Chapter 2

Differentiation in higher dimensions

2.1 The Total Derivative

Recall that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a 1-variable function, and $a \in \mathbb{R}$, we say that f is differentiable at $x=a$ if and only if the ratio $\frac{f(a+h)-f(a)}{h}$ tends to a finite limit, denoted $f^{\prime}(a)$, as h tends to 0 .

There are two possible ways to generalize this for vector fields

$$
f: \mathcal{D} \rightarrow \mathbb{R}^{m}, \mathcal{D} \subseteq \mathbb{R}^{n}
$$

for points a in the interior \mathcal{D}^{0} of \mathcal{D}. (The interior of a set X is defined to be the subset X^{0} obtained by removing all the boundary points. Since every point of X^{0} is an interior point, it is open.) The reader seeing this material for the first time will be well advised to stick to vector fields f with domain all of \mathbb{R}^{n} in the beginning. Even in the one dimensional case, if a function is defined on a closed interval $[a, b]$, say, then one can properly speak of differentiability only at points in the open interval (a, b).

The first thing one might do is to fix a vector v in \mathbb{R}^{n} and saythat f is differentiable along v iff the following limit makes sense:

$$
\lim _{h \rightarrow 0} \frac{1}{h}(f(a+h v)-f(a))
$$

When it does, we write $f^{\prime}(a ; v)$ for the limit. Note that this definition makes sense because a is an interior point. Indeed, under this hypothesis, \mathcal{D} contains a basic open set U containing a, and so $a+h v$ will, for small enough h, fall into U, allowing us to speak of $f(a+h v)$. This
derivative behaves exactly like the one variable derivative and has analogous properties. For example, we have the following

Theorem 1 (Mean Value Theorem for scalar fields) Suppose f is a scalar field. Assume $f^{\prime}(a+t v ; v)$ exists for all $0 \leq t \leq 1$. Then there is a t_{o} with $0 \leq t_{o} \leq 1$ for which $f(a+v)-f(a)=f^{\prime}\left(a+t_{0} v ; v\right)$.

Proof. Put $\phi(t)=f(a+t v)$. By hypothesis, ϕ is differentiable at every t in $[0,1]$, and $\phi^{\prime}(t)=f^{\prime}(a+t v ; v)$. By the one variable mean value theorem, there exists a t_{0} such that $\phi^{\prime}\left(t_{0}\right)$ is $\phi(1)-\phi(0)$, which equals $f(a+v)-f(a)$. Done.

When v is a unit vector, $f^{\prime}(a ; v)$ is called the directional derivative of f at a in the direction of v.

The disadvantage of this construction is that it forces us to study the change of f in one direction at a time. So we revisit the one-dimensional definition and note that the condition for differentiability there is equivalent to requiring that there exists a constant $c\left(=f^{\prime}(a)\right)$, such that $\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)-c h}{h}\right)=0$. If we put $L(h)=f^{\prime}(a) h$, then $L: \mathbb{R} \rightarrow \mathbb{R}$ is clearly a linear map. We generalize this idea in higher dimensions as follows:

Definition. Let $f: \mathcal{D} \rightarrow \mathbb{R}^{m}\left(\mathcal{D} \subseteq \mathbb{R}^{n}\right)$ be a vector field and a an interior point of \mathcal{D}. Then f is differentiable at $x=a$ if and only if there exists a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{u \rightarrow 0} \frac{\|f(a+u)-f(a)-L(u)\|}{\|u\|}=0 . \tag{*}
\end{equation*}
$$

Note that the norm $\|\cdot\|$ denotes the length of vectors in \mathbb{R}^{m} in the numerator and in \mathbb{R}^{n} in the denominator. This should not lead to any confusion, however.

Lemma 1 Such an L, if it exists, is unique.

