CHAPTER 7

DIV, GRAD, AND CURL

1. The operator ∇ and the gradient:

Recall that the gradient of a differentiable scalar field φ on an open set \mathcal{D} in \mathbb{R}^n is given by the formula:

(1)
$$\nabla \varphi = \left(\frac{\partial \varphi}{\partial x_1}, \frac{\partial \varphi}{\partial x_2}, \dots, \frac{\partial \varphi}{\partial x_n}\right).$$

It is often convenient to define formally the differential operator in vector form as:

(2)
$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right)$$

Then we may view the gradient of φ , as the notation $\nabla \varphi$ suggests,

as the result of multiplying the vector ∇ by the scalar field φ . Note that the order of multiplication matters, i.e., $\frac{\partial \varphi}{\partial x_j}$ is **not** $\varphi \frac{\partial}{\partial x_j}$. Let us now review a couple of facts about the gradient. For any $j \leq n, \frac{\partial \varphi}{\partial x_j}$ is identically zero on \mathcal{D} iff $\varphi(x_1, x_2, \ldots, x_n)$ is independent of x_j . Consequently,

(3)
$$\nabla \varphi = 0 \text{ on } \mathcal{D} \quad \Leftrightarrow \quad \varphi = \text{constant.}$$

Moreover, for any scalar c, we have:

 $\nabla \varphi$ is normal to the level set $L_c(\varphi)$. (4)

Thus $\nabla \varphi$ gives the direction of steepest change of φ .

2. Divergence

Let $F: \mathcal{D} \to \mathbb{R}^n, \mathcal{D} \subset \mathbb{R}^n$, be a differentiable vector field. (Note that both spaces are *n*-dimensional.) Let F_1, F_2, \ldots, F_n be the component (scalar) fields of f. The **divergence of F** is defined to be

(5)
$$\operatorname{div}(F) = \nabla \cdot F = \sum_{j=1}^{n} \frac{\partial F_j}{\partial x_j}.$$

This can be reexpressed symbolically in terms of the dot product as

(6)
$$\nabla \cdot F = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \cdot (F_1, \dots, F_n).$$

Note that $\operatorname{div}(F)$ is a scalar field.

Given any $n \times n$ matrix $A = (a_{ij})$, its **trace** is defined to be:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Then it is easy to see that, if DF denotes the **Jacobian matrix** of F, i.e., the $n \times n$ -matrix $(\partial F_i / \partial x_j)$, $1 \le i, j \le n$, then

(7)
$$\nabla \cdot F = \operatorname{tr}(DF).$$

Let φ be a twice differentiable scalar field. Then its **Laplacian** is defined to be

(8)
$$\nabla^2 \varphi = \nabla \cdot (\nabla \varphi).$$

It follows from (1), (5), (6) that

(9)
$$\nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x_1^2} + \frac{\partial^2 \varphi}{\partial x_2^2} + \dots + \frac{\partial^2 \varphi}{\partial x_n^2}.$$

One says that φ is **harmonic** iff $\nabla^2 \varphi = 0$. Note that we can formally consider the dot product

(10)
$$\nabla \cdot \nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \cdot \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.$$

Then we have

(11)
$$\nabla^2 \varphi = (\nabla \cdot \nabla) \varphi.$$

Examples of harmonic functions:

