
CHAPTER 4 – MULTIPLE INTEGRALS

The objects of this chapter are five-fold. They are:
(1) Discuss when scalar-valued functions f can be integrated over closed rectangular

boxes R in Rn; simply put, f is integrable over R iff there is a unique real number,
to be denoted IR(f) or

∫
R

f when it exists, which is caught between the upper
and lower sums relative to any partition P of R.

(2) Show that any continuous function f can be integrated over R.
(3) Discuss Fubini’s theorem, which when applicable, allows one to do multiple inte-

grals as iterated integrals, i.e, integrate one variable at a time.
(4) Show that bounded functions with negligible sets of discontinuities can be inte-

grated over R.
(5) Discuss integrals of continuous functions over general compact sets.

§4.1 Basic notions

We will first discuss the question of integrability of bounded functions on closed rect-
angular boxes, and then move on to integration over slightly more general regions.

Recall that in one variable calculus, the integral of a function over an interval [a, b]
was defined as the limit, when it exists, of certain sums over finite partitions P of [a, b]
as P becomes finer and finer. To try to transport this idea to higher dimensions, we need
to generalize the notions of partition and refinement.

In this chapter, R will always denote a closed rectangular box in Rn, written as
[a, b] = [a1, b1]× · · · × [an, bn], where aj , bj ,∈ R for all j with aj < bj .

Definition. A partition of R is a finite collection P of subrectangular (closed) boxes
S1, S2, . . . , Sr ⊆ R such that

(i) R = ∪r
j=1Sj , and

(ii) the interiors of Si and Sj have no intersection for all i 6= j.

Definition. A refinement of a partition P = {Sj}r
j=1 of R is another partition P ′ =

{S′k}m
k=1 with each S′k contained in some Sj .

It is clear from the definition that given any two partitions P, P ′ of R, we can find a
third partition P ′′ which is simultaneously a refinement of P and of P ′.

Now let f be a bounded function on R, and let P = {Sj}r
j=1 a partition of R. Then

f is certainly bounded on each Sj , i.e., f(Sj) is a bounded subset of R. It was proved in
Chapter 2 that every bounded subset of R admits a sup (lowest upper bound) and an
inf (greatest lower bound).
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2 CHAPTER 4 – MULTIPLE INTEGRALS

Definition. The upper (resp. lower) sum of f over R relative to the partition P =
{Sj}r

j=1 is given by

U(f, P ) =
r∑

j=1

vol(Sj) sup(f(Sj))

(
resp. L(f, P ) =

r∑

j=1

vol(Sj) inf(f(Sj)).
)

Here vol(Sj) denotes the volume of Sj . Of course, we have

L(f, P ) ≤ U(f, P )

for all P .
More importantly, it is clear from the definition that if P ′ = {S′k}m

k=1 is a refinement
of P , then

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).

Put
L(f) = {L(f, P ) | P partition of R} ⊆ R

and
U(f) = {U(f, P ) | P partition of R} ⊆ R.

Lemma. L(f) admits a sup, denoted I(f), and U(f) admits an inf, denoted I(f).

Proof. Thanks to the discussion in Chapter 2, all we have to do is show that L(f)
(resp. U(f)) is bounded from above (resp. below). So we will be done if we show
that given any two partitions P, P ′ of R, we have L(f, P ) ≤ U(f, P ′) as then L(f)
will have U(f, P ′) as an upper bound and U(f) will have L(f, P ) as a lower bound.
Choose a third partition P ′′ which refines P and P ′ simultaneously. Then we have
L(f, P ) ≤ L(f, P ′′) ≤ U(f, P ′′) ≤ U(f, P ′). Done. ¤

Definition. A bounded function f on R is integrable iff I(f) = I(f). When such an
equality holds, we will simply write I(f) (or IR(f) if the dependence on R needs to be
stressed) for I(f) (= I(f)), and call it the integral of f over R. Sometimes we will
write

I(f) =
∫

R

f or
∫
· · ·

∫

R

f(x1, . . . , xn) dx1 . . . dxn.

