular arguments. Make sure, in particular, that the numerator and the
denominator of the limit L can be shown to be differentiable without using
L. Indeed, the most important thing one has to learn in Ma 1a is to think
logically.

Without further ado, let us now present the rule of L’Hôpital.

Proposition 8 (L’Hôpital’s rule) Consider a limit of the form

L = lim
x→a

f(x)

g(x)
,
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where a is either 0 or ∞ or −∞ or just any (finite) non-zero real number, and
f, g are differentiable functions at all real numbers x with |x− a| sufficiently
small. Suppose both and f and g approach 0, or both approach ∞, or both
tend to −∞, as x goes to a. Then L exists if the limit quotient of the
derivatives, namely

L′ = lim
x→a

f ′(x)

g′(x)

exists. Moreover, when L′ exists, L equals L′.

Proof of L’Hôpital’s Rule. We will prove this in the case when a = ∞,
with f(x), g(x) both approaching ∞ as x approaches ∞. The other cases
require only very slight modifications and will be left as exercises for the
interested reader.

By hypothesis, f(x) and g(x) are defined and differentiable for large
enough x. Suppose the limit L′ exists. We have to show that L also exists,
and prove that in fact L = L′.

The existence of L′ as a (finite) real number implies that for every ε > 0,
there is some b > 0 such that for all x > b,

(A1)

∣∣∣∣f ′(x)

g′(x)
− L′

∣∣∣∣ < ε.

Since g(x) goes to ∞ as x → ∞, we may choose b large enough so that
g(x) ̸= g(b) for all x > b.

Applying Cauchy’s MVT to (f, g) on [b, x], we get

(A2)
f ′(c)

g′(c)
=

f(x)− f(b)

g(x)− g(b)
,

for some c in (b, x). Combining with (A1), we then get

(A3)

∣∣∣∣f(x)− f(b)

g(x)− g(b)
− L′

∣∣∣∣ < ε.

In other words,

(A4). lim
x→∞

f(x)− f(b)

g(x)− g(b)
= L.
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Now we are almost there. To finish, note that since f(x) → ∞ as x → ∞,

(A5) lim
x→∞

f(x)

f(x)− f(b)
= 1.

Similarly,

(A6) lim
x→∞

g(x)− g(b)

g(x)
= 1.

The assertion now follows by combining (A4), (A5) and (A6).
2
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8 Approximations, Taylor Polynomials, and

Taylor Series

Polynomials are the nicest possible functions. They are easy to differentiate
and integrate, which is also true of the basic trigonometric functions, but
more importantly, polynomials can be evaluated at any point, which is not
true for general functions. So what one does in practice is to approximate any
function f of interest by polynomials. When the approximation is done by
linear polynomials, then it is called a linear approximation, which pictorially
corresponds to linearizing the graph of f . It turns out that the more times
one can differentiate f , the higher is the degree of the polynomial one can
approximate it with, and more importantly, the better the approximation
becomes, as one sees it intuitively. There is only one main theorem here,
due to Taylor, but it is omnipresent in all the mathematical sciences, with a
number of ramifications, and should be understood precisely.

8.1 Taylor polynomials

Suppose f is an N -times differentiable function on an open interval I. Fix
any point a in I. Then for any non-negative integer n ≤ N , the nth Taylor
polynomial of f at x = a is given by

(8.1.1) pn(f(x); a) =
n∑

j=0

f (j)(a)

j!
(x− a)j,

where f (j)(a) denotes the jth derivative of f at a. By convention, f (0)(a)
just denotes f(a). (f is the 0th derivative of itself!)

The coefficients f (j)(a)
j!

are called the Taylor coefficients of f at a.

The definition has been rigged so that the following holds:

Lemma 8.1 Suppose f is itself a polynomial, i.e.,

f(x) = a0 + a1x+ . . .+ amx
m,
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for some integer m ≥ 0. Then f is infinitely differentiable (which means it
can be differentiated any number of times), and

pn(f(x); 0) =

{
a0 + a1x+ . . .+ anx

n, if n < m

a0 + a1x+ . . .+ amx
m, if n ≥ m

Proof. Clearly, f is differentiable any number of times and moreover,
f (n)(x) vanishes if n > m. So we have only to show that for n ≤ m,

(8.1.2) f (n)(0) = n!an.

When m = 0 this is clear. So let m > 0 and assume by induction that (8.1.2)
holds for all polynomials of degree m−1 and n ≤ m−1. Define a polynomial
g(x) by the formula

(8.1.3) f(x) = a0 + xg(x).

Then

g(x) =
m−1∑
j=0

aj+1x
j

and by the inductive hypothesis,

(8.1.4) g(n)(0) = n!an+1

for all non-negative n ≤ m− 1. But by the product rule,

f ′(x) = g(x) + xg′(x), f ′′(x) = 2g′(x) + xg′′(x), . . .

By induction, we get

f (n)(x) = ng(n−1)(x) + xg(n)(x),

so that

(8.1.5) f (n)(0) = ng(n−1)(0) ∀n ≤ m,n ≥ 1.

The identity (8.1.2), and hence the Lemma, now follow by combining (8.1.4)
and (8.1.5).

2
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Lemma 8.2 (Linearity) Let f, g be n-times differentiable at a, and let
α, β be arbitrary scalars. Then

pn(αf(x) + βg(x); a) = αpn(f(x); a) + βpn(g(x); a).

This is easy to prove because the derivative is linear. In particular, we
have

(αf + βg)(j)(a)

j!
= α

f (j)(a)

j!
+ β

g(j)(a)

j!
.

It is helpful to look at some examples:

(1): Let
f(x) = sinx,

which is infinitely differentiable, with

f ′(x) = cosx, f ′′(x) = − sin x = −f(x).

Thus

(8.1.6) f (n)(x) =

{
(−1)k sin x, if n = 2k

(−1)k cos x, if n = 2k + 1

Since sin 0 = 0 and cos 0 = 1, the Taylor polynomials of sinx are given by

p0(sin x; 0) = 0, p1(sin x; 0) = p2(sinx; 0) = x, p3(sinx; 0) = p4(sin x; 0) = x−x3

6
, . . .

More generally, for any positive integer k,

(8.1.7) p2k−1(sin x; 0) = p2k(sinx; 0) = x− x3

3!
+
x5

5!
− . . .− (−1)k

x2k−1

(2k − 1)!
.

(2): Put
f(x) = log x.

This function is not defined at 0, so we need to choose another point to
evaluate the derivatives, and the easiest one is

a = 1.
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We have

f ′(x) =
1

x
, f ′′(x) = − 1

x2
, f ′′′(x) =

2!

x3
, . . .

By induction, we have for any n ≥ 1,

f (n)(x) = (−1)n+1 (n− 1)!

xn
.

So the nth Taylor coefficient is

f (n)(1)

n!
= (−1)n+1 1

n
,

where we have used the simple fact that n! is n times (n−1)!. Consequently,
since log 1 = 0, the nth Taylor polynomial of log x is given by

(8.1.8) pn(log x; 1) = x− x2

2
+ . . .+ (−1)n+1x

n

n
.

(3): Consider

g(x) =
1

x
.

One has, for every n ≥ 0,

g(n)(x) = f (n+1)(x),

where f(x) is log x. Thus for any a > 0,

(8.1.9)
g(n)(1)

n!
= (n+ 1)

f (n+1)(a)

(n+ 1)!
.