Proof. Suppose we have $L, M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfying $\left(^{*}\right)$ at $x=a$. Then

$$
\begin{aligned}
\lim _{u \rightarrow 0} \frac{\|L(u)-M(u)\|}{\|u\|}= & \lim _{u \rightarrow 0} \frac{\|L(u)+f(a)-f(a+u)+(f(a+u)-f(a)-M(u))\|}{\|u\|} \\
\leq & \lim _{u \rightarrow 0} \frac{\|L(u)+f(a)-f(a+u)\|}{\|u\|} \\
& +\lim _{u \rightarrow 0} \frac{\|f(a+u)-f(a)-M(u)\|}{\|u\|}=0 .
\end{aligned}
$$

Pick any non-zero $v \in \mathbb{R}^{n}$, and set $u=t v$, with $t \in \mathbb{R}$. Then, the linearity of L, M implies that $L(t v)=t L(v)$ and $M(t v)=t M(v)$. Consequently, we have

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\|L(t v)-M(t v)\|}{\|t v\|} & =0 \\
& =\lim _{t \rightarrow 0} \frac{|t|\|L(v)-M(v)\|}{|t|\|v\|} \\
& =\frac{1}{\|v\|}\|L(v)-M(v)\| .
\end{aligned}
$$

Then $L(v)-M(v)$ must be zero.
Definition. If the limit condition $(*)$ holds for a linear map L, we call L the total derivative of f at a, and denote it by $T_{a} f$.

It is mind boggling at first to think of the derivative as a linear map. A natural question which arises immediately is to know what the value of $T_{a} f$ is at any vector v in \mathbb{R}^{n}. We will show in section 2.3 that this value is precisely $f^{\prime}(a ; v)$, thus linking the two generalizations of the one-dimensional derivative.

Sometimes one can guess what the answer should be, and if $\left(^{*}\right)$ holds for this choice, then it must be the derivative by uniqueness. Here are two examples which illustrate this.
(1) Let f be a constant vector field, i.e., there exists a vector $w \in \mathbb{R}^{m}$ such that $f(x)=w$, for all x in the domain \mathcal{D}. Then we claim that f is differentiable at any $a \in \mathcal{D}^{0}$ with derivative zero. Indeed, if we put $L(u)=0$, for any $u \in \mathbb{R}^{n}$, then $\left(^{*}\right)$ is satisfied, because $f(a+u)-f(a)=w-w=0$.
(2) Let f be a linear map. Then we claim that f is differentiable everywhere with $T_{a} f=f$. Indeed, if we put $L(u)=f(u)$, then by the linearity of $f, f(a+u)-f(a)=f(u)$, and so $f(a+u)-f(a)-L(u)$ is zero for any $u \in \mathbb{R}^{n}$. Hence $\left(^{*}\right)$ holds trivially for this choice of L.

Before we leave this section, it will be useful to take note of the following:
Lemma 2 Let f_{1}, \ldots, f_{m} be the component (scalar) fields of f. Then f is differentiable at a iff each f_{i} is differentiable at a. Moreover, $T f(v)=\left(T f_{1}(v), T f_{2}(v), \ldots, T f_{n}(g)\right)$.

An easy consequence of this lemma is that, when $\mathbf{n}=\mathbf{1}, f$ is differentiable at a iff the following familiar looking limit exists in \mathbb{R}^{m} :

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

allowing us to suggestively write $f^{\prime}(a)$ instead of $T_{a} f$. Clearly, $f^{\prime}(a)$ is given by the vector $\left(f_{1}^{\prime}(a), \ldots, f_{m}^{\prime}(a)\right)$, so that $\left(T_{a} f\right)(h)=f^{\prime}(a) h$, for any $h \in \mathbb{R}$.

Proof. Let f be differentiable at a. For each $v \in \mathbb{R}^{n}$, write $L_{i}(v)$ for the i-th component of $\left(T_{a} f\right)(v)$. Then L_{i} is clearly linear. Since $f_{i}(a+u)-f_{i}(u)-L_{i}(u)$ is the i-th component of $f(a+u)-f(a)-L(u)$, the norm of the former is less than or equal to that of the latter. This shows that $\left(^{*}\right)$ holds with f replaced by f_{i} and L replaced by L_{i}. So f_{i} is differentiable for any i. Conversely, suppose each f_{i} differentiable. Put $L(v)=\left(\left(T_{a} f_{1}\right)(v), \ldots,\left(T_{a} f_{m}\right)(v)\right)$. Then L is a linear map, and by the triangle inequality,

$$
\left|\left|f(a+u)-f(a)-L(u) \| \leq \sum_{i=1}^{m}\right| f_{i}(a+u)-f_{i}(a)-\left(T_{a} f_{i}\right)(u)\right|
$$

It follows easily that $\left({ }^{*}\right)$ exists and so f is differentiable at a.