Clearly, when n = 1, we get the integral we are familiar with, often written as
∫ b1

a1
f(x1) dx1.

This definition is hard to understand, and a useful criterion is given by the following
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Lemma. f is integrable over R iff for every ε > 0 we can find a partition P of R such
that

U(f, P )− L(f, P ) < ε.

Proof. If f is integrable, IR(f) is arbitrarily close to the sets of upper and lower sums,
and we can certainly find, given any ε > 0, some P such that IR(f)−L(f, P ) < ε/2 and
U(f, P )− IR(f) < ε/2. Done in this direction. In the converse direction, since

L(f, P ) ≤ I(f) ≤ I(f) ≤ U(f, P )

for any P , if U(f, P )− L(f, P ) < ε, we must have

I(f)− I(f) < ε.

Since ε is an arbitrary positive number, I(f) must equal I(f), i.e., f is integrable over
R.

§4.2 Step functions

The obvious question now is to ask if there are integrable functions. One such example
is given by the constant function f(x) = c, for all x ∈ R. Then for any partition
P = {Sj}, we have

L(f, P ) = U(f, P ) = c

r∑

j=1

vol(Sj) = c vol(R).

So I(f) = I(f) and
∫

R
f = c vol(R).

This can be jazzed up as follows.

Definition. A step function on R is a function f on R which is constant on each of
the subrectangular boxes Sj of some partition P .

Lemma. Every step function f on R is integrable.

Proof. By definition, there exists a partition P = {Sj}r
j=1 of R and scalars {cj} such

that f(x) = cj , if x ∈ Sj . Then, arguing as above, it is clear that for any refinement P ′

of P , we have

L(f, P ′) = U(f, P ′) =
r∑

j=1

cj vol(Sj).

Hence, I(f) = I(f). ¤

§4.3 Integrability of continuous functions

The most important bounded functions on R are continuous functions. (Recall from
Chapter 1 that every continuous function on a compact set is bounded, and that R is
compact.) The first result of this chapter is given by the following
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Theorem. Every continuous function f on a closed rectangular box R is integrable.

Proof. Let S be any closed rectangular box contained in R. Define the span of f on S
to be

spanf (S) = sup(f(S))− inf(f(S)).

A basic result about the span of continuous functions is given by the following:

The Small Span Theorem. For every ε > 0, there exists a partition P = {Sj}r
j=1 of

R such that spanf (Sj) < ε, for each j ≤ r.

Let us first see how this implies the integrability of f over R. Recall that, by a Lemma
of section 4.1, it suffices to show that, given any ε > 0, there is a partition P of R such
that U(f, P ) − L(f, P ) < ε. Now by the small span theorem, we can find a partition
P = {Sj} such that spanf (Sj) < ε′, for all j, where ε′ = ε/ vol(R). Then clearly,

U(f, P )− L(f, P ) < ε′ vol(R) = ε.

Done. ¤
It now remains to supply a proof of the small span theorem. We will prove this

by contradiction. Suppose the theorem is false. Then there exists ε0 > 0 such that, for
every partition P = {Sj} of R, spanf (Sj) ≥ ε0 for some j. For simplicity of exposition,
we will only treat the case of a rectangle R = [a1, b1] × [a2, b2] in R2. The general case
is very similar, and can be easily carried out along the same lines with a bit of book-
keeping. Divide R into four rectangles by subdividing along the bisectors of [a1, b1] and
[a2, b2]. Then for one of these four rectangles, call it R1, we must have that for every
partition {Sj} of R1 there is a j so that spanf (Sj) ≥ ε0. Do this again and again, and we
finally end up with an infinite sequence of nested closed rectangles R = R0, R1, R2, . . . ,
such that, for every m ≥ 0, the span of f is at least ε0 for any partition of Pm = {Sj,m}
of Rm on some Sj,m. Let zm = (xm, ym) denote the southwestern corner of Rm, for
each m ≥ 0. Then the sequence {zm}m≥0 is bounded, and so we may find the least
upper bound (sup) α (resp. β) of xm (resp. ym). Put γ = [α, β]. Then γ ∈ R as the
northeastern corner of R is clearly an upper bound of the zm. Since f is continuous at
γ, we can find a non-empty closed rectangular subbox S of R containing γ such that
spanf (S) < ε0. But by construction Rm will have to lie inside S if m is large enough,
say for m ≥ m0. This gives a contradiction to the span of f being ≥ ε0 on some open
set of every partition of Rm0 . Thus the small span theorem holds for (f, R).