(i)
$$\mathcal{D} = \mathbb{R}^2$$
; $\varphi(x, y) = e^x \cos y$.
Then $\frac{\partial \varphi}{\partial x} = e^x \cos y$, $\frac{\partial \varphi}{\partial y} = -e^x \sin y$,
and $\frac{\partial^2 \varphi}{\partial x^2} = e^x \cos y$, $\frac{\partial^2 \varphi}{\partial y^2} = -e^x \cos y$. So, $\nabla^2 \varphi = 0$.
(ii) $\mathcal{D} = \mathbb{R}^2 - \{0\}$. $\varphi(x, y) = \log(x^2 + y^2) = 2\log(r)$.
Then $\frac{\partial \varphi}{\partial x} = \frac{2x}{x^2 + y^2}$, $\frac{\partial \varphi}{\partial y} = \frac{2y}{x^2 + y^2}$, $\frac{\partial^2 \varphi}{\partial x^2} = \frac{2(x^2 + y^2) - 2x(2x)}{(x^2 + y^2)^2} = \frac{-2(x^2 - y^2)}{(x^2 + y^2)^2}$, and
 $\frac{\partial^2 \varphi}{\partial y^2} = \frac{2(x^2 + y^2) - 2y(2y)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$. So, $\nabla^2 \varphi = 0$.
(iii) $\mathcal{D} = \mathbb{R}^n - \{0\}$. $\varphi(x_1, x_2, ..., x_n) = (x_1^2 + x_2^2 + \dots + x_n^2)^{\alpha/2} = r^{\alpha}$ for
some fixed $\alpha \in \mathbb{R}$.
Then $\frac{\partial \varphi}{\partial x_i} = \alpha r^{\alpha - 1} \frac{x_i}{r} = \alpha r^{\alpha - 2} x_i$, and
 $\frac{\partial^2 \varphi}{\partial x_i^2} = \alpha(\alpha - 2)r^{\alpha - 4}x_i \cdot x_i + \alpha r^{\alpha - 2} \cdot 1$.
Hence $\nabla^2 \phi = \sum_{i=1}^n (\alpha(\alpha - 2)r^{\alpha - 4}x_i^2 + \alpha r^{\alpha - 2}) = \alpha(\alpha - 2 + n)r^{\alpha - 2}$.
So ϕ is harmonic for $\alpha = 0$ or $\alpha = 2 - n$ ($\alpha = -1$ for $n = 3$).

3. Cross product in \mathbb{R}^3

The three-dimensional space is very special in that it admits a vector product, often called the cross product. Let $\mathbf{i},\mathbf{j},\mathbf{k}$ denote the standard basis of \mathbb{R}^3 . Then, for all pairs of vectors $v = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $v' = x'\mathbf{i} + y'\mathbf{j} + z'\mathbf{k}$, the cross product is defined by

(12)
$$v \times v' = det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ x' & y' & z' \end{pmatrix} = (yz' - y'z)\mathbf{i} - (xz' - x'z)\mathbf{j} + (xy' - x'y)\mathbf{k}.$$

Lemma 1. (a) $v \times v' = -v' \times v$ (anti-commutativity)

(b)
$$i \times j = k$$
, $j \times k = i$, $k \times i = j$
(c) $v \cdot (v \times v') = v' \cdot (v \times v') = 0$.

Corollary: $v \times v = 0$.

Proof of Lemma (a) $v' \times v$ is obtained by interchanging the second and third rows of the matrix whose determinant gives $v \times v'$. Thus $v' \times v = -v \times v'$.

 $v' \times v = -v \times v'.$ (b) $\mathbf{i} \times \mathbf{j} = det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, which is \mathbf{k} as asserted. The other two identities are similar.

(c) $v\cdot(v\times v')=x(yz'-y'z)-y(xz'-x'z)+z(xy'-x'y)=0.$ Similarly for $v'\cdot(v\times v').$

Geometrically, $v \times v'$ can, thanks to the Lemma, be interpreted as follows. Consider the plane P in \mathbb{R}^3 defined by v, v'. Then $v \times v'$ will lie along the normal to this plane at the origin, and its orientation is

DIV, GRAD, AND CURL

given as follows. Imagine a corkscrew perpendicular to P with its tip at the origin, such that it turns clockwise when we rotate the line Ovtowards Ov' in the plane P. Then $v \times v'$ will point in the direction in which the corkscrew moves perpendicular to P.

Finally the length $||v \times v'||$ is equal to the area of the parallelogram spanned by v and v'. Indeed this area is equal to the volume of the parallelepiped spanned by v, v' and a unit vector $u = (u_x, u_y, u_z)$ orthogonal to v and v'. We can take $u = v \times v'/||v \times v'||$ and the (signed) volume equals

$$\det \begin{pmatrix} u_x & u_y & u_z \\ x & y & z \\ x' & y' & z' \end{pmatrix} = u_x (yz' - y'z) - u_y (xz' - x'z) + u_z (xy' - x'y)$$
$$= ||v \times v'|| \cdot (u_x^2 + u_y^2 + u_z^2) = ||v \times v'||.$$

4. Curl of vector fields in \mathbb{R}^3

Let $F : \mathcal{D} \to \mathbb{R}^3$, $\mathcal{D} \subset \mathbb{R}^3$ be a differentiable vector field. Denote by P,Q,R its coordinate scalar fields, so that $F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$. Then the **curl of F** is defined to be:

(13)
$$\operatorname{curl}(F) = \nabla \times F = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix}.$$

Note that it makes sense to denote it $\nabla \times F$, as it is formally the cross product of ∇ with f. Explicitly we have

$$\nabla \times F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} - \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

If the vector field F represents the flow of a fluid, then the **curl** measures how the flow rotates the vectors, whence its name.