2.2 Partial Derivatives

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote the standard basis of \mathbb{R}^{n}. The directional derivatives along the unit vectors e_{j} are of special importance.

Definition. Let $j \leq n$. The j th partial derivative of f at $x=a$ is $f^{\prime}\left(a ; e_{j}\right)$, denoted by $\frac{\partial f}{\partial x_{j}}(a)$ or $D_{j} f(a)$.

Just as in the case of the total derivative, it can be shown that $\frac{\partial f}{\partial x_{j}}(a)$ exists iff $\frac{\partial f_{i}}{\partial x_{j}}(a)$ exists for each coordinate field f_{i}.

Example: Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y, z)=\left(e^{x \sin (y)}, z \cos (y)\right)
$$

All the partial derivatives exist at any $a=\left(x_{0}, y_{0}, z_{0}\right)$. We will show this for $\frac{\partial f}{\partial y}$ and leave it to the reader to check the remaining cases. Note that

$$
\frac{1}{h}\left(f\left(a+h e_{2}\right)-f(a)\right)=\left(\frac{e^{x_{0} \sin \left(y_{0}+h\right)}-e^{x_{0} \sin \left(y_{0}\right)}}{h}, z_{0} \frac{\cos \left(y_{0}+h\right)-\cos \left(y_{0}\right)}{h}\right)
$$

We have to understand the limit as h goes to 0 . Then the methods of one variable calculus show that the right hand side tends to the finite limit $\left(x_{0} \cos \left(y_{0}\right) e^{x_{0} \sin \left(y_{0}\right)},-z_{0} \sin \left(y_{0}\right)\right)$, which
is $\frac{\partial f}{\partial y}(a)$. In effect, the partial derivative with respect to y is calculated like a one variable derivative, keeping x and z fixed. Let us note without proof that $\frac{\partial f}{\partial x}(a)$ is $\left(\sin \left(y_{0}\right) e^{x_{0} \sin \left(y_{0}\right)}, 0\right)$ and $\frac{\partial f}{\partial z}(a)$ is $\left(0, \cos \left(y_{0}\right)\right)$.

It is easy to see from the definition that $f^{\prime}(a ; t v)$ equals $t f^{\prime}(a ; v)$, for any $t \in \mathbb{R}$. This follows as $\frac{1}{h}(f(a+h(t v))-f(a))=t \frac{1}{t h}(f(a+(h t) v)-f(a))$. In particular the Mean Value Theorem for scalar fields gives $f_{i}(a+h v)-f(a)=h f_{i}^{\prime}\left(a+t_{0} h v\right)=h f_{i}(a+\tau v)$ for some $0 \leq \tau \leq h$.

We also have the following
Lemma 3 Suppose the derivatives of f along any $v \in \mathbb{R}^{n}$ exist near a and are continuous at a. Then

$$
f^{\prime}\left(a ; v+v^{\prime}\right)=f^{\prime}(a ; v)+f^{\prime}\left(a ; v^{\prime}\right)
$$

for all v, v^{\prime} in \mathbb{R}^{n}. In particular, the directional derivatives of f are all determined by the n partial derivatives.

We will do this for the scalar fields f_{i}. Notice

$$
\begin{aligned}
f_{i}\left(a+h v+h v^{\prime}\right)-f_{i}(a) & =f_{i}\left(a+h v+h v^{\prime}\right)-f_{i}(a+h v)+f_{i}(a+h v)-f(a) \\
& =h f_{i}\left(a+h v+\tau v^{\prime}\right)+h f_{i}\left(a+\tau^{\prime} v\right)
\end{aligned}
$$

where here $0 \leq \tau \leq h$ and $0 \leq \tau^{\prime} \leq h$. Now dividing by h and taking the limit and $h \rightarrow 0$ gives $f_{i}^{\prime}\left(a ; v+v^{\prime}\right)$ for the first expression. The last expression gives a sum of two limits

$$
\lim _{h \rightarrow 0} f_{i}^{\prime}\left(a+h v+\tau v^{\prime}\right)+\lim _{h \rightarrow 0} f_{i}^{\prime}\left(a+\tau^{\prime} v ; v^{\prime}\right)
$$