§4.4 Bounded functions with negligible discontinuities

One is very often interested in being able to integrate bounded functions over R which
are continuous except on a very “small” subset. To be precise, we say that a subset Y of
Rn has content zero if, for every ε > 0, we can find closed rectangular boxes Q1, . . . , Qm

such that
(i) Y ⊆ ∪m

i=1Qi, and
(ii)

∑m
i=1 vol(Qi) < ε.
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Examples. (1) A finite set of points in Rn has content zero. (Proof is obvious!)

(2) Any subset Y of R which contains a non-empty open interval (a, b) does not have
content zero.

Proof. It suffices to prove that (a, b) has non-zero content for a < b in R. Suppose
(a, b) is covered by a finite union of closed intervals Ii, 1 ≤ i ≤ m in R. Then clearly,
S :=

∑m
i=1 length(Ii) ≥ length(a, b) = b− a. So we can never make S less than b− a.

(3) The line segment L = {x, 0) | a1 < x < b1} in R2 has content zero. (Comparing
with (2), we see that the notion of content is very much dependent on what the ambient
space is, and not just on the set.)

Proof. For any ε > 0, cover L by the single closed rectangle

R =
{

(x, y)
∣∣∣∣ a1 ≤ x ≤ b1, − ε

4(b1 − a1)
≤ y ≤ ε

4(b1 − a1)

}
.

Then vol(R) = (b1 − a1) ε
2(b1−a1)

= ε
2 < ε, and we are done.

The third example leads one to ask if any bounded curve in the plane has content
zero. The best result we can prove here is the following

Proposition. Let ϕ : [a, b] → R be a continuous function. Then the graph Γ of ϕ has
content zero.

Proof. Note that Γ = {(x, y) ∈ R2 | a ≤ x ≤ b, y = ϕ(x)}. Let ε > 0. By the small
span theorem, we can find a partition a = t0 < t1 < · · · < tr = b of [a, b] such that
spanϕ([ti−1, ti]) < ε

(b−a) , for every i = 1, . . . , r. Thus the piece of Γ lying between

x = ti−1 and x = ti can be enclosed in a closed rectangle Si of area less than ε(ti−ti−1)
(b−a) .

Now consider the collection {Si}1≤i≤r which covers Γ. Then we have

r∑

j=1

area(Sj) <
ε

(b− a)

r∑

i=1

(ti − ti−1) = ε. ¤

Theorem. Let f be a bounded function on R which is continuous except on a subset Y
of content zero. Then f is integrable on R.

Proof. Let M > 0 be such that |f(x)| ≤ M , for all x ∈ R. Since Y has content zero, we
can find closed subrectangular boxes S1, . . . , Sm of R such that

(i) Y ⊆ ∪m
i=1Si, and

(ii)
∑m

i=1 vol(Si) < ε
4M .
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Extend {S1, . . . , Sm} to a partition P = {S1, . . . , Sr}, m < r, of R. Applying the small
span theorem, we may suppose that Sm+1 . . . , Sr are so chosen that (for each i ≥ m+1)
spanf (Si) < ε

2 vol(R) . (We can apply this theorem because f is continuous outside the
union of S1, . . . , Sm.) So we have

U(f, P )− L(f, P ) ≤ 2M

m∑

i=1

vol(Si) +
r∑

i=m+1

spanf (Si) vol(Si)

< (2M)
(

ε

2M

)
+

ε

2 vol(R)

r∑

i=m+1

vol(Si).

