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Chapter 1

Subsets of Euclidean space, vector
fields, and continuity

Introduction

The aims of this course are the following:

(i) Extend the main results of one-variable Calculus to higher dimensions

(ii) Explore new phenomena which are non-existent in the one-dimensional case

Regarding the first aim, a basic step will be to define notions of continuity and differ-
entiability in higher dimensions. These are not as intuitive as in the one-dimensional case.
For example, given a function f : R → R, we can say that f is continuous if one can draw
its graph Γf without lifting the pen (resp. chalk) off the paper (resp. blackboard). For any
n ≥ 1, we can still define the graph of a function (here called a scalar field) f : Rn → R to
be

Γ(f) := {(x, y) ∈ Rn × R | y = f(x)},
where x denotes the vector (x1, . . . , xn) in Rn. Since Rn × R is just Rn+1, we can think of
Γ(f) as a subset of the (n + 1)-dimensional space. But the graph will be n-dimensional,
which is hard (for non-constant f)to form a picture of, except possibly for n = 2; even then
it cannot be drawn on a plane like a blackboard or a sheet of paper. So one needs to define
basic notions such as continuity by a more formal method. It will be beneficial to think of
a lot of examples in dimension 2, where one has some chance of forming a mental picture.
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Integration is also subtle. One is able to integrate nice functions f on closed rectangular
boxes R, which naturally generalize the closed interval [a, b] in R, and when there is spherical
symmetry, also over closed balls in Rn. Here f being nice means that f is bounded on R
and continuous outside a negligible set. But it is problematic to define integrals of even
continuous functions over arbitrary subsets Y of Rn, even when they are bounded, i.e., can
be enclosed in a rectangular box. However, when Y is compact, i.e., closed and bounded,
one can integrate continuous functions f over it, at least when f vanishes on the boundary
of Y .

The second aim is more subtle than the first. Already in the plane, one is interested in
line integrals, i.e., integrals over (nice) curves C, of vector fields, i.e., vectors of scalar fields,
and we will be interested in knowing when the integrals depend only on the beginning and end
points of the curve. This leads to the notion of conservative fields, which is very important
also for various other subjects like Physics and Electrical Engineering. Somehow the point
here is to not blindly compute such integrals, but to exploit the (beautiful) geometry of the
situation.

This chapter is concerned with defining the basic structures which will be brought to
bear in the succeeding chapters. We start by reviewing the real numbers.

1.1 Construction and properties of real numbers

This section intends to give some brief background for some of the basic facts about real
numbers which we will use in this chapter and in some later ones.

Denote by Z the set of integers {0,±1,±2, . . .} and by Q the set of rational numbers
{a

b
|a, b ∈ Z, b 6= 0}. As usual we identify a

b
with ma

mb
for any integer m 6= 0. To be precise,

the rational numbers are equivalence classes of ordered pairs (a, b) of integers, b 6= 0, with
(a, b) being considered equivalent to (c, d) iff ad = bc. The rational numbers can be added,
subtracted and multiplied, just like the integers, but in addition we can also divide any
rational number x by another (non-zero) y. The properties make Q into a field (as one says
in Algebra), not to be confused (at all) with a vector field which we will introduce below. One
defines the absolute value of any rational number x as sgn(x)x, where sgn(x) denotes the sign
of x. Then it is easy to see that |xy| = |x||y| and |x+y| ≤ |x|+|y| (triangle inequality). There
are other absolute values one can define on Q, and they satisfy a stronger inequality than
the triangle inequality. For this reason, some call the one above the archimedean absolute
value.

The real numbers are not so easy to comprehend, not withstanding the fact that we have

2



been using them at will and with ease, and their construction is quite subtle. It was a clever
ploy on the part of mathematicians to call them real numbers as it makes people feel that
they are real and so easy to understand. Some irrational numbers do come up in geometry,
like the ubiquitous π, which is the area of a unit circle, and the quadratic irrational

√
2,

which is the length of the hypotenuse of a right triangle with two unit sides. However,
many irrational real numbers have no meaning except as limits of nice sequences of rational
numbers or as points on a continuum.

What constitutes a nice sequence? The basic criterion has to be that the sequence looks
like it has a chance of converging, though we should be able to see that without knowing
anything about the limit. The precise condition below was introduced by the nineteenth
century French mathematician Cauchy, whence the term Cauchy sequence.

Definition. A sequence {x1, x2, . . . , xn, . . .} of rational numbers is Cauchy iff we can find,
for every ε > 0 in Q, a positive integer N such that |xn − xm| < ε, for all n,m ≥ N .

Simply put, a sequence is Cauchy iff the terms eventually bunch up around each other.
This behavior is clearly necessary to have a limit.

Possibly the simplest (non-constant) Cauchy sequence of rational numbers is { 1
n
|n ≥ 1}.