But this is $f_{i}^{\prime}(a ; v)+f_{i}^{\prime}\left(a ; v^{\prime}\right)$.Recall both τ and τ^{\prime} are between 0 and h and so as h goes to 0 so do τ and τ^{\prime}. Here we have used the continuity of the derivatives of f along any line in a neighborhood of a.

Now pick $e_{1}, e_{2}, \ldots, e_{n}$ the usual orthogonal basis and recall $v=\sum \alpha_{i} e_{i}$. Then $f^{\prime}(a ; v)=$ $f^{\prime}\left(a ; \sum \alpha_{i} e_{i}\right)=\sum \alpha_{i} f^{\prime}\left(a ; e_{i}\right)$. Also the $f^{\prime}\left(a ; e_{i}\right)$ are the partial derivatives. The Lemma now follows easily.

In the next section (Theorem $1 a$) we will show that the conclusion of this lemma remains valid without the continuity hypothesis if we assume instead that f has a total derivative at a.

The gradient of a scalar field g at an interior point a of its domain in \mathbb{R}^{n} is defined to be the following vector in \mathbb{R}^{n} :

$$
\nabla g(a)=\operatorname{grad} g(a)=\left(\frac{\partial g}{\partial x_{1}}(a), \ldots, \frac{\partial g}{\partial x_{n}}(a)\right)
$$

assuming that the partial derivatives exist at a.
Given a vector field f as above, we can then put together the gradients of its component fields $f_{i}, 1 \leq i \leq m$, and form the following important matrix, called the Jacobian matrix at a :

$$
D f(a)=\left(\frac{\partial f_{i}}{\partial x_{j}}(a)\right)_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m n}(\mathbb{R})
$$

The i-th row is given by $\nabla f_{i}(a)$, while the j-th column is given by $\frac{\partial f}{\partial x_{j}}(a)$. Here we are using the notation $M_{m n}(\mathbb{R})$ for the collection of all $m \times n$-matrices with real coefficients. When $m=n$, we will simply write $M_{n}(\mathbb{R})$.

2.3 The main theorem

In this section we collect the main properties of the total and partial derivatives.

Theorem 2 Let $f: \mathcal{D} \rightarrow \mathbb{R}^{m}$ be a vector field, and a an interior point of its domain $\mathcal{D} \subseteq \mathbb{R}^{n}$.
(a) If f is differentiable at a, then for any vector v in \mathbb{R}^{n},

$$
\left(T_{a} f\right)(v)=f^{\prime}(a, v)
$$

In particular, since $T_{a} f$ is linear, we have

$$
f^{\prime}\left(a ; \alpha v+\beta v^{\prime}\right)=\alpha f^{\prime}(a ; v)+\beta f^{\prime}\left(a ; v^{\prime}\right),
$$

for all v, v^{\prime} in \mathbb{R}^{n} and α, β in \mathbb{R}.
(b) Again assume that f is differentiable. Then the matrix of the linear map $T_{a} f$ relative to the standard bases of $\mathbb{R}^{n}, \mathbb{R}^{m}$ is simply the Jacobian matrix of f at a.
(c) f differentiable at $a \Rightarrow f$ continuous at a.
(d) Suppose all the partial derivatives of f exist near a and are continuous at a. Then $T_{a} f$ exists.
(e) (chain rule) Consider

$$
\begin{array}{rlc}
\mathbb{R}^{n} & \xrightarrow{f} & \mathbb{R}^{m} \\
a & \mapsto & b=f(a)
\end{array} \quad \xrightarrow{g} \mathbb{R}^{h} .
$$