But the right hand side is ≤ ε
2 + ε

2 = ε, because
∑r

i=m+1 vol(Si) ≤ vol(R). ¤

Example. Let R = [0, 1]× [0, 1] be the unit square in R2, and f : R → R the function
defined by f(x, y) = x + y if x ≤ y and x− y if x ≥ y. Show that f is integrable on R.

Let D = {(x, x) | 0 ≤ x ≤ 1} be the “diagonal” in R. Then D has content zero as it is
the graph of the continuous function ϕ(x) = x, 0 ≤ x ≤ 1. Moreover, f is discontinuous
only on D. So f is continuous on R −D with D of content zero, and consequently f is
integrable on R.

Remark. We can use this theorem to define the integral of a continuous function f on
any closed bounded set B in Rn if the boundary of B has content zero. Indeed,
in such a case, we may enclose B in a closed rectangular box R and define a function f̃
on R by making it equal f on B and 0 on R−B. Then f̃ will be continuous on all of R
except for the boundary of B, which has content zero. So f̃ is integrable on R. Since f̃
is 0 outside B, it is reasonable to set

∫

B

f =
∫

R

f̃ .

It is often useful to consider a finer notion than content, called measure. Before giving
this definition recall that a set X is countable iff there is a bijection (or as some would
say, one-to-one correspondence, between X and a subset of the set N of natural numbers.
Check that Z and Q are countable, while R is not.

A subset Y of Rn is said to have measure zero if, for every ε > 0, we can find a
countable collection of closed rectangular boxes Q1, Q2, . . . , Qm, . . . such that

(i) Y ⊆ ∪i≥1Qi, and
(ii)

∑
i≥1 vol(Qi) < ε.

One can use open rectangular boxes instead of closed ones, and the resulting definition
will be equivalent.

Examples. (1) A countable set of points in Rn has measure zero.

(2) Any subset Y of R which contains a non-empty open interval (a, b) does not have
measure zero.
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(3) A countable union of lines in [0, 1]× [0, 1] ⊂ R2 has measure zero.

We will state the following result without proof:

Theorem. Let R be a closed rectangular box in Rn, and f a bounded function on R
which is continuous except on a subset Y of measure zero. Then f is integrable on R.

§4.5 Fubini’s theorem

So far we have been meticulous in figuring out when a given bounded function f is
integrable on R. But if f is integrable, we have developed no method whatsoever to
actually find a way to integrate it except in the really easy case of a step function. We
propose to ameloriate the situation now by describing a very reasonable and computa-
tionally helpful result. We will state it in the plane, but there is a natural analog in
higher dimensions as well. In any case, many of the intricacies of multiple integration
are present already for n = 2, and it is a wise idea to understand this case completely at
first.

Theorem (Fubini). Let f be a bounded, integrable function on R = [a1, b1]× [a2, b2] ⊆
R2. For x in [a1, b1], put A(x) =

∫ b2
a2

f(x, y) dy and assume the following

(i) A(x) exists for each x ∈ [a1, b1], i.e., the function y 7→ f(x, y) is integrable on
[a2, b2] for any fixed x in [a1, b1];

(ii) A(x) is integrable on [a1, b1].

Then ∫∫

R

f(x, y) dxdy =
∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx.

In other words, once the hypotheses (i) and (ii) are satisfied, we can compute
∫

R
f by

performing two 1-dimensional integrals in order. One cannot always reverse the order of
integration, however, and if one wants to integrate over x first, one needs to assume the
obvious analog of the conditions (i), (ii).

