
Chapter 2

Differentiation in higher dimensions

2.1 The Total Derivative

Recall that if f : R → R is a 1-variable function, and a ∈ R, we say that f is differentiable
at x = a if and only if the ratio f(a+h)−f(a)

h
tends to a finite limit, denoted f ′(a), as h tends

to 0.

There are two possible ways to generalize this for vector fields

f : D → Rm, D ⊆ Rn,

for points a in the interior D0 of D. (The interior of a set X is defined to be the subset
X0 obtained by removing all the boundary points. Since every point of X0 is an interior
point, it is open.) The reader seeing this material for the first time will be well advised to
stick to vector fields f with domain all of Rn in the beginning. Even in the one dimensional
case, if a function is defined on a closed interval [a, b], say, then one can properly speak of
differentiability only at points in the open interval (a, b).

The first thing one might do is to fix a vector v in Rn and saythat f is differentiable
along v iff the following limit makes sense:

lim
h→0

1

h
(f(a + hv)− f(a)) .

When it does, we write f ′(a; v) for the limit. Note that this definition makes sense because a
is an interior point. Indeed, under this hypothesis, D contains a basic open set U containing
a, and so a+hv will, for small enough h, fall into U , allowing us to speak of f(a+hv). This
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derivative behaves exactly like the one variable derivative and has analogous properties. For
example, we have the following

Theorem 1 (Mean Value Theorem for scalar fields) Suppose f is a scalar field. Assume
f ′(a + tv; v) exists for all 0 ≤ t ≤ 1. Then there is a to with 0 ≤ to ≤ 1 for which
f(a + v)− f(a) = f ′(a + t0v; v).

Proof. Put φ(t) = f(a + tv). By hypothesis, φ is differentiable at every t in [0, 1], and
φ′(t) = f ′(a + tv; v). By the one variable mean value theorem, there exists a t0 such that
φ′(t0) is φ(1)− φ(0), which equals f(a + v)− f(a). Done.

When v is a unit vector, f ′(a; v) is called the directional derivative of f at a in the
direction of v.

The disadvantage of this construction is that it forces us to study the change of f in one
direction at a time. So we revisit the one-dimensional definition and note that the condition
for differentiability there is equivalent to requiring that there exists a constant c (= f ′(a)),

such that lim
h→0

(
f(a + h)− f(a)− ch

h

)
= 0. If we put L(h) = f ′(a)h, then L : R → R is

clearly a linear map. We generalize this idea in higher dimensions as follows:

Definition. Let f : D → Rm (D ⊆ Rn) be a vector field and a an interior point of D. Then
f is differentiable at x = a if and only if there exists a linear map L : Rn → Rm such that

(∗) lim
u→0

||f(a + u)− f(a)− L(u)||
||u|| = 0.

Note that the norm || · || denotes the length of vectors in Rm in the numerator and in Rn in
the denominator. This should not lead to any confusion, however.

Lemma 1 Such an L, if it exists, is unique.

Proof. Suppose we have L,M : Rn → Rm satisfying (*) at x = a. Then

lim
u→0

||L(u)−M(u)||
||u|| = lim

u→0

||L(u) + f(a)− f(a + u) + (f(a + u)− f(a)−M(u))||
||u||

≤ lim
u→0

||L(u) + f(a)− f(a + u)||
||u||

+ lim
u→0

||f(a + u)− f(a)−M(u)||
||u|| = 0.
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Pick any non-zero v ∈ Rn, and set u = tv, with t ∈ R. Then, the linearity of L,M implies
that L(tv) = tL(v) and M(tv) = tM(v). Consequently, we have

lim
t→0

||L(tv)−M(tv)||
||tv|| = 0

= lim
t→0

|t| ||L(v)−M(v)||
|t| ||v||

=
1

||v|| ||L(v)−M(v)||.

Then L(v)−M(v) must be zero.

Definition. If the limit condition (∗) holds for a linear map L, we call L the total deriva-
tive of f at a, and denote it by Taf .

It is mind boggling at first to think of the derivative as a linear map. A natural question
which arises immediately is to know what the value of Taf is at any vector v in Rn. We will
show in section 2.3 that this value is precisely f ′(a; v), thus linking the two generalizations
of the one-dimensional derivative.