As a consequence the Taylor polynomials of g at a = 1 are determinable from
those of f . Let us make this idea precise.

Lemma 8.3 Let f be a which is n times differentiable around a, with

pn(f(x); a)) = a0 + a1(x− a) + . . .+ an(x− a)n.

Then
pn−1(f

′(x); a) = a1 + 2a2x+ . . .+ nan(x− a)n−1.

Moreover, if ϕ is a primitive of f around a,

pn(ϕ(x); a) = ϕ(a) + a0(x− a) + a1
(x− a)2

2
+ . . .+ an−1

(x− a)n

n
.
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The proof is immediate from the definition of Taylor polynomials.

For a general f , even for such a simple function like 1
1+x2 , it is painful to

work out the Taylor polynomials from scratch. One needs a better way to
find them, and this will be accomplished in the next section.

8.2 Approximation to order n

Definition 8.4 Let f, g be n times differentiable functions at a. We will say
that f and g agree up to order n at a iff we have

lim
x→a

f(x)− g(x)

(x− a)n
= 0.

If g is a polynomial agreeing with f (or equalling f , as some would say)
up to order n, then we would call g a polynomial approximation of f(x)
to order n at x = a. The immediate question which arises is whether
the nth Taylor polynomial of f is a polynomial approximation to order n.
The answer turns out to be Yes, but even more importantly, the Taylor
polynomial is the only one which has this property. Here is the complete
statement!

Proposition 1 Let f be n times differentiable at a. Then

(i) pn(f(x); a) is a polynomial approximation of f to order n;

(ii) If q(x) is any polynomial in (x− a) of degree ≤ n which agrees with f
up to order n, then q(x) = pn(f(x); a).

Proof. (i): Put

(8.2.1) g(x) = pn−1(f(x); a) and h(x) = (x− a)n.

Then by definition,

(8.2.2) pn(f(x); a) = g(x) +
f (n)(a)

n!
h(x).
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Hence

(8.2.3)
f(x)− pn(f(x); a)

(x− a)n
=

f(x)− g(x)

h(x)
− f (n)(a)

n!
.

So it suffices to prove the following:

(8.2.4) lim
x→a

f(x)− g(x)

h(x)
=

f (n)(a)

n!
.

Applying Lemma 8.1, we get

(8.2.5) g(j)(a) = f (j)(a), ∀ j < n.

Since g is a polynomial of degree ≤ n−1, its (n−1)th derivative is a constant;
so

(8.2.6) g(n−1)(x) = g(n−1)(a).

Also,

(8.2.7) h(j)(x) =
n!(x− a)n−j

(n− j)!
.

It follows from (8.2.5) and (8.2.7) that for every j < n− 1,

(8.2.8) lim
x→a

f (j)(x)− g(j)(x) =
f (j)(a)− g(j)(a)

h(j)(a)
= 0

and
lim
x→a

h(j)(x) = h(j)(a) = 0.

On the other hand, by (8.2.6) and (8.2.7),

(8.2.9) lim
x→a

f (n−1)(x)− g(n−1)(x)

h(n−1)(x)
= lim

x→a

f (n−1)(x)− f (n−1)(a)

n!(x− a)
=

f (n)(a)

n!
.

In view of (8.2.8) and (8.2.9), we may apply L’Hopital’s rule as f and g are
n-times differentiable (see the Appendix to Chapter 7) and deduce (8.2.4),
which also proves part (i) of the Proposition.

(ii): By hypothesis, q(x) approximates f(x) to order n at a. By part (i),
the Taylor polynomial pn(f(x); a) does the same thing. It follows, since the
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limit of a sum is the sum of the limits, that q(x) and pn(x) agree up to order
n. Put

u(x) = pn(f(x); a)− q(x),

which is a polynomial of degree ≤ n and satisfies

lim
x→a

u(x)

(x− a)n
= 0.

This implies in particular that

(8.2.10) lim
x→a

u(x)

(x− a)j
= 0 ∀ j ≤ n.

On the other hand, applying the Euclidean algorithm repeatedly, relative to
the divisor (x−a) (see the next chapter, section on partial fractions), we can
find numbers c0, . . . , cn such that

u(x) = c0 + c1(x− a) + . . .+ cn(x− a)n.

It is then immediate that for any j ≤ n,

lim
x→a

u(x)

(x− a)j
= cj.

In view of (8.2.10), this means that every coefficient cj is zero. Thus the
polynomial u(x) is identically zero.

2

Now let us apply this to compute the Taylor polynomials of

(8.2.11) ϕ(x) = arctanx

at a = 0, where ϕ takes the value 0. (You may try as an educational exercise
to compute directly with ϕ(x), and you will learn why this Proposition is
helpful.)

Recall that ϕ is a primitive of

(8.2.12) f(x) =
1

1 + x2

for all x in the domain of arctanx, namely the open interval (−π/2, π/2).
Also, f is infinitely differentiable everywhere.
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We will compute the Taylor polynomials of f(x) at 0 by the following
trick. For each n ≥ 1, look at the polynomial

gn(x) = 1− x2 + . . .+ (−1)nx2n.

It is a geometric sum and so we can reexpress it as

gn(x) =
1 + x2(n+1)

1 + x2
= f(x) +

x2n+2

1 + x2
.

Consequently, for r = 2n, 2n+ 1

lim
x→0

f(x)− gn(x)

xr
= lim

x→a

x2n+2−r

1 + x2
= 0.

Thus gn(x) approximates f(x) to order 2n and 2n + 1, so it must, by the
Proposition above, equal the Taylor polynomials p2n(f(x); 0) and p2n+1(f(x); 0).
Thus for any n ≥ 0,

(8.2.13) p2n(
1

x
; 0) = p2n+1(

1

x
; 0) = 1− x2 + . . .+ (−1)nx2n.

Applying Lemma 8.1.10, we then deduce that for all n ≥ 0,
(8.2.14)

p2n+1(arctanx; 0) = p2n+2(arctanx; 0) = x− x3

3
+ . . .+ (−1)n

x2n+1

2n+ 1
.

Here we have used the fact that p0(arctanx; 0) = arctan 0 = 0.

8.3 Taylor’s Remainder Formula

Once one has looked at the Taylor polynomials pn(f ; a) of a sufficiently dif-
ferentiable function f at a point a, the natural question which arises imme-
diately is how close an approximation to f does one get this way. To be
precise, define the nth remainder of f at a to be

(8.3.1) Rn(f(x), a) = f(x)− pn(f(x); a).

A very precise answer to this question wa supplied by Taylor. Here it is!
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Theorem 8.5 Let n ≥ 0, a < x ∈ R, and f an (n + 1)-times differentiable
function on an open interval containing [a, x]. Then we have the following:

(8.3.2) Rn(f(x); a) =
f (n+1(c)

(n+ 1)!
(x− a)n+1

for some c in (a, x).

If f (n+1) is moreover integrable on [a, x], then

(8.3.3) Rn(f(x); a) =
1

n!

x∫
a

f (n+1)(u)(x− u)ndu.

Corollary 8.6 Let f be (n+ 1)-times differentiable on [a, x]. Suppose there
are numbers m,M such that

m ≤ f (n+1)(u) ≤ M

for all u in [a, x]. Then we have

(i) m
(x− a)n+1

(n+ 1)!
≤ Rn(f)x); a) ≤ M

(x− a)n+1

(n+ 1)!
.