Proof. Let P1 = {Bi | 1 ≤ i ≤ `} (resp. P2 = {Cj | 1 ≤ j ≤ m}) be a partition of [a1, b1]
(resp. [a2, b2]), with Bi, Cj closed intervals in R. Then P = P1 × P2 = {Bi × Cj} is a
partition of R. By hypothesis (i), we have

L(fx, P2) ≤ A(x) ≤ U(fx, P2),

where fx is the one-dimensional function y 7→ f(x, y). Then applying hypothesis (ii), we
get

L(L(fx, P2), P1) ≤
∫ b1

a1

A(x) dx ≤ U(U(fx, P2), P1).
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But we have

L(L(fx, P2), P1) =
∑̀

i=1

length(Bi) inf(L(fx, P2)(Bi))

=
∑̀

i=1

length(Bi)
m∑

j=1

length(Cj) inf(f(Bi × Cj)) = L(f, P ).

Similarly for the upper sum. Hence L(f, P ) ≤ ∫ b1
a1

A(x) dx ≤ U(f, P ). Given any par-
tition Q of R, we can find a partition P of the form P1 × P2 which refines Q. Thus
L(f,Q) ≤ ∫ b1

a1
A(x) dx ≤ U(f,Q), for every partition Q of R. Then by the uniqueness

of
∫

R
f , which exists because f is integrable,

∫ b1
a1

A(x) dx is forced to be
∫

R
f . ¤

Remark. The reason we denote
∫ b2

a2
f(x, y) dy by A(x) is the following. The double

integral
∫∫

R
f(x, y) dxdy is the volume subtended by the graph Γ = {(x, y, f(x, y)) ∈

R3} over the rectangle R. (Note that Γ is a “surface” since f is a function of two
variables.) When we fix x at the same point x0 in [a1, b1], the intersection of the plane
{x = x0} with Γ in R3 is a curve, which is none other than the graph Γx0 of fx0 in
the (y, z)-plane shifted to x = x0. The area under Γx0 over the interval [a2, b2] is just∫ b2

a2
fx0(y) dy; whence the name A(x0). Note also that as x0 goes from a1 to b1, the whole

volume is swept by the slice of area A(x0).

A natural question to ask at this point is whether the hypotheses (i), (ii) of Fubini’s
theorem are satisfied by many functions. The answer is yes, and the prime examples are
continuous functions.

Theorem. Let f be a continuous function on R = [a1, b1] × [a2, b2] ⊆ R2. Then
∫

R
f

can be computed as an iterated integral in either order. To be precise, we have

∫∫

R

f(x, y) dxdy =
∫ b1

a1

[∫ b2

a2

f(x, y) dy

]
dx =

∫ b2

a2

[∫ b1

a1

f(x, y) dx

]
dy.

Proof. Since f is continuous on (the compact set) R, it is certainly bounded. Let M > 0
be such that |f(x, y)| ≤ M . We have also seen that it is integrable. For each x, the
function y 7→ f(x, y) is integrable on [a2, b2] because of continuity on [a2, b2]. So we
get hypothesis (i) of Fubini. To get hypothesis (ii), it suffices to show that A(x) =∫ b2

a2
f(x, y) dy is continuous in x. For h small, we have

|A(x + h)−A(x)| =
∣∣∣∣
∫ b2

a2

(f(x + h, y)− f(x, y)) dy

∣∣∣∣ ≤
∫ b2

a2

|f(x + h, y)− f(x, y)| dy.

By the small span theorem we can find a partition {Sj} of R with spanf (Sj) < ε/(b2 −
a2). If h is small enough so that (x + h, y) and (x, y) lie in the same box for all y
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(which we can achieve since x is fixed and there are only finitely many boxes) we have
|f(x+h, y)−f(x, y)| < spanf (Sj) < ε/(b2−a2) where Sj is a box containing both points.
Note that this argument also works if (x, y) lies on the vertical boundary between two
boxes: for positive h we land in one box and for negative h in the other. Hence

∫ b2

a2

|f(x + h, y)− f(x, y)| dy < ε

for h sufficiently small. This shows that A(x) is continuous and hence integrable on
[a1, b1]. We have now verified both hypotheses of Fubini, and hence

∫∫

R

f(x, y) dxdy =
∫ b1

a1

[∫ b2

a2

f(x, y) dy

]
dx.