Suppose f is differentiable at a and g is diffentiable at $b=f(a)$. Then the composite function $h=g \circ f$ is differentiable at a, and moreover,

$$
T_{a} h=T_{b} g \circ T_{a} f
$$

In terms of the Jacobian matrices, this reads as

$$
D h(a)=D g(b) D f(a) \in M_{k n}
$$

(f) $(m=1)$ Let f, g be scalar fields, differentiable at a. Then
(i) $T_{a}(f+g)=T_{a} f+T_{a} g \quad$ (additivity)
(ii) $T_{a}(f g)=f(a) T_{a} g+g(a) T_{a} f \quad$ (product rule)
(iii) $T_{a}\left(\frac{f}{g}\right)=\frac{g(a) T_{a} f-f(a) T_{a} g}{g(a)^{2}}$ if $g(a) \neq 0 \quad$ (quotient rule)

The following corollary is an immediate consequence of the theorem, which we will make use of, in the next chapter on normal vectors and extrema.

Corollary 1 Let g be a scalar field, differentiable at an interior point b of its domain \mathcal{D} in \mathbb{R}^{n}, and let v be any vector in \mathbb{R}^{n}. Then we have

$$
\nabla g(b) \cdot v=g^{\prime}(b ; v)
$$

Furthermore, let ϕ be a function from a subset of \mathbb{R} into $\mathcal{D} \subseteq \mathbb{R}^{n}$, differentiable at an interior point a mapping to b. Put $h=g \circ \phi$. Then h is differentiable at a with

$$
h^{\prime}(a)=\nabla g(b) \cdot \phi^{\prime}(a) .
$$

Proof of main theorem. (a) It suffices to show that $\left(T_{a} f_{i}\right)(v)=f_{i}(a ; v)$ for each $i \leq n$. By definition,

$$
\lim _{u \rightarrow 0} \frac{\left\|f_{i}(a+u)-f_{i}(a)-\left(T_{a} f_{i}\right)(u)\right\|}{\|u\|}=0
$$

This means that we can write for $u=h v, h \in \mathbb{R}$,

$$
\lim _{h \rightarrow 0} \frac{f_{i}(a+h v)-f_{i}(a)-h\left(T_{a} f_{i}\right)(v)}{|h||v| \mid}=0 .
$$

In other words, the limit $\lim _{h \rightarrow 0} \frac{f_{i}(a+h v)-f_{i}(a)}{h}$ exists and equals $\left(T_{a} f_{i}\right)(v)$. Done.
(b) By part (a), each partial derivative exists at a (since f is assumed to be differentiable at a). The matrix of the linear map $T_{a} f$ is determined by the effect on the standard basis vectors. Let $\left\{e_{i}^{\prime} \mid 1 \leq i \leq m\right\}$ denote the standard basis in \mathbb{R}^{m}. Then we have, by definition,

$$
\left(T_{a} f\right)\left(e_{j}\right)=\sum_{i=1}^{m}\left(T_{a} f_{i}\right)\left(e_{j}\right) e_{i}^{\prime}=\sum_{i=1}^{m} \frac{\partial f_{i}}{\partial x_{j}}(a) e_{i}^{\prime} .
$$

The matrix obtained is easily seen to be $D f(a)$.
(c) First we need the following simple

Lemma 4 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Then, $\exists c>0$ such that $\|T v\| \leq c\|v\|$ for any $v \in \mathbb{R}^{n}$.

Proof of Lemma. Let A be the matrix of T relative to the standard bases. Put $C=$ $\max _{j}\left\{\left\|T\left(e_{j}\right)\right\|\right\}$. If $v=\sum_{j=1}^{n} \alpha_{j} e_{j}$, then

$$
\begin{aligned}
\|T(v)\| & =\left\|\sum_{j} \alpha_{j} T\left(e_{j}\right)\right\| \leq C \sum_{j=1}^{n}\left|\alpha_{j}\right| \cdot 1 \\
& \leq C\left(\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{n} 1\right)^{1 / 2} \leq C \sqrt{n}\|v\|
\end{aligned}
$$