In particular, if C = max{|m|, |M |},

(ii) |Rn(f)x); a)| ≤ C
(x− a)n+1

(n+ 1)!
.

Completely analogous assertions hold when x < a, in which case one
should replace [a, x] everywhere in the Theorem and Corollary with [x, a].

Let us first look at the example of the exponential function. We know
that

f(u) = exp(u)

is infinitely differentiable on all of R with f ′(u) = f(u). Moreover, since eu

is an increasing function with e0 = 1, we get, for x > 0, u ∈ [1, x] and n ≥ 0,

1 ≤ f (n+1)(u) ≤ ex.
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Consequently, by Corollary 8.6, we have

(8.3.4)
xn+1

(n+ 1)!
≤ Rn(e

x; 0) ≤ ex
x(n+1)

(n+ 1)!
.

Suppose we want to evaluate e to within an error of 10−4. Then what we
have to do is the following. Putting x = 1 in (8.3.4), and remembering the
crude estimate that e is less than 3, we obtain

(8.3.5)
1

(n+ 1)!
≤ Rn = Rn(e; 0) ≤ 3

(n+ 1)!
.

Find the smallest n for which

3

(n+ 1)!
< 10−4.

Direct computation shows that

3

7!
=

3

5040
=

1

1680
> 10−4

and
3

8!
=

3

40320
=

1

13440
< 10−4.

So we take n = 7, and the error will be less than 10−4 if we approximate e
by

p7(e; 0) = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
,

which is
13700

5040
= 2.7182539 . . .

The first four places after the decimal point are correct, as they should be.
But at the fifth place the digit should be 8 instead of 5, and to get that one
has to go to the n (namely 8) which makes Rn less than 10−5.

The remainder formula applied to the functions sinx and cos x yields very
similar estimates for the remainder. To be precise, we use the fact that the
Taylor polynomials of sinx, resp. cosx, at x = 0, have only odd, resp. even,
degree terms, and obtain the following:

(8.3.6− i) sin x = x− x3

3!
+

x5

5!
− . . .+ (−1)m

x2m+1

(2m+ 1)!
+R2m+1(sin x; 0),
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with

|R2m+1(sin x; 0)| ≤
|x|2m+3

(2m+ 3)!
;

and

(8.3.6− ii) cosx = 1− x2

2!
+

x4

4!
− . . .+ (−1)m

x2m

(2m)!
+R2m(cosx; 0),

with

|R2m+1(cosx; 0)| ≤
|x|2m+2

(2m+ 2)!
.

It is a simple exercise to approximate numbers like sin 1 or cos(1/2) to
any number of decimal places.

Taylor’s formula is not very useful, however, for estimating the remainders
of functions f for which it is hard to get a nice expression for f (n+1)(u). A
very important example illustrating this phenomenon is the function

f(x) = arctanx, x ∈ (−π/2, π/2).

So what does one do? After some reflection, one remembers the method
by which one found the Taylor polynomials of this functions. Luckily, this
method also leads to a good estimate for the remainder. Let us see how.

Recall that
d

dx
(arctanx) =

1

1 + x2
,

and that

1− (−1)mx2m+2

1 + x2
= 1− x2 + x4 − . . .+ (−1)mx2m.

The second formula can be rewritten as

1

1 + x2
= 1− x2 + x4 − . . .+ (−1)m

x2m+2

1 + x2
.

Integrating this expression and using the fact that arctan 0 = 0, we get by
the fundamental theorem of Calculus,

(8.3.8− i) arctanx = x−x3

3
+
x5

5
−. . .+(−1)m

x2m+1

2m+ 1
+R2m+1(arctanx; 0),
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where

R2m+1(arctanx; 0) = (−1)m
x∫

0

u2m+3

1 + u2
.

I am using here the fact that we have already seen that the polynomial
x− x3

3
+ x5

5
− . . .+(−1)mx2m+1

2m+1
is the Taylor polynomial by the criterion given

by part (ii) of Proposition 1. Suppose x > 0. Then

u2m+3

1 + u2
≤ u2m+3, ∀u ∈ [0, x],

in fact with equality only for u = 0, and hence

|R2m+1(arctanx; 0)| ≤
x∫

0

u2m+3du.

Since the integral of u2m+3 is u2m+4/(2m+ 4), we get the desired bound

(8.3.8− ii) |R2m+1(arctanx; 0)| <
x2m+3

2m+ 3
.

Note that for any fixed x > 0, this expression goes to 0 as m goes to ∞.
By taking x = 1, and letting m → ∞, one gets the Leibniz formula:

π

4
= arctan 1 = 1− 1

3
+

1

5
− . . .+ (−1)m

1

2m+ 1
+ . . .

This is no doubt a beautiful formula, but it is not quite useful for com-
putations, because 1/m goes to 0 rather slowly, at least compared to 1/n!,
which is what one had for the exponential or the sine function. The silver lin-
ing is that while (8.3.8-ii) is not decreasing fast for x = 1, it converges faster
when x is small. To exploit this, one appeals to the addition theorem for
the arctangent, namely

(8.3.9) arctanx+ arctan y = arctan

(
x+ y

1− xy

)
,

which follows by applying the inverse function arctan to the addition theorem
for the tangent function (with x = tanu, y = tan v):

tan(u+ v) =
tanu+ tan v

1− tanu tan v
.
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From this one can derive, for example, the following identities:

π

4
= arctan 1 = arctan(1/2) + arctan(1/3)

and
π

4
= arctan 1 = 4 arctan(1/5)− arctan(1/239).

The second formula, proved by Machin in 1706, can be used to find the first
five or six decimal places of π very fast. (Of course Mathematica or Maple
can spew out the first 10,000 digits in a few seconds, but the methods used
there are very sophisticated and appeal to formulas involving the mysterious
and beautiful class of functions called the elliptic functions.)

Proof of Theorem 8.5, For every u in [a, x], we have

(8.3.10) f(x) = pn(f(x);u) +Rn(f(x);u),

where
(8.3.11)

pn(f(x);u) = f(u) + f ′(u)(x− u) +
f ′′(u)

2!
(x− u)2 + . . .+

f (n)(u)

n!
(x− u)n.

Note that d
du
pn(f(x);u) equals

(8.3.12)

f ′(u)+(−f ′(u) + f ′′(u)(x− u))+

(
−f ′′(u)(x− u) +

f (3)(u)

2!
(x− u)2

)
+. . .+

(
−−f (n)(u)

(n− 1)!
(x− u)n−1 +

f (n+1)(u)

n!
(x− u)n

)
=

f (n+1)(u)

n!
(x−u)n.

Differentiating both sides of (8.3.10) and making use of (8.3.12), we obtain,
for every u in [a, x],

(8.3.13) 0 =
f (n+1)(u)

n!
(x− u)n +

d

du
Rn(f(x);u).

The function Rn(f(x);u) is continuous on [a, x] and differentiable on (a, x),
because f(x) and pn(f(x);u) are. Of course the polynomial function ϕ(u) =
(x−u)n+1 has the same properties. So we may apply the Cauchy Mean Value
Theorem (see the Appendix to chapter 9) to Rn(f(x);u) and ϕ(u) and get a
number c in (a, x) such that
(8.3.15)

dϕ

du
(c)(Rn(f(x);x)−Rn(f(x); a)) =

d

du
Rn(f(x);u)(c)(ϕ(x)− ϕ(a)).
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By (8.3.13),

(8.3.16)
d

du
Rn(f(x);u)(c) = −f (n+1)(c)

n!
(x− c)n.