To prove that
∫

R
f is also computable using the iteration in reverse order, all we have to

do is note that by a symmetrical argument, the integral
∫ b1

a1
f(x, y) dx makes sense and is

continuous in y, hence integrable on [a2, b2]. The Fubini argument then goes through. ¤
Remark. We will note the following extension of the theorem above without proof.

Let f be a continuous function on a closed rectangular box R = [a1, b1]×· · ·× [an, bn].
Then the integral of f over R is computable as an iterated integral

∫ b1

a1

[
· · ·

[∫ bn−1

an−1

[∫ bn

an

f(x1, . . . , xn) dxn

]
dxn−1

]
. . .

]
dx1.

Moreover, we can compute this in any order we want, e.g., integrate over x2 first, then
over x5, then over x1, etc. Note that there are n! possible ways here of permuting the
order of integration.

§4.6 Integration over special regions

Let Z be a compact set in Rn. Since it is bounded, we may enclose it in a closed
rectangular box R. If f is a bounded function on Z, we may define an extension f̃ to R
by setting f̃(x) to be f(x) (resp. 0) for x in Z (resp. in R− Z).

Let us say that f is integrable over Z if f̃ is integrable over R, and put
∫

Z

f =
∫

R

f̃ .

It is clear that this definition is independent of the choice of R. In §4.4, where we
introduced the notion of content, we remarked that if the boundary of Z had content
zero and if f is continuous, then f̃ would be integrable on R. The same idea easily proves
the following
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Theorem. Let Z be a compact subset of Rn such that the boundary of Z has content
zero. Then any function f on Z which is continuous on Z is integrable over Z.

In fact, one can replace content by measure in this Theorem.
Now we will analyze the simplest cases of this phenomenon in R2.

Definition. A region of type I in R2 is a set of the form {a ≤ x ≤ b, ϕ1(x) ≤ y ≤
ϕ2(x)}, where ϕ1, ϕ2 are continuous functions on [a, b].

A region of type II in R2 is a set of the form {c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)},
where ψ1, ψ2 are continuous functions on [c, d].

A region of type III in R2 is a subset which is simultaneously of type I and type II.

Remark. Note that a circular region is of type III.

Theorem. Let f be a continuous function on a subset S of R2.
(a) Suppose S is a region of type I defined by a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x), with

ϕ1, ϕ2 continuous. Then f is integrable on S and

∫

S

f =
∫ b

a

( ∫ ϕ2(x)

ϕ1(x)

f(x, y) dy

)
dx.

(b) Suppose S is a region of type II defined by c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y), with
ψ1, ψ2 continuous. Then f is integrable on S and

∫

S

f =
∫ d

c

( ∫ ψ2(y)

ψ1(x)

f(x, y) dx

)
dy.

Proof. We will prove (a) and leave the symmetrical case (b) to the reader.
(a) Let R = [a, b] × [c, d], where c, d are chosen so that R contains S. Define f̃ on

R as above (by extension of f by zero outside S). By the Proposition of §4.4, we know
that the graphs of ϕ1 and ϕ2 are of content zero, since ϕ1, ϕ2 are continuous. Thus
the main theorem of §4.4 implies that f̃ is integrable on R as its set of discontinuities is
contained in the boundary ∂S of S. It remains to prove that

∫
S

f (=
∫

R
f̃) is given by the

iterated integral
∫ b

a
(
∫ ϕ2(x)

ϕ1(x)
f(x, y) dy) dx. For each x ∈ (a, b), the integral

∫ d

c
f̃(x, y) dy

exists as the set of discontinuities in [c, d] has at most two points. Moreover, the function
x 7→ ∫ d

c
f̃(x, y), dy is integrable on [a, b]. Hence (the proof of) Fubini’s theorem applies

in this context and gives

∫

R

f =
∫ b

a

( ∫ d

c

f̃(x, y) dy

)
dx.