by the Cauchy-Schwarz inequality. We are done by setting $c=C \sqrt{n}$.
This shows that a linear map is continuous as if $\|v-w\|<\delta$ then $\|T(v)-T(w)\|=$ $\|T(v-w)\|<c\|v-w\|<c \delta$.
(c) Suppose f is differentiable at a. This certainly implies that the limit of the function $f(a+u)-f(a)-\left(T_{a} f\right)(u)$, as u tends to $0 \in \mathbb{R}^{n}$, is $0 \in \mathbb{R}^{m}$ (from the very definition of $T_{a} f,\left\|f(a+u)-f(a)-\left(T_{a} f\right)(u)\right\|$ tends to zero "faster" than $\|u\|$, in particular it tends to zero). Since $T_{a} f$ is linear, $T_{a} f$ is continuous (everywhere), so that $\lim _{u \rightarrow 0}\left(T_{a} f\right)(u)=0$. Hence $\lim _{u \rightarrow 0} f(a+u)=f(a)$ which means that f is continuous at a.
(d) By hypothesis, all the partial derivatives exist near $a=\left(a_{1}, \ldots, a_{n}\right)$ and are continuous there. It suffices to show that each f_{i} is differentiable at a by lemma 2 . So we have only to show that $\left(^{*}\right)$ holds with f replaced by f_{i} and $L(u)=f_{i}^{\prime}(a ; u)$. Write $u=\left(h_{1}, \ldots, h_{n}\right)$. By Lemma 3, we know that $f_{i}^{\prime}(a ;-)$ is linear. So

$$
L(u)=\sum_{j=1}^{n} h_{j} \frac{\partial f_{i}}{\partial x_{j}}(a)
$$

and we can write

$$
f_{i}(a+u)-f_{i}(a)=\sum_{j=1}^{n}\left(\phi_{j}\left(a_{j}+h_{j}\right)-\phi_{j}\left(a_{j}\right)\right),
$$

where each ϕ_{j} is a one variable function defined by

$$
\phi_{j}(t)=f_{i}\left(a_{1}+h_{1}, \ldots, a_{j-1}+h_{j-1}, t, a_{j+1}, \ldots, a_{n}\right)
$$

By the mean value theorem,

$$
\phi_{j}\left(a_{j}+h_{j}\right)-\phi_{j}\left(a_{j}\right)=h_{j} \phi_{j}^{\prime}\left(t_{j}\right)=h_{j} \frac{\partial f_{i}}{\partial x_{j}}(y(j)),
$$

for some $t_{j} \in\left[a_{j}, a_{j}+h_{j}\right]$, with

$$
y(j)=\left(a_{1}+h_{1}, \ldots, a_{j-1}+h_{j-1}, t_{j}, a_{j+1}, \ldots, a_{n}\right)
$$

Putting these together, we see that it suffices to show that the following limit is zero:

$$
\lim _{u \rightarrow 0} \frac{1}{\|u\|}\left|\sum_{j=1}^{n} h_{j}\left(\frac{\partial f_{i}}{\partial x_{j}}(a)-\frac{\partial f_{i}}{\partial x_{j}}(y(j))\right)\right| .
$$

Clearly, $\left|h_{j}\right| \leq\|u\|$, for each j. So it follows, by the triangle inequality, that this limit is bounded above by the sum over j of $\lim _{h_{j} \rightarrow 0}\left|\frac{\partial f_{i}}{\partial x_{j}}(a)-\frac{\partial f_{i}}{\partial x_{j}}(y(j))\right|$, which is zero by the continuity of the partial derivatives at a. Here we are using the fact that each $y(j)$ approaches a as h_{j} goes to 0 . Done.