And

(8.3.17)
dϕ

du
(c) = −(n+ 1)(x− c)n.

Combining (8.3.15), (8.3.16) and (8.3.17), cancelling −(x−u)n, and dividing
by (n+1), we obtain the formula (i). (This particular form of the remainder
was in fact derived by Lagrange.)

Now suppose f (n+1) is integrable on [a, x]. Then applying the fundamental
theorem of Calculus, and remembering that Rn(f(x);x) = 0, we get

−Rn(f(x); a) =

x∫
a

(
d

du
Rn(f(x);u)

)
du,

whose right hand side expression is, by (8.3.13),

−
x∫

a

f (n+1)(u)

n!
(x− u)ndu.

Hence we get (ii).
2

8.4 The irrationality of e

Now let us prove (by contradiction) that e is irrational. It is even transcen-
dental, but that is much harder to prove.

Suppose e = p/q for some positive integers p, q. Choose an integer n > 3
which is greater than q. Using (8.3.4) and (8.3.5), we get

e =
p

q
= 1 + 1 +

1

2!
+ · · ·+ 1

n!
+Rn,

with

Rn ≤ 3

(n+ 1)!
.
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Multiplying throughout by n!, we get

n!
p

q
= n! + n! +

n!

2!
+ . . .+

n!

n!
+ n!Rn.

But since n > q, n!
q
is an integer; so is n!

j!
for any positive integer j ≤ n. This

implies that n!Rn is an integer. But

0 < n!Rn <
(n!)(3)

(n+ 1)!
=

3

n+ 1
,

and this gives a contradiction because n > 3, implying that 3/(n+1) is < 1.
Hence e must be irrational!

2

8.5 Taylor Series

If f is an infinitely differentiable function around a point x = a, then we may
consider the associated infinite series (for x near a):

(8.5.1)
∞∑
n=1

f (n)(a)

n!
(x− a)n = lim

n→∞
pn(f(x); a),

called the Taylor series of f(x) at a. It may not converge in general, and
even when it does, it may not equal f(x).

A C∞-function which is represented by its Taylor series near a is said to
be analytic there. A standard example of a C∞-function g(x) which is not
analytic at 0 is given by the following: (It is easy to modify it to produce an
example at any a ∈ R.) Define g(x) to be the zero function on {x ≤ 0}, and
set

g(x) = e−1/x2

, if x > 0.

Note that e−1/x2
goes fast to zero (from the right) as x goes to zero, and

becomes asymptotic to the x-axis in the limit. The graph of g really looks
flat at x = 0, and for good reason. It will be left for you to check that g is
infinitely differentiable at 0, with g(n)(0) = 0, for every n ≥ 0. Hence the
Taylor series of g at x = 0 is identically zero and hence does not represent
g(x) near 0.
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It is clear, from the discussion in the previous sections, that the Taylor
series of an infinitely differentiable function around a point a represents f
near a iff we have

(8.5.2) Rn(f(x); a) = f(x)− pn(f(x); a) → 0,

for all x near a.

Limits of functions is a bit subtle, and there are in fact two notions of
convergence. To be precise, Let {fn} be a sequence or C. we will say that a
sequence {fn} of functions on a subsetX of R is pointwise convergent with
limit f on X iff for every x ∈ X, the sequence {fn(x)} of numbers converges
to f(x). In other words, for every ε > 0, there is a positive number N(x)
such that

(8.5.3) n > N(x) =⇒ |f(x)− fn(x)| < ε.

It is natural to wonder if N(x) can be taken to be a number N , say, which
is independent of x. In such a case, we will say that fn is uniformly
convergent with limit f on X.

Suppose we are dealing with the situation where the Taylor series of a
function f converges and represents f near a. We will now state without
proof a key result, which tells us when we can differentiate (or integrate) the
Taylor series term by term to get the derivative (or the integral) of f .

Theorem 8.7 Let {an} be a sequence of real numbers. Suppose there is a
positive real number c such that

∞∑
n=0

anc
n

converges. Pick any positive number b < c. Then each of the power series

S(x) =
∞∑
n=0

anx
n

and

T (x) =
∞∑
n=1

nanx
n−1

converges absolutely and uniformly in [−b, b]. Moreover,

S ′(x) = T (x) ∀x ∈ (−c, c).
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Let us try to understand the exponential function using this Theorem.
We have seen that

(8.5.4) ex = 1 + x+
x2

2!
+ . . .+

xn

n!
+Rn(e

x; 0),

with

|Rn(e
x; 0)| ≤ ex

|x|n+1

(n+ 1)!
.

Lemma 8.8 Let t be any positive real number. Then we have

lim
n→∞

tn

n!
= 0.

Granting this Lemma (for the moment) we see for any positive c, the
remainder term Rn(e

c; 0) goes to zero as n goes to infinity. This gives us the
convergent infinite series expression

ec = 1 + c+
c2

2!
+

c3

3!
+ . . .

Applying Theorem 8.7 we see then that the Taylor series

(8.5.5) ex = 1 + x+
x2

2!
+

x3

3!
+ . . .

converges absolutely and uniformly on [−c, c] for any c > 0. Moreover, its
derivative is given by differentiating the series term by term, which gives
back ex, as expected.

One proves Lemma 8.8 by appealing to a famous limit formula in Math-
ematics involving the factorial function, namely the following:

Stirling’s formula One has

(8.5.6) lim
n→∞

n!

nn+1/2e−n
=

√
2π.

There will be a separate posting on the class webpage (under Notes),
giving a proof of this important formula.
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We can write
tn

n!
=

(
nn+1/2e−n

n!

)(
un

nn+1/2

)
where u = et. So, thanks to Stirling and the easy fact that 1

n1/2 goes to 0 as
n → ∞, Lemma 8.8 will follow from knowing that

un

nn
< 1

for n sufficiently large. (If u < 1, un goes to zero as n → ∞, so we may
assume, if necessary, that u is greater than 1.) Applying the (one-to-one
function) logarithm to both sides, we see that we need to prove that

n log u− n log n < 0,

i.e., that log u < log n, which holds as soon as n > u. Done.
2

By a similar argument, we also get the Taylor series expressions for the
sine and cosine functions, valid for all x:

(8.5.7− i) sin x = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

(8.5.7− ii) cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

We can also apply Theorem 8.7 and differentiate the expression for sinx term
by term, and as expected, one gets the series expression for cosx.

The series

(8.5.8) arctanx = x− x3

3
+

x5

5
− . . .

is, as we saw before, convergent at x = 1. Thus by Theorem 8.7, it converges
absolutely in −1 < x < 1 and uniformly in [−b, b] for any positive b < 1.

We claim that this Taylor series for arctanx does not converge at any
x > 1. Indeed, if it did, then by Theorem 8.7, it would converge absolutely
at x = 1 which it does not. So the number 1, which some call the radius of
convergence of the Taylor series (8.5.8), is the boundary beyond which there
is no convergence.
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Taking the derivative of the series (8.5.8) term by term, and applying
Theorem 11.2..4, we get (as expected)

(8.5.9)
1

1 + x2
= 1− x2 + x4 − x6 + . . . ,

which is valid in {|x| < 1}. At x = ±1 the series makes no sense, but the
left hand side makes sense there and equals 1

2
.