Sometimes one can guess what the answer should be, and if (*) holds for this choice, then
it must be the derivative by uniqueness. Here are two examples which illustrate this.

(1) Let f be a constant vector field, i.e., there exists a vector w ∈ Rm such that
f(x) = w, for all x in the domain D. Then we claim that f is differentiable at any a ∈ D0

with derivative zero. Indeed, if we put L(u) = 0, for any u ∈ Rn, then (*) is satisfied,
because f(a + u)− f(a) = w − w = 0.

(2) Let f be a linear map. Then we claim that f is differentiable everywhere with
Taf = f . Indeed, if we put L(u) = f(u), then by the linearity of f , f(a + u)− f(a) = f(u),
and so f(a+u)−f(a)−L(u) is zero for any u ∈ Rn. Hence (*) holds trivially for this choice
of L.

Before we leave this section, it will be useful to take note of the following:

Lemma 2 Let f1, . . . , fm be the component (scalar) fields of f . Then f is differentiable at
a iff each fi is differentiable at a. Moreover, Tf(v) = (Tf1(v), T f2(v), . . . , T fn(g)).

An easy consequence of this lemma is that, when n = 1, f is differentiable at a iff the
following familiar looking limit exists in Rm:

lim
h→0

f(a + h)− f(a)

h
,
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allowing us to suggestively write f ′(a) instead of Taf . Clearly, f ′(a) is given by the vector
(f ′1(a), . . . , f ′m(a)), so that (Taf)(h) = f ′(a)h, for any h ∈ R.

Proof. Let f be differentiable at a. For each v ∈ Rn, write Li(v) for the i-th component
of (Taf)(v). Then Li is clearly linear. Since fi(a + u)− fi(u)− Li(u) is the i-th component
of f(a + u)− f(a)− L(u), the norm of the former is less than or equal to that of the latter.
This shows that (*) holds with f replaced by fi and L replaced by Li. So fi is differentiable
for any i. Conversely, suppose each fi differentiable. Put L(v) = ((Taf1)(v), . . . , (Tafm)(v)).
Then L is a linear map, and by the triangle inequality,

||f(a + u)− f(a)− L(u)|| ≤
m∑

i=1

|fi(a + u)− fi(a)− (Tafi)(u)|.

It follows easily that (*) exists and so f is differentiable at a.

2.2 Partial Derivatives

Let {e1, . . . , en} denote the standard basis of Rn. The directional derivatives along the unit
vectors ej are of special importance.

Definition. Let j ≤ n. The jth partial derivative of f at x = a is f ′(a; ej), denoted by
∂f

∂xj

(a) or Djf(a).

Just as in the case of the total derivative, it can be shown that
∂f

∂xj

(a) exists iff
∂fi

∂xj

(a)

exists for each coordinate field fi.

Example: Define f : R3 → R2 by

f(x, y, z) = (exsin(y), zcos(y)).

All the partial derivatives exist at any a = (x0, y0, z0). We will show this for
∂f

∂y
and leave

it to the reader to check the remaining cases. Note that

1

h
(f(a + he2)− f(a)) = (

ex0sin(y0+h) − ex0sin(y0)

h
, z0

cos(y0 + h)− cos(y0)

h
).

We have to understand the limit as h goes to 0. Then the methods of one variable calculus
show that the right hand side tends to the finite limit (x0cos(y0)e

x0sin(y0),−z0sin(y0)), which
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is
∂f

∂y
(a). In effect, the partial derivative with respect to y is calculated like a one variable

derivative, keeping x and z fixed. Let us note without proof that
∂f

∂x
(a) is (sin(y0)e

x0sin(y0), 0)

and
∂f

∂z
(a) is (0, cos(y0)).

It is easy to see from the definition that f ′(a; tv) equals tf ′(a; v), for any t ∈ R. This
follows as 1

h
(f(a + h(tv))− f(a)) = t 1

th
(f(a + (ht)v)− f(a)). In particular the Mean Value

Theorem for scalar fields gives fi(a + hv) − f(a) = hf ′i(a + t0hv) = hfi(a + τv) for some
0 ≤ τ ≤ h.

