CHAPTER 7

DIV, GRAD, AND CURL

1. The operator ∇ and the gradient:

Recall that the gradient of a differentiable scalar field φ on an open set \mathcal{D} in \mathbb{R}^{n} is given by the formula:

$$
\begin{equation*}
\nabla \varphi=\left(\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}, \ldots, \frac{\partial \varphi}{\partial x_{n}}\right) . \tag{1}
\end{equation*}
$$

It is often convenient to define formally the differential operator in vector form as:

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) . \tag{2}
\end{equation*}
$$

Then we may view the gradient of φ, as the notation $\nabla \varphi$ suggests, as the result of multiplying the vector ∇ by the scalar field φ. Note that the order of multiplication matters, i.e., $\frac{\partial \varphi}{\partial x_{j}}$ is not $\varphi \frac{\partial}{\partial x_{i}}$.

Let us now review a couple of facts about the gradient. For any $j \leq n, \frac{\partial \varphi}{\partial x_{j}}$ is identically zero on \mathcal{D} iff $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is independent of x_{j}. Consequently,

$$
\begin{equation*}
\nabla \varphi=0 \text { on } \mathcal{D} \quad \Leftrightarrow \quad \varphi=\text { constant. } \tag{3}
\end{equation*}
$$

Moreover, for any scalar c, we have:

$$
\begin{equation*}
\nabla \varphi \text { is normal to the level set } L_{c}(\varphi) \text {. } \tag{4}
\end{equation*}
$$

Thus $\nabla \varphi$ gives the direction of steepest change of φ.

2. Divergence

Let $F: \mathcal{D} \rightarrow \mathbb{R}^{n}, \mathcal{D} \subset \mathbb{R}^{n}$, be a differentiable vector field. (Note that both spaces are n-dimensional.) Let $F_{1}, F_{2}, \ldots, F_{n}$ be the component (scalar) fields of f. The divergence of \mathbf{F} is defined to be

$$
\begin{equation*}
\operatorname{div}(F)=\nabla \cdot F=\sum_{j=1}^{n} \frac{\partial F_{j}}{\partial x_{j}} . \tag{5}
\end{equation*}
$$

This can be reexpressed symbolically in terms of the dot product as

$$
\begin{equation*}
\nabla \cdot F=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \cdot\left(F_{1}, \ldots, F_{n}\right) . \tag{6}
\end{equation*}
$$

Note that $\operatorname{div}(F)$ is a scalar field.
Given any $n \times n$ matrix $A=\left(a_{i j}\right)$, its trace is defined to be:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Then it is easy to see that, if $D F$ denotes the Jacobian matrix of F, i.e., the $n \times n$-matrix $\left(\partial F_{i} / \partial x_{j}\right), 1 \leq i, j \leq n$, then

$$
\begin{equation*}
\nabla \cdot F=\operatorname{tr}(D F) \tag{7}
\end{equation*}
$$

Let φ be a twice differentiable scalar field. Then its Laplacian is defined to be

$$
\begin{equation*}
\nabla^{2} \varphi=\nabla \cdot(\nabla \varphi) \tag{8}
\end{equation*}
$$

It follows from (1),(5),(6) that

$$
\begin{equation*}
\nabla^{2} \varphi=\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} \varphi}{\partial x_{n}^{2}} \tag{9}
\end{equation*}
$$

One says that φ is harmonic iff $\nabla^{2} \varphi=0$. Note that we can formally consider the dot product

$$
\begin{equation*}
\nabla \cdot \nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) \cdot\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} . \tag{10}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\nabla^{2} \varphi=(\nabla \cdot \nabla) \varphi \tag{11}
\end{equation*}
$$

Examples of harmonic functions:

(i) $\mathcal{D}=\mathbb{R}^{2} ; \varphi(x, y)=e^{x} \cos y$.

Then $\frac{\partial \varphi}{\partial x}=e^{x} \cos y, \frac{\partial \varphi}{\partial y}=-e^{x} \sin y$, and $\frac{\partial^{2} \varphi}{\partial x^{2}}=e^{x} \cos y, \frac{\partial^{2} \varphi}{\partial y^{2}}=-e^{x} \cos y$. So, $\nabla^{2} \varphi=0$.
(ii) $\mathcal{D}=\mathbb{R}^{2}-\{0\} . \varphi(x, y)=\log \left(x^{2}+y^{2}\right)=2 \log (r)$.