Incidentally, the Taylor series for arctanx converges at x = −1, with

arctan(−1) = − arctan 1 = −π

4
.

It should be noted, despite what the arctan function may suggest, that
in Theorem 8.7, the absolute convergence of S(x) is asserted only for |x| < c,
and one can say nothing in general about the convergence, or the lack of it,
at x = −c. Sometimes it does happen that S(x) is divergent at −c. The
simplest example illustrating this is the Taylor series for log(1+ x) at x = 0,
which we claim to be

(8.5.10) log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

absolutely convergent in −1 < x < 1 and uniformly convergent in [−b, b] for
any positive b < 1. One way to see this is the following:

Since log(1 + x) is (defined and) differentiable in x > −1 with deriva-
tive 1

1+x
, we could find the Taylor series expansion of 1

1+x
first and then

differentiate.
The identity (8.5.9) implies that

(8.5.11)
1

1 + x
= 1− x+ x2 − x3 + . . .

which is absolutely convergent in 0 ≤ x < 1. Then it is also absolutely con-
vergent in (−1, 1). Pick any positive b < 1. Then since the series (8.5.11)
converges at c for any c with b < c < 1. So we may apply Theorem 8.7
and conclude that (8.5.11) converges uniformly in [−b, b]. We can also dif-
ferentiate term by term, by this Theorem, and obtain the desired expansion
(8.5.10), which is valid in −b ≤ x ≤ b.

At x = 1, the series (8.5.10) is alternating and converges to log 2. But it
is important to note, however, that it is divergent at x = −1.
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A consequence of (8.5.10) is the series for log(1− x), given by

(8.5.12) − log(1− x) = log

(
1

1− x

)
= x+

x2

2
+

x3

3
+ . . .
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9 Complex numbers and functions, factoring,

and integration via partial fractions

9.1 Complex Numbers

Recall that for every non-zero real number x, its square x2 = x · x is always
positive. Consequently, R does not contain the square roots of any negative
number. This is a serious problem which rears its head all over the place.

It is a non-trivial fact, however, that any positive number has two square
roots in R, one positive and the other negative; the positive one is denoted√
x. One can show that for any x in R,

|x| =
√
x · x.

So if we can somehow have at hand a square root of −1, we can find square
roots of any real number.

This motivates us to declare a new entity, denoted i, to satisfy

i2 = −1.

One defines the set of complex numbers to be

C = {x+ iy |x, y ∈ R}

and defines the basic arithmetical operations in C as follows:

(x+ iy)± (x′ + iy′) = (x± x′) + i(y ± y′),

and
(x+ iy)(x′ + iy′) = (xx′ − yy′) + i(xy′ + x′y).

There is a natural one-to-one function

R → C, x → x+ i.0,

compatible with the arithmetical operations on both sides.
It is an easy exercise to check all the field axioms, except perhaps for the

existence of multiplicative inverses for non-zero complex numbers. To this
end one defines the complex conjugate of any z = x+ iy in C to be

z = x− iy.
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Clearly,
R = {z ∈ C | z = z}.

If z = x+ iy, we have by definition,

zz = x2 + y2.

In particular, zz is either 0 or a positive real number. Hence we can find a
non-negative square root of zz in R. Define the absolute value, sometimes
called modulus or norm, by

|z| =
√
zz =

√
x2 + y2.

If z = x+ iy is not 0, we will put

z−1 =
z

zz
=

x

x2 + y2
− i

y

x2 + y2
.

It is a complex number satisfying

z(z−1) = z
z

zz
= 1.

Done.

It is natural to think of complex numbers z = x + iy as being ordered
pairs (x, y) of real numbers. So one can try to visualize C as a plane with two
perpendicular coordinate directions, namely giving the x and y parts. Note
in particular that 0 corresponds to the origin O = (0, 0), 1 to (1, 0) and i with
(0, 1). Geometrically, one can think of getting from −1 to 1 (and back) by
rotation about an angle π, and similarly, one gets from i to its square −1 by
rotating by half that angle, namely π/2, in the counterclockwise direction.
To get from the other square root of −1, namely −i, one rotates by π/2 in
the clockwise direction. (Going counterclockwise is considered to be in the
positive direction in Math.)

Addition of complex numbers has then a simple geometric interpretation:
If z = x+iy, z′ = x′+iy′ are two complex numbers, represented by the points
P = (x, y) and Q = (x′, y′) on the plane, then one can join the origin O to P
and Q, and then draw a parallelogram with the line segments OP and OQ
as a pair of adjacent sides. If R is the fourth vertex of this parallelogram, it
corresponds to z + z′. This is called the parallelogram law.

Complex conjugation corresponds to reflection about the x-axis.
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The absolute value or modulus |z| of a complex number z = x+ iy is, by
the Pythagorean theorem applied to the triangle with vertices O,P = (x, y)
and R = (x, 0), simply the length, often denoted by r,

√
x2 + y2 of the line

OP .
The angle θ between the line segments OR and OP is called the argument

of z. The pair (r, θ) determines the complex number z. Indeed High school
trigonometry allows us to show that the coordinates of z are given by

x = rcosθ and y = rsinθ,

where cos (or cosine) and sin (or sine) are the familiar trigonometric func-
tions. Consequently,

z = r(cosθ + isinθ).

Those who know about exponentials (to be treated below in section 9.4) will
recognize the identity

eiθ = cosθ + isinθ.

(This can also be taken as a definition of eiθ, for any θ ∈ R.)
Note that eiθ has absolute value 1 and hence lies on the unit circle in the

plane given by the equation |z| = 1.
It is customary for the angle θ to be called the argument of z, denoted

arg(z), taken to lie in [0, 2π).

9.2 Cardano’s formula

This section is mainly for motivational purposes. Recall the well known
quadratic formula from the days of old, which asserts that the roots of the
quadratic equation

ax2 + bx+ c = 0, with a, b, c ∈ R,

are given by

α± =
−b±

√
D

2a
,

where the discriminant D is b2 − 4ac. Note that

D > 0 =⇒ ∃ 2 real roots;

D = 0 =⇒ ∃ a unique real root (with multiplicity 2);
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D < 0 =⇒ ̸ ∃ real root.

There were several people in the old days (up to the middle of the nine-
teenth century), some of them even quite well educated, who did not believe
in imaginary numbers, such as square-roots of negative numbers. Their re-
action to the quadratic formula was to just ignore the case when D < 0
and thus not deal with the possibility of non-real roots. They said they were
only interested in real roots. Their argument was shattered when one started
looking at the cubic equation

ax3 + bx2 + cx+ d = 0, with a, b, c, d ∈ R.

Thanks to a beautiful formula of the Italian mathematician Cardano, the
roots are given by

α1 = S + T − b

3a
,

α2 = −(S + T )/2− b

3a
+

√
−3

2
(S − T ),

α3 = −(S + T )/2− b

3a
−

√
−3

2
(S − T ),

with
S = (R +

√
D)1/3, T = (R−

√
D)1/3,

where the discriminant D is Q3 +R2, and

R =
9abc− 27a2d− 2b3

54a3
, Q =

3ac− b2

9a2
.