This sequence has a limit in Q, namely 0. (Check it!) An example of a sequence which is
not Cauchy is given by {xn}, with xn =

∑n
k=1

1
k
. It is not hard to see that this sequence

diverges; some would say that the limit is +∞, which lies outside Q.

There are many sequences of rational numbers which are Cauchy but do not have a limit
in Q. Two such examples {xn|n ≥ 1} are given by the following: (i) xn =

∑n
k=1

1
k2 ,

and (ii) xn =
∑n

k=1
1
k!

. The first sequence converges to π2/6 and the second to e, both of
which are not rational (first proved by a mathematician named Lambert around 1766). In
fact, these numbers are even transcendental, which means they are not roots of polynomials
f(X) = a0 + a1X + · · ·+ anX

n with a0, a1, . . . , an ∈ Q. Numbers like
√

2 and i =
√−1 are

algebraic numbers, though irrational, and are not transcendental. Of course i is not a “real
number”.

Take your favorite decimal expansion such as the one of π = 3.1415926..... This can be
viewed as a Cauchy sequence {3, 31/10, 314/100, 3141/1000, ...}; you may check that such a
sequence is Cauchy no matter what the digits are! Again, for ”most” expansions you can
come up with, the limit is not in Q. Recall that a decimal expansion represents (converges
to) a rational number if and only if it is periodic after some point.

Essentially, the construction of R consists of formally adjoining to Q the missing limits of
Cauchy sequences of rational numbers. How can we do this in a logically satisfactory manner?
Since every Cauchy sequence should give a real number and every real number should arise
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from a Cauchy sequence, we start with the set X of all Cauchy sequences of rational numbers.
On this set we can even define addition and multiplication by {x1, x2, ..} + {y1, y2, ...} :=
{x1 + y1, x2 + y2, ..} etc. and also division if the denominator sequence stays away from zero
(there is something to be checked here, namely that for example {xn + yn} is again Cauchy
but this is not so hard). It seems that X with these operations is already something like
the real numbers but there is a problem: Two sequences might have the same limit, think
of the zero sequence {0, 0, 0..} and the reciprocal sequence {1/n|n ≥ 1}, and such sequences
should give the same real number, which is 0 in this case. So the last step is to introduce
on X an equivalence relation: Declare x = {xn}, y = {yn} in X to be equivalent if for any
ε > 0 in Q, there exists N > 0 such that |xn − yn| < ε for all n > N (Check that this is
indeed an equivalence relation). The equivalence classes of sequences in X are declared to
constitute the set R of all “real numbers”. The rational numbers naturally form a subset of
R by viewing q ∈ Q as the class of the constant sequence {q, q, . . . , q, . . . }; note that in this
class we have many other sequences such as {q +1/n}, {q +2−n}, {q +1/n!}). Besides Q we
obtain a lot of new numbers to play with. The real number represented by the sequence (ii)
above, for example, is called e. When we say we have an x ∈ R we think of some Cauchy
sequence {x1, x2, ..} representing x, for example its decimal expansion. But note that our
definition of R is in no way tied to the base ten, only to the rational numbers. Now one has
to check that the addition, multiplication and division defined above pass to the equivalence
classes, i.e. to R. This is a doable exercise. One can also introduce an order on X which
passes to equivalences classes: {xn} < {yn} if there is some N so that xn < yn for all n > N .
So the notion of positivity for rational numbers carries over to the reals. One has the triangle
inequality

|x + y| ≤ |x|+ |y|, forall x, y ∈ R.

where |x| = x, resp. −x if x ≥ 0, resp. x < 0.

Here are the key facts about the real numbers on which much of Calculus is based.

Theorem 1 (a) (Completeness of R) Every Cauchy sequence of real numbers has a limit
in R.

(b) (Density of the rationals) Every real number is the limit of a Cauchy sequence of
rational numbers.

More precisely, part (a) says that given {xn} ⊂ R so that ∀ ε > 0, ∃ N such that
∀ n, m > N, |xn − xm| < ε, then there exists x ∈ R so that ∀ ε > 0, ∃ N such that
∀ n > N, |x − xn| < ε. In other words, if we repeat the completion process by which we
obtained R from Q (i.e. start with the set of Cauchy sequences of real numbers and pass to
equivalence classes) we end up with the real numbers again.
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Part (b) says that given any real number x and an ε > 0, we can find infinitely many
rational numbers in the interval (x − ε, x + ε). In particular, we have the following very
useful fact:

Given any pair x, y of real numbers, say with x < y, we can find a rational
number z such that x < z < y, regardless of how small x− y is.