Then $\frac{\partial \varphi}{\partial x}=\frac{2 x}{x^{2}+y^{2}}, \frac{\partial \varphi}{\partial y}=\frac{2 y}{x^{2}+y^{2}}, \frac{\partial^{2} \varphi}{\partial x^{2}}=\frac{2\left(x^{2}+y^{2}\right)-2 x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$, and $\frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{2\left(x^{2}+y^{2}\right)-2 y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$. So, $\nabla^{2} \varphi=0$.
(iii) $\mathcal{D}=\mathbb{R}^{n}-\{0\} . \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{\alpha / 2}=r^{\alpha}$ for some fixed $\alpha \in \mathbb{R}$.

Then $\frac{\partial \varphi}{\partial x_{i}}=\alpha r^{\alpha-1} \frac{x_{i}}{r}=\alpha r^{\alpha-2} x_{i}$, and
$\frac{\partial^{2} \varphi}{\partial x_{i}^{2}}=\alpha(\alpha-2) r^{\alpha-4} x_{i} \cdot x_{i}+\alpha r^{\alpha-2} \cdot 1$.
Hence $\nabla^{2} \phi=\sum_{i=1}^{n}\left(\alpha(\alpha-2) r^{\alpha-4} x_{i}^{2}+\alpha r^{\alpha-2}\right)=\alpha(\alpha-2+n) r^{\alpha-2}$.
So ϕ is harmonic for $\alpha=0$ or $\alpha=2-n(\alpha=-1$ for $n=3)$.

3. Cross product in \mathbb{R}^{3}

The three-dimensional space is very special in that it admits a vector product, often called the cross product. Let $\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote the standard basis of \mathbb{R}^{3}. Then, for all pairs of vectors $v=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $v^{\prime}=x^{\prime} \mathbf{i}+y^{\prime} \mathbf{j}+z^{\prime} \mathbf{k}$, the cross product is defined by

$$
v \times v^{\prime}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{12}\\
x & y & z \\
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right)=\left(y z^{\prime}-y^{\prime} z\right) \mathbf{i}-\left(x z^{\prime}-x^{\prime} z\right) \mathbf{j}+\left(x y^{\prime}-x^{\prime} y\right) \mathbf{k} .
$$

Lemma 1. (a) $v \times v^{\prime}=-v^{\prime} \times v$ (anti-commutativity)
(b) $i \times j=k, j \times k=i, k \times i=j$
(c) $v \cdot\left(v \times v^{\prime}\right)=v^{\prime} \cdot\left(v \times v^{\prime}\right)=0$.

Corollary: $v \times v=0$.
Proof of Lemma (a) $v^{\prime} \times v$ is obtained by interchanging the second and third rows of the matrix whose determinant gives $v \times v^{\prime}$. Thus $v^{\prime} \times v=-v \times v^{\prime}$.
(b) $\mathbf{i} \times \mathbf{j}=\operatorname{det}\left(\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, which is \mathbf{k} as asserted. The other two identities are similar.
(c) $v \cdot\left(v \times v^{\prime}\right)=x\left(y z^{\prime}-y^{\prime} z\right)-y\left(x z^{\prime}-x^{\prime} z\right)+z\left(x y^{\prime}-x^{\prime} y\right)=0$. Similarly for $v^{\prime} \cdot\left(v \times v^{\prime}\right)$.

Geometrically, $v \times v^{\prime}$ can, thanks to the Lemma, be interpreted as follows. Consider the plane P in \mathbb{R}^{3} defined by v, v^{\prime}. Then $v \times v^{\prime}$ will lie along the normal to this plane at the origin, and its orientation is
given as follows. Imagine a corkscrew perpendicular to P with its tip at the origin, such that it turns clockwise when we rotate the line $O v$ towards $O v^{\prime}$ in the plane P. Then $v \times v^{\prime}$ will point in the direction in which the corkscrew moves perpendicular to P.

Finally the length $\left\|v \times v^{\prime}\right\|$ is equal to the area of the parallelogram spanned by v and v^{\prime}. Indeed this area is equal to the volume of the parallelepiped spanned by v, v^{\prime} and a unit vector $u=\left(u_{x}, u_{y}, u_{z}\right)$ orthogonal to v and v^{\prime}. We can take $u=v \times v^{\prime} /\left\|v \times v^{\prime}\right\|$ and the (signed) volume equals

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
x & y & z \\
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right) & =u_{x}\left(y z^{\prime}-y^{\prime} z\right)-u_{y}\left(x z^{\prime}-x^{\prime} z\right)+u_{z}\left(x y^{\prime}-x^{\prime} y\right) \\
& =\left\|v \times v^{\prime}\right\| \cdot\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)=\left\|v \times v^{\prime}\right\|
\end{aligned}
$$