One has

D > 0 =⇒ ∃ a unique real root;

D = 0 =⇒ ∃ 3 real roots with 2 of them equal;

D < 0 =⇒ ∃ 3 distinct real roots.

This presented a problem for the Naysayers. One is for sure interested in
the case when there are three real roots, but Cardano’s formula for the roots
goes through an auxiliary computation, namely that of the square-root of D,
which involves imaginary numbers!
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9.3 Complex sequences and series

As with real sequences, given a sequence {zn} of complex numbers zn, we
say that it converges to a limit L, say, in C iff we have, for every ε > 0, we
can find an integer N > 0 such that

n ≥ N =⇒ |L− zn| < ε.

Proposition 1 (i) If {an} is a convergent sequence with limit L, then for
any scalar c, the sequence {can} is convergent with limit cL;

(ii) If {an}, {bn} are convergent sequences with respective limits L1, L2,
then their sum {an + bn} and their product {anbn} are convergent with
respective limits L1 + L2 and L1L2.

The proof is again a simple application of the properties of absolute val-
ues. The following Corollary allows the convergence questions for complex
sequences to b reduced to real ones.

Corollary 9.1 Let {zn = xn + iyn} be a sequence of complex numbers, with
xn, yn real for each n. Then {zn} converges iff the real sequences {xn} and
{yn} are both convergent.

Proof. Suppose {xn}, {yn} are both convergent, with respective limits
u, v. We claim that {zn} then converges to w = u + iv. Indeed, by the
Proposition above, {iyn} is convergent with limit iv, and so is {xn+iyn}, with
limit w. Conversely, suppose that {zn} converges, say to w. We may write w
as u+ iv, with u, v real. For any complex number z = x+ iy, |x| and |y| are
both bounded by ≤

√
x2 + y2, i.e., by |z|. Since w−zn = (u−xn)+i(v−yn),

we get
|u− xn| ≤ |w − zn| and |v − yn| ≤ |w − zn|.

For any ϵ > 0, pick N > 0 such that for all n > N , |w − zn| is < ϵ. Then
we also have |u− xn| < ϵ and |v − yn| is < ϵ for all n > N , establishing the
convergence of {xn} and {yn} with respective limits u and v. 2

One can define Cauchy sequences as in the real case, and it is immediate
that {zn = xn + iyn} is Cauchy iff {xn} and {yn} are Cauchy. We have
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Theorem 9.2 A complex sequence {zn} converges iff it is Cauchy.

Hence C is also a complete field like R.

An infinite series
∑∞

n=n0
zn of complex numbers is said to be convergent

iff the sequence of partial sums {
∑n

m=n0
zm} is convergent. (Here n0 is any

integer, usually 0 or 1.)
We will say that

∑
n zn is absolutely convergent iff the series of its

absolute values, namely
∑

n |zn| converges.
Note that the question of absolute convergence of a complex series, one

is reduced to a real series, since |zn| is real, even non-negative.
Check that if a complex series

∑
n zn is absolutely convergent, then it is

convergent.

9.4 The complex exponential function, and logarithm

For any complex number z, we will define its exponential to be given by

ez =
∞∑
n=0

zn

n!
.

This series is absolutely convergent at any z, because the real sequence∑
n

rn

n!
is convergent, with r = |z|.

The exponential function has some nice properties, which we state with-
out proof:

e0 = 1, ez = exeiy, ez+z′ = ezez
′
,

for all z = x+ iy, z′ ∈ C.

Lemma 9.3 eiθ = cos θ+ i sin θ, for any real number θ. In particular, eiθ is
periodic of period 2π like the trig functions, and moreover,

|eiθ| = 1, eiπ = −1.

Proof By definition,

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+ . . . ,
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where the even power terms are real and the odd ones are purely imagi-
nary, since i2n = (−1)n and i2n+1 = (−1)ni. Since the series is absolutely
convergent, we may rearrange and express it as a sum of two series as follows:

eiθ =

(
1− θ2

2!
+ . . .

)
+ i

(
θ − θ3

3!
+ . . .

)
.

From the Taylor series expansions for the sine and cosine functions, we then
see that the right hand side is the sum of cos θ and i times sin θ, as asserted.

The periodicity relative to 2π is now clear. Moreover,

|eiθ| =
√
cos2 θ + sin2 θ = 1.

Finally,
cos(π) = −1, sin(π) = 0 =⇒ eiπ = −1.

2

Now let z = x+ iy ∈ C. Note that, since |eiy| = 1,

|ez| = ex.

Here we have used the fact that the real exponential is always positive, so
|ex| = ex.

Furthermore, by the periodicity of eiy,

ez+2iπ = exei(y+2π) = exeiy = ez.

So, the complex exponential function is not one-to-one, and is in fact
periodic of period 2iπ. This presents a problem for us, since we would like
to define the logarithm as its inverse. However, note that ez is one-to-one if
we restrict z = x + iy to lie in the rectangular strip Φ in the complex plane
defined by 0 ≤ y < 2π.

The complex logarithm is defined, for z ̸= 0, to be

log(z) = log |z|+ i arg(z),

where arg(z) is taken to lie (as usual) in [0, 2π). Note that since |z| > 0 if
z ̸= 0, log |z| makes sense.

Since |ez| = ex (as seen above) and arg(ez) = y if y ∈ [0, 2π), we see that

log(ez) = log(ex) + iy = x+ iy = z, ∀z ∈ Φ,

as desired.
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9.5 Differentiability, Cauchy-Riemann Equations

Let f(z) be a complex valued function of a complex variable z = x+ iy, with
x, y ∈ R. We will say that f is differentiable at a point z0 in C iff the
following limit exists:

lim
z→z0

f(z)− f(z0)

z − z0
.

when this limit exists, we call it f ′(z0).

It is important to note that the existence of this limit is a stringent
condition, because, in the complex plane, one can approach a point z0 =
x0 + iy0 from infinitely many directions. In particular, there are the two
independent directions given, for h ∈ R, by the horizontal one z0 + h →
z0, and the vertical one z0 + ih → z0. The former corresponds to having
x0+h → x0 with the y-coordinate fixed, and the latter y0+h → y0 with the
x-coordinate fixed. So we must have

f ′(z0) = lim
h→0

f(x0 + h+ iy0)− f(x0 + iy0)

h
= lim

h→0

f(x0 + i(y0 + h))− f(x0 + iy0)

ih
.

The two limits on the right define the partial derivatives of f , denoted re-
spectively by ∂f

∂x
(z0) and −i∂f

∂y
(z0).

Clearly, given any function φ, real or complex, depending on x, y, we can
define the partial derivatives ∂φ/∂x and ∂φ/∂y. In any case, we get the
equation (when f is differentiable at z0)

∂f

∂x
(z0) = −i

∂f

∂y
(z0),

which is sometimes written as(
∂

∂x
+ i

∂

∂y

)
f(z0) = 0.

It is also customary to write

f(z) = u(x, y) + iv(x, y),

where u, v are real-valued functions of x, y, and taking the real and imaginary
parts of the equation above becomes a pair of differential equations, called
the Cauchy-Riemann equations, at z0 = x0 + iy0:

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
.
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We will now state the following two (amazing) theorems about complex
functions without proof:

Theorem 9.4 Let f be a differentiable function on an open circular disk
Dc(z0) defined by |z − z0| < c, for some c > 0. Then f is infinitely differen-
tiable on Dc(z0). In fact, it is analytic there, meaning that it is represented
by its Taylor series in z − z0.