We also have the following

Lemma 3 Suppose the derivatives of f along any v ∈ Rn exist near a and are continuous
at a. Then

f ′(a; v + v′) = f ′(a; v) + f ′(a; v′),

for all v, v′ in Rn. In particular, the directional derivatives of f are all determined by the n
partial derivatives.

We will do this for the scalar fields fi. Notice

fi(a + hv + hv′)− fi(a) = fi(a + hv + hv′)− fi(a + hv) + fi(a + hv)− f(a)

= hfi(a + hv + τv′) + hfi(a + τ ′v)

where here 0 ≤ τ ≤ h and 0 ≤ τ ′ ≤ h. Now dividing by h and taking the limit and h → 0
gives f ′i(a; v + v′) for the first expression. The last expression gives a sum of two limits

limh→0f
′
i(a + hv + τv′) + limh→0f

′
i(a + τ ′v; v′).

But this is f ′i(a; v) + f ′i(a; v′).Recall both τ and τ ′ are between 0 and h and so as h goes to
0 so do τ and τ ′. Here we have used the continuity of the derivatives of f along any line in
a neighborhood of a.

Now pick e1, e2, . . . , en the usual orthogonal basis and recall v =
∑

αiei. Then f ′(a; v) =
f ′(a;

∑
αiei) =

∑
αif

′(a; ei). Also the f ′(a; ei) are the partial derivatives. The Lemma now
follows easily.

In the next section (Theorem 1a) we will show that the conclusion of this lemma remains
valid without the continuity hypothesis if we assume instead that f has a total derivative at
a.
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The gradient of a scalar field g at an interior point a of its domain in Rn is defined to
be the following vector in Rn:

∇g(a) = grad g(a) =

(
∂g

∂x1

(a), . . . ,
∂g

∂xn

(a)

)
,

assuming that the partial derivatives exist at a.

Given a vector field f as above, we can then put together the gradients of its component
fields fi, 1 ≤ i ≤ m, and form the following important matrix, called the Jacobian matrix
at a:

Df(a) =

(
∂fi

∂xj

(a)

)

1≤i≤m,1≤j≤n

∈ Mmn(R).

The i-th row is given by ∇fi(a), while the j-th column is given by
∂f

∂xj

(a). Here we are using

the notation Mmn(R) for the collection of all m × n-matrices with real coefficients. When
m = n, we will simply write Mn(R).

2.3 The main theorem

In this section we collect the main properties of the total and partial derivatives.

Theorem 2 Let f : D → Rm be a vector field, and a an interior point of its domain D ⊆ Rn.

(a) If f is differentiable at a, then for any vector v in Rn,

(Taf)(v) = f ′(a, v).

In particular, since Taf is linear, we have

f ′(a; αv + βv′) = αf ′(a; v) + βf ′(a; v′),

for all v, v′ in Rn and α, β in R.

(b) Again assume that f is differentiable. Then the matrix of the linear map Taf relative
to the standard bases of Rn, Rm is simply the Jacobian matrix of f at a.

(c) f differentiable at a ⇒ f continuous at a.

(d) Suppose all the partial derivatives of f exist near a and are continuous at a. Then Taf
exists.

6



(e) (chain rule) Consider

Rn f−→ Rm g−→ Rh.
a 7→ b = f(a)

Suppose f is differentiable at a and g is diffentiable at b = f(a). Then the composite
function h = g ◦ f is differentiable at a, and moreover,

Tah = Tbg ◦ Taf.

In terms of the Jacobian matrices, this reads as

Dh(a) = Dg(b)Df(a) ∈ Mkn.

(f) (m = 1) Let f , g be scalar fields, differentiable at a. Then

(i) Ta(f + g) = Taf + Tag (additivity)

(ii) Ta(fg) = f(a)Tag + g(a)Taf (product rule)

(iii) Ta(
f

g
) =

g(a)Taf − f(a)Tag

g(a)2
if g(a) 6= 0 (quotient rule)

The following corollary is an immediate consequence of the theorem, which we will make
use of, in the next chapter on normal vectors and extrema.