Proposition 1. Let h (resp. F) be a C^2 scalar (resp. vector) field. Then

(a):
$$\nabla \times (\nabla h) = 0.$$

(b): $\nabla \cdot (\nabla \times F) = 0.$

Proof: (a) By definition of gradient and curl,

$$\nabla \times (\nabla h) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} & \frac{\partial h}{\partial z} \end{pmatrix}$$
$$= \left(\frac{\partial^2 h}{\partial y \partial z} - \frac{\partial^2 h}{\partial z \partial y}\right) \mathbf{i} + \left(\frac{\partial^2 h}{\partial z \partial x} - \frac{\partial^2 h}{\partial x \partial z}\right) \mathbf{j} + \left(\frac{\partial^2 h}{\partial x \partial y} - \frac{\partial^2 h}{\partial y \partial x}\right) \mathbf{k}.$$

Since h is C^2 , its second mixed partial derivatives are independent of the order in which the partial derivatives are computed. Thus, $\nabla \times (\nabla fh) = 0$.

(b) By the definition of divergence and curl,

$$\nabla \cdot (\nabla \times F) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, -\frac{\partial R}{\partial x} + \frac{\partial P}{\partial z}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$
$$= \left(\frac{\partial^2 R}{\partial x \partial y} - \frac{\partial^2 Q}{\partial x \partial z}\right) + \left(-\frac{\partial^2 R}{\partial y \partial x} + \frac{\partial^2 P}{\partial y \partial z}\right) + \left(\frac{\partial^2 Q}{\partial z \partial x} - \frac{\partial^2 P}{\partial z \partial y}\right).$$
Again, since F is \mathcal{C}^2 , $\frac{\partial^2 R}{\partial x \partial y} = \frac{\partial^2 R}{\partial y \partial x}$, etc., and we get the assertion.

Warning: There exist twice differentiable scalar (resp. vector) fields h (resp. F), which are **not** C^2 , for which (a) (resp. (b)) does **not** hold.

When the vector field F represents fluid flow, it is often called **irrotational** when its curl is 0. If this flow describes the movement of water in a stream, for example, to be *irrotational* means that a small boat being pulled by the flow will not rotate about its axis. We will see later that the condition $\nabla \times F = 0$ occurs naturally in a purely mathematical setting as well.

Examples: (i) Let $\mathcal{D} = \mathbb{R}^3 - \{0\}$ and $F(x, y, z) = \frac{y}{(x^2+y^2)}\mathbf{i} - \frac{x}{(x^2+y^2)}\mathbf{j}$. Show that F is irrotational. Indeed, by the definition of curl,

$$\nabla \times F = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{y}{(x^2 + y^2)} & \frac{-x}{(x^2 + y^2)} & 0 \end{pmatrix}$$
$$= \frac{\partial}{\partial z} \left(\frac{x}{x^2 + y^2} \right) \mathbf{i} + \frac{\partial}{\partial z} \left(\frac{y}{x^2 + y^2} \right) \mathbf{j} + \left(\frac{\partial}{\partial x} \left(\frac{-x}{x^2 + y^2} \right) - \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) \right) \mathbf{k}$$
$$= \left[\frac{-(x^2 + y^2) + 2x^2}{(x^2 + y^2)^2} - \frac{(x^2 + y^2) - 2y^2}{(x^2 + y^2)^2} \right] \mathbf{k} = 0.$$
(iii) Let *m* be any integer $\neq 2$, $\mathcal{D} = \mathbb{R}^3$, (0), and