This is a tremendous contrast from the real situation.

Theorem 9.5 Let f be a differentiable complex function on all of C. Sup-
pose f is also bounded. Then it must be a constant function.

Note that this is false in the real case. Indeed, the real function f(x) =
1

1+x2 is analytic and bounded, but is not a constant.

9.6 Factorization over C

The most important result over C, which is the reason people are so interested
in working with complex numbers, is the following:

Theorem 9.6 (The Fundamental Theorem of Algebra) Every non-
constant polynomial with coefficients in C admits a root in C.

We will not prove this result here. But one should become aware of
its existence if it is not already the case! We will now give an important
consequence.

Corollary 9.7 Let f be a polynomial of degree n ≥ 1 with C-coefficients.
Then there exist complex numbers α1, . . . , αr, with αi ̸= αj if i ̸= j, positive
integers m1, . . . ,mr, and a scalar c, such that

f(x) = c

r∏
j=1

(x− αj)
mj ,

and
r∑

j=1

mj = n.
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In other words, any non-constant polynomial f with C-coefficients fac-
torizes completely into a product of linear factors. For each j ≤ r,
the associated positive integer mj is called the multiplicity of αj as a root of
f , which means concretely that mj is the highest power of (x− αj) dividing
f(x).

Proof of Corollary. Let n ≥ 1 be the degree of f and let an be the
non-zero leading coefficient, i.e, the coefficient of xn. Let us set

(9.6.1) c = an.

If n = 1,

f(x) = a1x+ a0 = c(x− α1) with α1 = −a0
a1

.

So we are done in this case by taking r = 1 and m1 = 1.
Now let n > 1 and assume by induction that we have proved the assertion

for all m < n, in particular for m = n − 1. By Theorem 9.6, we can find a
root, call it β, of f . We may then write

(9.6.2) f(x) = (x− β)h(x),

for some polynomial h(x) necessarily of degree n−1. The leading coefficients
of f are evidently the same. By induction we may write

h(x) = c
s∏

i=1

(x− αi)
ki ,

for some roots α1, . . . , αs of h with respective multiplicities n1, . . . , ns, so that

s∑
i=1

ki = n− 1.

But by (9.6.2), every root of h is also a root of f , and the assertion of the
Corollary follows.

2
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9.7 Factorization over R

The best way to understand polynomials f with real coefficients is to first
look at their complex roots and then determine which ones of them could be
real. To this end recall first the baby fact that a complex number z = u+ iv
is real iff z equals its complex conjugate z = u− iv, where i =

√
−1.

Proposition 2 Let

f(x) = a0 + a1x+ . . .+ anx
n with aj ∈ R, ∀j ≤ n, and an ̸= 0,

for some n ≥ 1. Suppose α is a complex root of f . Then α is also a root of
f . In particular, if r denotes the number of real roots of f and s the non-real
(complex) roots of f , then we must have

n = r + 2s.

We get the following consequence, which we proved earlier using the In-
termediate value theorem.

Corollary 9.8 Let f be a real polynomial of odd degree. Then f must have
a real root.

Proof of Proposition. Let α be a complex root of f . Recall that for
all complex numbers z, w,

(9.7.1) zw = zw and z + w = z + w.

Hence for any j ≤ n,
(α)j = αj.

Moreover, since aj ∈ R (∀j), aj = aj, and therefore

aj(α)
j = ajαj.

Consequently, using (9.7.1) again, we get

(9.7.2) f(α) =
n∑

j=0

aj(α)
j = f(α).
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But α is a root of f (which we have not used so far), f(α) vanishes, as does
its complex conjugate f(α). So by (9.7.2), f(α) is zero, showing that α is a
root of f .

So the non-real roots come in conjugate pairs, and this shows that n
minus the number r, say, of the real roots is even. Done.

2

Given any complex number z, we have

(9.7.3) z + z, zz ∈ R.

This is clear because both the norm zz and the trace z + z are unchanged
under complex conjugation.

Proposition 3 Let f be a real polynomial of degree n ≥ 1 with real roots
α1, . . . , αk with multiplicities n1, . . . , nk, and non-real roots β1, β1, . . . , βℓ, βℓ

with multiplicities m1, . . . ,mℓ in C. Then we have the factorization

(∗) f(x) = c
k∏

i=1

(x− αi)
ni ·

ℓ∏
j=1

(x2 + bjx+ cj)
mj ,

where for each j ≤ ℓ,

bj = −(βj + βj) and cj = βjβj,

Each of the factors occurring in (∗) is a real polynomial, and the polynomials
x− αi and x2 + bjx+ cj are all irreducible over R.

Proof. In view of Corollary 9.7 and Proposition 2, the only thing we
need to prove is that for each j ≤ ℓ, the polynomial

hj(x) = x2 + bjx+ cj

is real and irreducible over R. The reality of the coefficients bj = −(βj + βj)

and cj = βjβj follows from (9.7.3). Suppose it is reducible over R. Then we
can write

hj(x) = (x− tj)(x− t′j)

for some real numbers tj, t
′
j. On the other hand βj, βj are roots of hj. This

forces the equality of the sets {tj, t′j} and {βj, βj}, contradicting the fact that
βj is non-real. So hj must be irreducible over R.

2
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9.8 The partial fraction decomposition

Here is the main result.

Theorem 9.9 Let

g(x) =
k∏

i=1

(x− αi)
ni ·

ℓ∏
j=1

(x2 + bjx+ cj)
mj ,

where the αi, bj, cj are real, and the ni,mj are positive integers. Then there

exist real numbers A
(p)
i , B

(q)
j , C

(q)
j , with 1 ≤ i ≤ k, 1 ≤ p ≤ ni, 1 ≤ j ≤ ℓ and

1 ≤ q ≤ mj, such that

(9.4.2)
1

g(x)
=

k∑
i=1

ni∑
p=1

A
(p)
i

(x− αi)p
+

ℓ∑
j=1

mj∑
q=1

B
(q)
j x+ C

(q)
j

(x2 + bjx+ cj)q
.

We will not prove this here. But here is the basic idea of the proof. Cross

multiply (9.4.2) and get a polynomial equation of degree n =
k∑

i=1

ni +
ℓ∑

j=1

mj

(which is the degree of g) where the coefficients involve the n indeterminates

A
(p)
i , B

(q)
j , C

(q)
j . One solves for them by comparing the coefficients of xi, for

1 ≤ i ≤ n. This results in an n× n linear system, i.e., a system of n linear
equations in the n unknowns. In Ma1b you will learn to determine when
such a linear system has a solution.

Let us try to understand this procedure in the simple case when

g(x) = (x− α)2(x2 + bx+ c).

We want to show that there exist numbers A1, A2, B, C such that

1

g(x)
=

A(1)

x− α
+

A(2)

(x− α)2
+

Bx+ C

x2 + bx+ c
.

Cross multiplying, this gives the equation

1 = A(1)(x− α)(x2 + bx+ c) + A(2)(x2 + bx+ c) + (Bx+ C)(x− α)2.

Multiplying the right hand side out, we obtain

1 = A(1)(x3+(b−α)x2+(c−α)x−cα)+A(2)(x2+bx+c)+B(x3−2αx2+α2x)+C(x2−2αx+α2).