Corollary 1 Let g be a scalar field, differentiable at an interior point b of its domain D in
Rn, and let v be any vector in Rn. Then we have

∇g(b) · v = g′(b; v).

Furthermore, let φ be a function from a subset of R into D ⊆ Rn, differentiable at an interior
point a mapping to b. Put h = g ◦ φ. Then h is differentiable at a with

h′(a) = ∇g(b) · φ′(a).

Proof of main theorem. (a) It suffices to show that (Tafi)(v) = fi(a; v) for each i ≤ n.
By definition,

lim
u→0

||fi(a + u)− fi(a)− (Tafi)(u)||
||u|| = 0
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This means that we can write for u = hv, h ∈ R,

lim
h→0

fi(a + hv)− fi(a)− h(Tafi)(v)

|h|||v|| = 0.

In other words, the limit lim
h→0

fi(a+hv)−fi(a)
h

exists and equals (Tafi)(v). Done.

(b) By part (a), each partial derivative exists at a (since f is assumed to be differentiable
at a). The matrix of the linear map Taf is determined by the effect on the standard basis
vectors. Let {e′i|1 ≤ i ≤ m} denote the standard basis in Rm. Then we have, by definition,

(Taf)(ej) =
m∑

i=1

(Tafi)(ej)e
′
i =

m∑
i=1

∂fi

∂xj

(a)e′i.

The matrix obtained is easily seen to be Df(a).

(c) First we need the following simple

Lemma 4 Let T : Rn → Rm be a linear map. Then, ∃c > 0 such that ||Tv|| ≤ c||v|| for any
v ∈ Rn.

Proof of Lemma. Let A be the matrix of T relative to the standard bases. Put C =

maxj{||T (ej)||}. If v =
n∑

j=1

αjej, then

||T (v)|| = ||
∑

j

αjT (ej)|| ≤ C

n∑
j=1

|αj| · 1

≤ C(
n∑

j=1

|αj|2)1/2(
n∑

j=1

1)1/2 ≤ C
√

n||v||,

by the Cauchy–Schwarz inequality. We are done by setting c = C
√

n.

This shows that a linear map is continuous as if ||v − w|| < δ then ||T (v) − T (w)|| =
||T (v − w)|| < c||v − w|| < cδ.

(c) Suppose f is differentiable at a. This certainly implies that the limit of the function
f(a + u) − f(a) − (Taf)(u), as u tends to 0 ∈ Rn, is 0 ∈ Rm (from the very definition of
Taf , ||f(a + u) − f(a) − (Taf)(u)|| tends to zero ”faster” than ||u||, in particular it tends
to zero). Since Taf is linear, Taf is continuous (everywhere), so that limu→0(Taf)(u) = 0.
Hence limu→0 f(a + u) = f(a) which means that f is continuous at a.

8



(d) By hypothesis, all the partial derivatives exist near a = (a1, . . . , an) and are continuous
there. It suffices to show that each fi is differentiable at a by lemma 2. So we have only to
show that (*) holds with f replaced by fi and L(u) = f ′i(a; u). Write u = (h1, . . . , hn). By
Lemma 3, we know that f ′i(a;−) is linear. So

L(u) =
n∑

j=1

hj
∂fi

∂xj

(a),

and we can write

fi(a + u)− fi(a) =
n∑

j=1

(φj(aj + hj)− φj(aj)),

where each φj is a one variable function defined by

φj(t) = fi(a1 + h1, . . . , aj−1 + hj−1, t, aj+1, . . . , an).

By the mean value theorem,

φj(aj + hj)− φj(aj) = hjφ
′
j(tj) = hj

∂fi

∂xj

(y(j)),

for some tj ∈ [aj, aj + hj], with

y(j) = (a1 + h1, . . . , aj−1 + hj−1, tj, aj+1, . . . , an).

Putting these together, we see that it suffices to show that the following limit is zero:

lim
u→0

1

||u|| |
n∑

j=1

hj

(
∂fi

∂xj

(a)− ∂fi

∂xj

(y(j))

)
|.