4. Curl of vector fields in \mathbb{R}^{3}

Let $F: \mathcal{D} \rightarrow \mathbb{R}^{3}, \mathcal{D} \subset \mathbb{R}^{3}$ be a differentiable vector field. Denote by P, Q, R its coordinate scalar fields, so that $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Then the curl of \mathbf{F} is defined to be:

$$
\operatorname{curl}(F)=\nabla \times F=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{13}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right) .
$$

Note that it makes sense to denote it $\nabla \times F$, as it is formally the cross product of ∇ with f. Explicitly we have

$$
\nabla \times F=(\partial R / \partial y-\partial Q / \partial z) \mathbf{i}-(\partial R / \partial x-\partial P / \partial z) \mathbf{j}+(\partial Q / \partial x-\partial P / \partial y) \mathbf{k}
$$

If the vector field F represents the flow of a fluid, then the curl measures how the flow rotates the vectors, whence its name.

Proposition 1. Let h (resp. F) be a \mathcal{C}^{2} scalar (resp. vector) field. Then
(a): $\nabla \times(\nabla h)=0$.
(b): $\nabla \cdot(\nabla \times F)=0$.

Proof: (a) By definition of gradient and curl,

$$
\begin{gathered}
\nabla \times(\nabla h)=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} & \frac{\partial h}{\partial z}
\end{array}\right) \\
=\left(\frac{\partial^{2} h}{\partial y \partial z}-\frac{\partial^{2} h}{\partial z \partial y}\right) \mathbf{i}+\left(\frac{\partial^{2} h}{\partial z \partial x}-\frac{\partial^{2} h}{\partial x \partial z}\right) \mathbf{j}+\left(\frac{\partial^{2} h}{\partial x \partial y}-\frac{\partial^{2} h}{\partial y \partial x}\right) \mathbf{k} .
\end{gathered}
$$

Since h is \mathcal{C}^{2}, its second mixed partial derivatives are independent of the order in which the partial derivatives are computed. Thus, $\nabla \times$ $(\nabla f h)=0$.
(b) By the definition of divergence and curl,

$$
\begin{aligned}
\nabla \cdot & (\nabla \times F)=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},-\frac{\partial R}{\partial x}+\frac{\partial P}{\partial z}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \\
& =\left(\frac{\partial^{2} R}{\partial x \partial y}-\frac{\partial^{2} Q}{\partial x \partial z}\right)+\left(-\frac{\partial^{2} R}{\partial y \partial x}+\frac{\partial^{2} P}{\partial y \partial z}\right)+\left(\frac{\partial^{2} Q}{\partial z \partial x}-\frac{\partial^{2} P}{\partial z \partial y}\right) .
\end{aligned}
$$

Again, since F is $\mathcal{C}^{2}, \frac{\partial^{2} R}{\partial x \partial y}=\frac{\partial^{2} R}{\partial y \partial x}$, etc., and we get the assertion.
Warning: There exist twice differentiable scalar (resp. vector) fields h (resp. F), which are $\operatorname{not} \mathcal{C}^{2}$, for which (a) (resp. (b)) does not hold.

When the vector field F represents fluid flow, it is often called irrotational when its curl is 0 . If this flow describes the movement of water in a stream, for example, to be irrotational means that a small boat being pulled by the flow will not rotate about its axis. We will see later that the condition $\nabla \times F=0$ occurs naturally in a purely mathematical setting as well.

Examples: (i) Let $\mathcal{D}=\mathbb{R}^{3}-\{0\}$ and $F(x, y, z)=\frac{y}{\left(x^{2}+y^{2}\right)} \mathbf{i}-\frac{x}{\left(x^{2}+y^{2}\right)} \mathbf{j}$. Show that F is irrotational. Indeed, by the definition of curl,

$$
\begin{gathered}
\nabla \times F=\operatorname{det}\left(\begin{array}{ccc}
\frac{\mathbf{i}}{\partial x} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\left.\partial x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)} & 0
\end{array}\right) \\
=\frac{\partial}{\partial z}\left(\frac{x}{x^{2}+y^{2}}\right) \mathbf{i}+\frac{\partial}{\partial z}\left(\frac{y}{x^{2}+y^{2}}\right) \mathbf{j}+\left(\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)\right) \mathbf{k} \\
=\left[\frac{-\left(x^{2}+y^{2}\right)+2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] \mathbf{k}=0
\end{gathered}
$$