13



Comparing coefficients, we get

(i) A(1) +B = 0, A(1)(b− α) + A(2) − 2Bα + C = 0,

(ii) A(1)(c−α)+A(2)b+Bα2−2Cα = 0, and −A(1)cα+A(2)c+Cα2 = 1.

This gives four linear equations in four unknowns, namely in A(1), A(2), B and
C. The equations (i) imply

(iii) A(1) = −B and A(2) = −A(1)(b− α) + 2Bα−C = B(b+ α)−C.

Eliminating A(1), A(2) from (ii) using (iii), we get

(iv) B(α2 + (b+ 1)α+ b2 − c)− C(b+ 2α) = 0

and

(v) B(b+ 2α)c+ C(α2 − c) = 1.

It can be checked that the linear equations (iv), (v) are independent, so that
we can solve for B,C in terms of α, b, c. Then we can find A(i), i = 1, 2 by
using (iii).

To have a numerical example, take

α = 1, b = 0, c = 1.

Then (iv) becomes B − 2C = 0 and (v) becomes 2B = 1, so the solution we
seek is given by

B =
1

2
, C =

1

4
, A(1) = −1

2
, A(2) =

1

2
.

Therefore

1

(x− 1)2(x2 + 1)
= − 1

2(x− 1)
+

1

2(x− 1)2
+

2x+ 1

4(x2 + 1)
.
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9.9 Integration of rational functions

Let us begin discussing a simple situation. The numerical example at the
end of section 9.8 implies, by the additivity of the integral, that

(9.9.1)

∫
dx

(x− 1)2(x2 + 1)
= I1 + I2 + I3,

where

I1 = −1

2

∫
dx

x− 1
,

I2 =
1

2

∫
dx

(x− 1)2

and

I3 =
1

4

∫
2x+ 1

x2 + 1
dx.

We know that

I1 = −1

2
log |x− 1|+ C.

Using substitution and the knowledge of the integral of xt, we get

I2 = − 1

2(x− 1)
+ C.

And

(9.9.2) I3 = I3,1 + I3,2,

where

I3,1 =
1

4

∫
2x

x2 + 1
dx =

1

4
log(x2 + 1) + C,

which was evaluated by using the substitution u = x2 + 1, and

I3,2 =
1

4

∫
dx

x2 + 1
=

1

4
arctanx+ C.

Suppose we want to integrate a general rational function. We have
the following result.
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Proposition 4 Let f(x)
g(x)

be a rational function, i.e., a quotient of polynomials

f(x), g(x), with real coefficients. Then the (indefinite)

I =

∫
f(x)

g(x)
dx

can be written as a real linear combination of integrals of the following types:
(with a, b, c ∈ R,m ∈ N) ∫

dx

(x− a)m
,∫

dx

(x2 + bx+ c)m
,

and ∫
xdx

(x2 + bx+ c)m
,

and the integral of a polynomial (which shows up only when deg(f) ≥deg(g)).

Proof. Thanks to Proposition 3 and Theorem 9.9, we can write I as a
linear combination of integrals of the form

(9.9.3) I1 =

∫
h(x)

(x− a)m
dx

and

I2 =

∫
h(x)

(x2 + bx+ c)m
dx,

where h(x) denotes a polynomial with real coefficients. In fact, h(x) is in I1,
resp. I2, a multiple of f(x), resp. (Ax+B)f(x) for some A,B.

There is nothing to prove if f(x) is a constant. So let us take the degree
of f to be ≥ 1. The Proposition is clearly a consequence of the following

Lemma 9.10 Let ϕ(x) be a real polynomial of degree ≥ 1, and let a, b, c be
real numbers with a, b ̸= 0. Then

(i) We can write ϕ(x) as a polynomial in (x− a) with real coefficients.

16



(ii) If ϕ(x) has degree ≥ 2, then we can write

ϕ(x) =
r∑

j=0

λj(x)(x
2 + bx+ c)j,

where each λj(x) is a real polynomial of degree ≤ 1.

Proof of Lemma 9.10. Let the degree of ϕ(x) be n.

(i) The assertion is obvious if n = 1, So take n to be > 1 and assume by
induction that the assertion holds for n− 1. We can write

(9.9.4) ϕ(x) = Q(x)(x− a) + c1,

where c1 is a constant. Since Q(x) is of degree n − 1, we may apply the
inductive hypothesis and conclude that Q(x) is a real polynomial in x − a.
Then (9.9.4) shows that ϕ(x) is also a polynomial in x−a, as claimed. Done.
(ii) We will apply the Principle of Induction to the set of all integers ≥ 2.
Suppose n = 2, with ϕ(x) = Ax2+Bx+C, A ̸= 0. Then ϕ(x) can be written
as A(x2 + bx + c) + ((B − Ab)x + (C − Ac)), so the assertion holds with
λ0(x) = (B−Ab)x+(C−Ac) and λ1(x) = A. So take n to be greater than
2 and assume by induction that the assertion holds for all m < n. Now we
may write

(9.9.5) ϕ(x) = Q(x)(x2 + bx+ c) + λ0(x),

where λ0(x) is a real polynomial of degree < 2. Since the degree of Q(x) is
of degree n− 2, we may apply the inductive hypothesis and conclude that

Q(x) =
k∑

i=0

µi(x)(x
2 + bx+ c),

with each µi(x) if a real polynomial of degree ≤ 1. Combining this with
(9.9.5), we get what we want with r = k + 1 and λj(x) = µj−1(x) for each
j ≥ 1.

2

The next key step is to complete the square. Explicitly, we can, given
any pair of real numbers b, c, write

(9.9.6) x2 + bx+ c = (x+
b

2
)2 + (c− b2

4
).
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When x2+ bx+ c is irreducible over R, which we may assume to be the case,
thanks to Proposition 3, its discriminant b2 − 4c is necessarily negative, and
so c− b2

4
is positive and thus can be expressed as e2, for a positive real number

e. Consequently, by using the substitution u = x+ b
2
, which gives u′(x) = 1,

we can transform the integrals (9.0.2) and (9.0.3) into linear combinations of
integrals of the following form:

(9.9.7) I1 =

∫
du

(u2 + e2)m

and

I2 =

∫
udu

(u2 + e2)m
.

There is no problem at all in evaluating I2. If we put v = u2 + e2, then
dv = 2udu, and

I2 =
1

2

∫
dv

vm
,

which equals

1

2
log |v|+ C =

1

2
log |u2 + e2|+ C, if m = 1,

and

− 1

2(m− 1)vm−1
+ C = − 1

2(m− 1)(u2 + e2)m−1
+ C, if m > 1.

We may use substitution again to simplify I1. Indeed, if we set y = u/e,
we have

dy =
1

e
du, and u2 + e2 = e2(y2 + 1).

Consequently,

(9.9.8) I1 =
1

e

∫
dy

(y2 + 1)m
.

Of course, this is just 1
e
arctan y + C when m = 1.

It is left to discuss a reduction process which allows us to compute

Jm =

∫
dy

(y2 + 1)m
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for m > 1.
Let us try the substitution

y = tan t.

Since tan2 t+ 1 = sec2 t, we have

(y2 + 1)m = sec2m t and dy = sec2 tdt.

Consequently, since 1
sec t

= cos t,

Jm =

∫
cos2(m−1) t dt.

We have already evaluated it in a previous chapter. Finally, to write the
answer in the variable y, we will need to write t as arctan y.
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