Since the inside integral (over y) is none other than
∫ ϕ2(x)

ϕ1(x)
f(x, y) dy, the assertion of the

theorem follows. ¤
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§4.7 Examples

(1) Compute
∫

R
f , where R is the closed rectangle [−1, 1] × [2, 3] and f the function

(x, y) 7→ x2y− x cos πy. Since f is continuous on R, we may apply Fubini’s theorem and
compute

∫
R

I as the iterated integral

I =
∫ 1

−1

( ∫ 3

2

(x2y − x cos πy) dy

)
dx.

Recall that in
∫ 3

2
(x2y − x cosπy) dy, x is treated like a constant, hence equals

x2

∫ 3

2

y dy − x

∫ 3

2

cosπy dy = x2

(
32

2
− 22

2

)
− x

(
sin πy

π

)]3

2

=
5
2

x2.

⇒ I =
5
2

∫ 1

−1

x2 dx =
5
2

(
x3

3

)]1

−1

=
5
3

.

We could also have computed it in the opposite order to get

I =
∫ 3

2

[∫ 1

−1

(x2y − x cos πy) dx

]
dy

=
∫ 3

2

(
y

(
x3

3

)]1

−1

− cosπy

(
x2

2

)]1

−1

)
dy

=
∫ 3

2

(
2y

3

)
dy =

y2

3

]3

2

=
5
3

.

(2) Find the volume of the tetrahedron T in R3 bounded by the planes x = 0, y = 0,
z = 0 and x− y − z = −1.

Note first that the base of T is a triangle 4 defined by −1 ≤ x ≤ 0, 0 ≤ y ≤ x + 1.
Given any (x, y) in 4, the height of T above it is simply given by z = x− y + 1. Hence
we get by the Theorem of §4.6,

vol(T ) =
∫∫

4
(x− y + 1) dxdy =

∫ 0

−1

( ∫ x+1

0

(x− y + 1) dy

)
dx

=
∫ 0

−1

(
xy − y2

2
+ y

)]x+1

0

dx

=
∫ 0

−1

(x + 1)2

x
dx =

∫ 1

0

u2

2
du =

1
6

.

(3) Fix a, b > 0, and consider the region S inside the ellipse defined by x2

a2 + y2

b2 = 1 in
R2. Compute I =

∫∫
S

√
a2 − x2 dxdy.
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Note that S is a region of type I as we may write it as{
−a ≤ x ≤ a, −b

√
1− x2

a2
≤ y ≤ b

√
1− x2

a2

}
.

Since the function (x, y) 7→ √
a2 − x2 is continuous, we can apply the main theorem of

§4.6. We obtain

I =
∫ a

−a

√
a2 − x2

( ∫ b−
√

1− x2

a2

−b
√

1− x2

a2

dy

)
dx

=
2b

a

∫ a

−a

(a2 − x2) dx =
2b

a

(
a2x− x3

3

)]a

−a

= 4a2b− 4a2b

3
=

8a2b

3
.

§4.8 Applications

Let S be a thin plate in R2 with matter distributed with density f(x, y) (= mass/unit
area). The mass of S is given by

m(S) =
∫∫

S

f(x, y) dxdy.

The average density is
m(S)
area

=

∫∫
S

f(x, y) dxdy∫∫
S

dxdy
.

The center of mass of S is given by z̄ = (x̄, ȳ), where

x̄ =
1

m(S)

∫∫

S

x f(x, y) dxdy

and
ȳ =

1
m(S)

∫∫

S

y f(x, y) dxdy.