Clearly, |hj| ≤ ||u||, for each j. So it follows, by the triangle inequality, that this limit is

bounded above by the sum over j of lim
hj→0

| ∂fi

∂xj

(a)− ∂fi

∂xj

(y(j))|, which is zero by the continuity

of the partial derivatives at a. Here we are using the fact that each y(j) approaches a as hj

goes to 0. Done.

Proof of (e) Write L = Taf , M = Tbg, N = M ◦ L. To show: Tah = N .

Define F (x) = f(x)− f(a)− L(x− a), G(y) = g(y)− g(b)−M(y − b) and H(x) = h(x)−
h(a)−N(x− a). Then we have

lim
x→a

||F (x)||
||x− a|| = 0 = lim

y→b

||G(y)||
||y − b|| .
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So we need to show:

lim
x→a

||H(x)||
||x− a|| = 0.

But
H(x) = g(f(x))− g(b)−M(L(x− a))

Since L(x− a) = f(x)− f(a)− F (x), we get

H(x) = [g(f(x))− g(b)−M(f(x)− f(a))] + M(F (x)) = G(f(x)) + M(F (x)).

Therefore it suffices to prove:

(i) lim
x→a

||G(f(x))||
||x− a|| = 0 and

(ii) lim
x→a

||M(F (x))||
||x− a|| = 0.

By Lemma 4, we have ||M(F (x))|| ≤ c||F (x)||, for some c > 0. Then
||M(F (x))||
||x− a|| ≤

c lim
x→a

||F (x)||
||x− a|| = 0, yielding (ii).

On the other hand, we know lim
y→b

||G(y)||
||y − b|| = 0. So we can find, for every ε > 0, a

δ > 0 such that ||G(f(x))|| < ε||f(x) − b|| if ||f(x) − b|| < δ. But since f is continuous,
||f(x)− b|| < δ whenever ||x− a|| < δ1, for a small enough δ1 > 0. Hence

||G(f(x))|| < ε||f(x)− b|| = ε||F (x) + L(x− a)||
≤ ε||F (x)||+ ε||L(x− a)||,

by the triangle inequality. Since lim
x→a

||F (x)||
||x−a|| is zero, we get

lim
x→a

||G(f(x))||
||x− a|| ≤ ε lim

x→a

||L(x− a)||
||x− a|| .

Applying Lemma 4 again, we get ||L(x− a)|| ≤ c′||x− a||, for some c′ > 0. Now (i) follows
easily.

(f) (i) We can think of f +g as the composite h = s(f, g) where (f, g)(x) = (f(x), g(x))
and s(u, v) = u + v (“sum”). Set b = (f(a), g(a)). Applying (e), we get

Ta(f + g) = Tb(s) ◦ Ta(f, g) = Ta(f) + Ta(g).
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Done. The proofs of (ii) and (iii) are similar and will be left to the reader.

QED.

Remark. It is important to take note of the fact that a vector field f may be differentiable
at a without the partial derivatives being continuous. We have a counterexample already
when n = m = 1 as seen by taking

f(x) = x2sin

(
1

x

)
if x 6= 0,

and f(0) = 0. This is differentiable everywhere. The only question is at x = 0, where the

relevant limit lim
h→0

f(h)
h

is clearly zero, so that f ′(0) = 0. But for x 6= 0, we have by the

product rule,

f ′(x) = 2xsin

(
1

x

)
− cos

(
1

x

)
,

which does not tend to f ′(0) = 0 as x goes to 0. So f ′ is not continuous at 0.

2.4 Mixed partial derivatives

Let f be a scalar field, and a an interior point in its domain D ⊆ Rn. For j, k ≤ n, we may
consider the second partial derivative

∂2f

∂xj∂xk

(a) =
∂

∂xj

(
∂f

∂xk

)
(a),

when it exists. It is called the mixed partial derivative when j 6= k, in which case it is of
interest to know whether we have the equality

(3.4.1)
∂2f

∂xj∂xk

(a) =
∂2f

∂xk∂xj

(a).

Proposition 1 Suppose
∂2f

∂xj∂xk

and
∂2f

∂xk∂xj

both exist near a and are continuous there.

Then the equality (3.4.1) holds.

The proof is similar to the proof of part (d) of Theorem 1.
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