(ii) Let *m* be any integer $\neq 3$, $\mathcal{D} = \mathbb{R}^3 - \{0\}$, and $F(x, y, z) = \frac{1}{r^m} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$, where $r = \sqrt{x^2 + y^2 + z^2}$. Show that *F* is not the curl of another vector field. Indeed, suppose $F = \nabla \times G$. Then, since *F* is \mathcal{C}^1 , *G* will be \mathcal{C}^2 , and by the Proposition proved above, $\nabla \cdot F = \nabla \cdot (\nabla \times G)$ would be zero. But,

$$\nabla \cdot F = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot \left(\frac{x}{r^m}, \frac{y}{r^m}, \frac{z}{r^m}\right)$$

DIV, GRAD, AND CURL

$$=\frac{r^m - 2x^2(\frac{m}{2})r^{m-2}}{r^{2m}} + \frac{r^m - 2y^2(\frac{m}{2})r^{m-2}}{r^{2m}} + \frac{r^m - 2z^2(\frac{m}{2})r^{m-2}}{r^{2m}}$$
$$=\frac{1}{r^{2m}}\left(3r^m - m(x^2 + y^2 + z^2)r^{m-2}\right) = \frac{1}{r^m}(3-m).$$

This is non-zero as $m \neq 3$. So F is **not** a curl.

Warning: It may be true that the divergence of F is zero, but F is still not a curl. In fact this happens in example (ii) above if we allow m = 3. We cannot treat this case, however, without establishing Stoke's theorem.

5. An interpretation of Green's theorem via the curl

Recall that Green's theorem for a plane region Φ with boundary a piecewise C^1 Jordan curve C says that, given any C^1 vector field G = (P, Q) on an open set \mathcal{D} containing Φ , we have:

(14)
$$\int \int_{\Phi} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \oint_{C} P \, dx + Q \, dy.$$

We will now interpret the term $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$. To do that, we think of the plane as sitting in \mathbb{R}^3 as $\{z = 0\}$, and define a \mathcal{C}^1 vector field Fon $\tilde{D} := \{(x, y, z) \in \mathbb{R}^3 | (x, y) \in \mathcal{D}\}$ by setting F(x, y, z) = G(x, y) = $P\mathbf{i} + Q\mathbf{j}$. We can interpret this as taking values in \mathbb{R}^3 by thinking of its value as $P\mathbf{i} + Q\mathbf{j} + 0\mathbf{k}$. Then $\nabla \times F = det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix} \mathbf{k}$, because $\frac{\partial P}{\partial z} = \frac{\partial Q}{\partial z} = 0$. Thus we get:

(15)
$$(\nabla \times F) \cdot \mathbf{k} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

And Green's theorem becomes:

Theorem 1. $\iint_{\Phi} (\nabla \times F) \cdot \mathbf{k} dx dy = \oint_{C} P dx + Q dy$

6. A CRITERION FOR BEING CONSERVATIVE VIA THE CURL

A consequence of the reformulation above of Green's theorem using the curl is the following:

Proposition 1. Let $G : \mathcal{D} \to \mathbb{R}^2$, $\mathcal{D} \subset \mathbb{R}^2$ open and simply connected, G = (P,Q), be a \mathcal{C}^1 vector field. Set F(x,y,z) = G(x,y), for all $(x, y, z) \in \mathbb{R}^3$ with $(x, y) \in \mathcal{D}$. Suppose $\nabla \times F = 0$. Then G is conservative on D.

CHAPTER 7

Proof: Since $\nabla \times F = 0$, the reformulation in section 5 of Green's theorem implies that $\oint_C P \, dx + Q \, dy = 0$ for all Jordan curves C contained in \mathcal{D} . **QED**

Example: $\mathcal{D} = \mathbb{R}^2 - \{(x,0) \in \mathbb{R}^2 \mid x \leq 0\}, G(x,y) = \frac{y}{x^2+y^2}\mathbf{i} - \frac{x}{x^2+y^2}\mathbf{j}.$ Determine if G is conservative on \mathcal{D} :

Again, define F(x, y, z) to be G(x, y) for all (x, y, z) in \mathbb{R}^3 such that $(x, y) \in \mathcal{D}$. Since G is evidently \mathcal{C}^1 , F will be \mathcal{C}^1 as well. By the Proposition above, it will suffice to check if F is irrotational, i.e., $\nabla \times F = 0$, on $\mathcal{D} \times \mathbb{R}$. This was already shown in Example (i) of section 4 of this chapter. So G is conservative.