(ii) Let m be any integer $\neq 3, \mathcal{D}=\mathbb{R}^{3}-\{0\}$, and
$F(x, y, z)=\frac{1}{r^{m}}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Show that F is not the curl of another vector field. Indeed, suppose $F=\nabla \times G$. Then, since F is \mathcal{C}^{1}, G will be \mathcal{C}^{2}, and by the Proposition proved above, $\nabla \cdot F=\nabla \cdot(\nabla \times G)$ would be zero. But,

$$
\nabla \cdot F=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(\frac{x}{r^{m}}, \frac{y}{r^{m}}, \frac{z}{r^{m}}\right)
$$

$$
\begin{gathered}
=\frac{r^{m}-2 x^{2}\left(\frac{m}{2}\right) r^{m-2}}{r^{2 m}}+\frac{r^{m}-2 y^{2}\left(\frac{m}{2}\right) r^{m-2}}{r^{2 m}}+\frac{r^{m}-2 z^{2}\left(\frac{m}{2}\right) r^{m-2}}{r^{2 m}} \\
=\frac{1}{r^{2 m}}\left(3 r^{m}-m\left(x^{2}+y^{2}+z^{2}\right) r^{m-2}\right)=\frac{1}{r^{m}}(3-m) .
\end{gathered}
$$

This is non-zero as $m \neq 3$. So F is not a curl.
Warning: It may be true that the divergence of F is zero, but F is still not a curl. In fact this happens in example (ii) above if we allow $m=3$. We cannot treat this case, however, without establishing Stoke's theorem.

5. An interpretation of Green's theorem via the curl

Recall that Green's theorem for a plane region Φ with boundary a piecewise \mathcal{C}^{1} Jordan curve C says that, given any \mathcal{C}^{1} vector field $G=(P, Q)$ on an open set \mathcal{D} containing Φ, we have:

$$
\begin{equation*}
\iint_{\Phi}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{C} P d x+Q d y \tag{14}
\end{equation*}
$$

We will now interpret the term $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$. To do that, we think of the plane as sitting in \mathbb{R}^{3} as $\{z=0\}$, and define a \mathcal{C}^{1} vector field F on $\tilde{D}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \in \mathcal{D}\right\}$ by setting $F(x, y, z)=G(x, y)=$ $P \mathbf{i}+Q \mathbf{j}$. We can interpret this as taking values in \mathbb{R}^{3} by thinking of its value as $P \mathbf{i}+Q \mathbf{j}+0 \mathbf{k}$. Then $\nabla \times F=\operatorname{det}\left(\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0\end{array}\right)=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}$, because $\frac{\partial P}{\partial z}=\frac{\partial Q}{\partial z}=0$. Thus we get:

$$
\begin{equation*}
(\nabla \times F) \cdot \mathbf{k}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \tag{15}
\end{equation*}
$$

And Green's theorem becomes:
Theorem 1. $\iint_{\Phi}(\nabla \times F) \cdot \boldsymbol{k} d x d y=\oint_{C} P d x+Q d y$

6. A CRITERION FOR BEING CONSERVATIVE VIA THE CURL

A consequence of the reformulation above of Green's theorem using the curl is the following:
Proposition 1. Let $G: \mathcal{D} \rightarrow \mathbb{R}^{2}, \mathcal{D} \subset \mathbb{R}^{2}$ open and simply connected, $G=(P, Q)$, be a \mathcal{C}^{1} vector field. Set $F(x, y, z)=G(x, y)$, for all $(x, y, z) \in \mathbb{R}^{3}$ with $(x, y) \in \mathcal{D}$. Suppose $\nabla \times F=0$. Then G is conservative on D.

Proof: Since $\nabla \times F=0$, the reformulation in section 5 of Green's theorem implies that $\oint_{C} P d x+Q d y=0$ for all Jordan curves C contained in \mathcal{D}. QED

Example: $\mathcal{D}=\mathbb{R}^{2}-\left\{(x, 0) \in \mathbb{R}^{2} \mid x \leq 0\right\}, G(x, y)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}$. Determine if G is conservative on \mathcal{D} :

Again, define $F(x, y, z)$ to be $G(x, y)$ for all (x, y, z) in \mathbb{R}^{3} such that $(x, y) \in \mathcal{D}$. Since G is evidently \mathcal{C}^{1}, F will be \mathcal{C}^{1} as well. By the Proposition above, it will suffice to check if F is irrotational, i.e., $\nabla \times F=0$, on $\mathcal{D} \times \mathbb{R}$. This was already shown in Example (i) of section 4 of this chapter. So G is conservative.