When the density is constant, the center of mass is called the centroid of S.
Suppose L is a fixed line. For any point (x, y) on S, let δ = δ(x, y) denote the

(perpendicular) distance from (x, y) to L. The moment of inertia about L is given
by

IL =
∫∫

S

δ2(x, y) f(x, y) dxdy.

When L is the x-axis (resp. y-axis), it is customary to write Ix (resp. Iy).
Note that the center of mass is a linear invariant, while the moment of inertia is

quadratic.
An interesting use of the centroid occurs in the computation of volumes of revolutions.

To be precise we have the following
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Theorem (Pappus). Let S be a region of type I, i.e., given as {a ≤ x ≤ b, ϕ1(x) ≤
y ≤ ϕ2(x)}, with ϕ1, ϕ2 continuous. Suppose that minx ϕ1(x) > 0, so that S lies above
the x-axis. Denote by V the volume of the solid M obtained by revolving S about the
x-axis, and by z̄ = (x̄, ȳ) the centroid of S. Then

V = 2πȳ a(S),

where a(S) is the area of S.

Proof. Let Vi denote the volume of the solid obtained by revolving {(x, ϕ1(x) | a ≤ x ≤ b}
about the x-axis. Then

Vi = π

∫ b

a

ϕi(x)2 dx.

(This is a result from one-variable calculus.) But clearly, V = V2 − V1. So we have

V = π

∫ b

a

[ϕ2(x)2 − ϕ1(x)2] dx.

On the other hand, we have by the definition of the centroid,

ȳ =
1

a(S)

∫∫

S

y dxdy.

Since y is continuous and S a region of type I, we have

ȳ =
1

a(S)

∫ b

a

( ∫ ϕ2(x)

ϕ1(x)

y dy

)
dx

=
1

a(S)

∫ b

a

1
2 [ϕ2(x)2 − ϕ1(x)2] dx.

The theorem now follows immediately. ¤
Examples. (1) Let S be the semi-circular region {−1 ≤ x ≤ 1, 0 ≤ y ≤ √

1− x2}.
Compute the centroid of S.

Since S is of type I, we have

a(S) =
∫∫

S

dxdy =
∫ 1

−1

dx

∫ √
1−x2

0

dy

=
∫ 1

−1

√
1− x2 dx = 2

∫ 1

0

√
1− x2 dx.

Put x = sin t, 0 ≤ t ≤ π
2 . Then dx = cos t dt and

√
1− x2 = cos t. So we get

a(S) = 2
∫ π

2

0

cos2 t dt = 2
∫ π

2

0

(
1 + cos t

2

)
dt

= 2
[

π

4
+

sin 2t

4

]π
2

0

]
=

π

2
.
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Of course, we could have directly reasoned by geometry that the area of a semi-circular
region of radius 1 is π

2 .
Let z̄ = (x̄, ȳ) be the centroid.

x̄ =
1

a(S)

∫∫

S

x dxdy =
2
π

∫ 1

−1

( ∫ √
1−x2

0

dy

)
x dx

=
2
π

∫ 1

−1

x
√

1− x2 dx =
2
π

∫ π
2

−π
2

sin t cos2 t dt = 0,

since the integrand is an odd function.
Again, the fact that x̄ = 0 can be directly seen by geometry. The key thing is to

compute ȳ. We have

ȳ =
2
π

∫ 1

−1

dx

( ∫ √
1−x2

0

y dy

)
=

1
π

∫ 1

−1

(1− x2) dx

=
1
π

(
x− x3

3

)]1

−1

=
2
π
− 2

3π
=

4
3π

.

So the centroid of S is (0, 4
3π ).

(2) Find the volume V of the torus π obtained by revolving about the x-axis a circular
region S of radius r (lying above the x-axis).

The area a(S) is πr2, and the centroid (x̄, ȳ) is located at the center of S (easy check!).
Let b be the distance from the center of S to the x-axis. Then by Pappus’ theorem,

V = 2πȳ a(S) = 2πb(πr2) = 2π2r2b.