Proof of (e) Write $L=T_{a} f, M=T_{b} g, N=M \circ L$. To show: $T_{a} h=N$.
Define $F(x)=f(x)-f(a)-L(x-a), G(y)=g(y)-g(b)-M(y-b)$ and $H(x)=h(x)-$ $h(a)-N(x-a)$. Then we have

$$
\lim _{x \rightarrow a} \frac{\|F(x)\|}{\|x-a\|}=0=\lim _{y \rightarrow b} \frac{\|G(y)\|}{\|y-b\|} .
$$

So we need to show:

$$
\lim _{x \rightarrow a} \frac{\|H(x)\|}{\|x-a\|}=0
$$

But

$$
H(x)=g(f(x))-g(b)-M(L(x-a))
$$

Since $L(x-a)=f(x)-f(a)-F(x)$, we get

$$
H(x)=[g(f(x))-g(b)-M(f(x)-f(a))]+M(F(x))=G(f(x))+M(F(x))
$$

Therefore it suffices to prove:
(i) $\lim _{x \rightarrow a} \frac{\|G(f(x))\|}{\|x-a\|}=0$ and
(ii) $\lim _{x \rightarrow a} \frac{\|M(F(x))\|}{\|x-a\|}=0$.

By Lemma 4, we have $\|M(F(x))\| \leq c\|F(x)\|$, for some $c>0$. Then $\frac{\|M(F(x))\|}{\|x-a\|} \leq$ $c \lim _{x \rightarrow a} \frac{\|F(x)\|}{\|x-a\|}=0$, yielding (ii).

On the other hand, we know $\lim _{y \rightarrow b} \frac{\|G(y)\|}{\|y-b\|}=0$. So we can find, for every $\epsilon>0$, a $\delta>0$ such that $\|G(f(x))\|<\epsilon\|f(x)-b\|$ if $\|f(x)-b\|<\delta$. But since f is continuous, $\|f(x)-b\|<\delta$ whenever $\|x-a\|<\delta_{1}$, for a small enough $\delta_{1}>0$. Hence

$$
\begin{aligned}
\|G(f(x))\| & <\epsilon\|f(x)-b\|=\epsilon\|F(x)+L(x-a)\| \\
& \leq \epsilon\|F(x)\|+\epsilon\|L(x-a)\|,
\end{aligned}
$$

by the triangle inequality. Since $\lim _{x \rightarrow a} \frac{\|F(x)\|}{\|x-a\|}$ is zero, we get

$$
\lim _{x \rightarrow a} \frac{\|G(f(x))\|}{\|x-a\|} \leq \epsilon \lim _{x \rightarrow a} \frac{\|L(x-a)\|}{\|x-a\|} .
$$

Applying Lemma 4 again, we get $\|L(x-a)\| \leq c^{\prime}\|x-a\|$, for some $c^{\prime}>0$. Now (i) follows easily.
(f) (i) We can think of $f+g$ as the composite $h=s(f, g)$ where $(f, g)(x)=(f(x), g(x))$ and $s(u, v)=u+v$ ("sum"). Set $b=(f(a), g(a))$. Applying (e), we get

$$
T_{a}(f+g)=T_{b}(s) \circ T_{a}(f, g)=T_{a}(f)+T_{a}(g)
$$

Done. The proofs of (ii) and (iii) are similar and will be left to the reader. $Q E D$.

Remark. It is important to take note of the fact that a vector field f may be differentiable at a without the partial derivatives being continuous. We have a counterexample already when $n=m=1$ as seen by taking

$$
f(x)=x^{2} \sin \left(\frac{1}{x}\right) \quad \text { if } \quad x \neq 0
$$

and $f(0)=0$. This is differentiable everywhere. The only question is at $x=0$, where the relevant limit $\lim _{h \rightarrow 0} \frac{f(h)}{h}$ is clearly zero, so that $f^{\prime}(0)=0$. But for $x \neq 0$, we have by the product rule,

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

which does not tend to $f^{\prime}(0)=0$ as x goes to 0 . So f^{\prime} is not continuous at 0 .

2.4 Mixed partial derivatives

Let f be a scalar field, and a an interior point in its domain $\mathcal{D} \subseteq \mathbb{R}^{n}$. For $j, k \leq n$, we may consider the second partial derivative

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}(a)=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{k}}\right)(a)
$$

when it exists. It is called the mixed partial derivative when $j \neq k$, in which case it is of interest to know whether we have the equality

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}(a)=\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}(a) \tag{3.4.1}
\end{equation*}
$$

Proposition 1 Suppose $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}$ and $\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}$ both exist near a and are continuous there. Then the equality (3.4.1) holds.

The proof is similar to the proof of part (d) of Theorem 1.