Proof of Theorem 1. Part (b) holds by construction, and it suffices to prove part (a).
If {xn} ⊂ R is a Cauchy sequence we represent each xn as a Cauchy sequence of rational
numbers xn,i, say. We can find f(n) ∈ N so that |xn,i − xn,j| < 2−n for i, j ≥ f(n) because
xn,i is Cauchy for fixed n. Then the sequence xn,f(n) ∈ Q is Cauchy. Indeed, given ε make
n,m large enough so that 2−n < ε/3, 2−m < ε/3 and |xn − xm| < ε/3. Now unravel the
meaning of this last statement. It means that for k large enough we have |xn,k−xm,k| < ε/3.
(Note that k depends on m,n and should perhaps be denoted k(m,n).) Enlarge k further,
if necessary, to make it also bigger than f(n) and f(m). Then we have

|xn,f(n) − xm,f(m)| < |xn,f(n) − xn,k|+ |xn,k − xm,k|+ |xm,k − xm,f(m)| < 2−n + ε/3 + 2−m < ε

for large enough n,m. The real number x represented by the Cauchy sequence xn,f(n) is
the limit of the sequence xn. To see this, given ε take n large so that 2−n < ε/2 and
|xk,f(k) − xn,f(n)| < ε/2 for k ≥ n. If we also have k > f(n) then

|xk,f(k) − xn,k| ≤ |xk,f(k) − xn,f(n)|+ |xn,f(n) − xn,k| < ε.

By definition this means that |x− xn| < ε.

Done.

The completeness of R has a number of different but equivalent formulations. Here is
one of them. Call a subset A of real numbers bounded from above if there is some y ∈ R
such that x ≤ y for every x in A. Such a y is called an upper bound for A. We are interested
in knowing if there is a least upper bound. For example, when A is the interval (a, 5) and
a < 5, A has a least upper bound, namely the number 5. On the other hand, if a ≥ 5, the
set A is empty, and it has no least upper bound. The least upper bound is also called the
supremum, when it exists, and denoted lub or sup. It is easy to see that the least upper
bound has to be unique if it exists.

Theorem 2 Let A be a non-empty subset of R which is bounded from above. Then A has
a least upper bound.

Proof. As we have already mentioned, this property is actually equivalent to the completeness
of R. Let’s first deduce it from completeness. Since A is bounded from above, there exists,
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by definition, some upper bound b1 ∈ R. Pick any a1 ∈ A, which exists because A is non-
empty. Consider the midpoint z1 = (a1 + b1)/2 between a1 and b1. If z1 is an upper bound
of A, put b2 = z1 and a2 = a1. Otherwise, there is an a2 ∈ A so that a2 > z1 and we put
b2 = b1. In both cases we have achieved the inequality |b2 − a2| ≤ 1

2
|b1 − a1|. Next consider

the mid-point z2 between a2 and b2 and define a3, b3 by the same procedure. Continuing
thus “ad infinitum” (to coin a favorite phrase of Fermat), we arrive at two sequences of real
numbers, namely {an|n ≥ 1} and {bn|n ≥ 1}. If we put c = |x1 − y1|, it is easy to see that
by construction,

|an − bn| ≤ c

2n−1
,

and that
|an − an+1| ≤ |an − bn| ≤ c

2n−1

and that the same holds for |bn − bn+1|. Consequently, both of these sequences are Cauchy
and have the same limit z ∈ R, say. Now we claim that z is the lub of A. Indeed, since z is
the limit of the upper bounds bn, it must also be an upper bound. On the other hand, since
it is also the limit of the numbers an lying in A, any smaller number than z cannot be an
upper bound of A. Done.

We only sketch of the proof of the converse. Given a Cauchy sequence {xn} in R consider
the set

A = {y ∈ R| the set {n|xn ≤ y} is finite, possibly empty}.
Then A is nonempty because there is N so that |xn − xm| < 1 for n,m ≥ N . If y = xN − 2
then {n|xn ≤ y} ⊆ {1, 2, ..., N} is finite, so y ∈ A. One can then show that a least upper
bound of A, which will in fact be unique, is also a limit of the sequence {xn}.
QED

Finally a word about the geometric representation of real numbers. Real numbers
x can be represented in a one-to-one fashion by the points P = P (x) on a line, called the
real line such that the following hold: (i) if x < y, P (y) is situated strictly to the right of
P (x); and (ii) |x− y| is the distance between P (x) and P (y). In particular, for any pair of
real numbers x, y, the mid-point between P (x) and P (y), which one can find by a ruler and
compass, corresponds to a unique real number z such that |x− y| = 2|x− z| = 2|y − z|. It
is customary to identify the numbers with the corresponding points, and simply write x to
denote both. Note that the notions of line and distance here are classical; in modern, set-
theory-based mathematics one simply defines a line as some set of points that is in one-to-one
correspondence with the real numbers.
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1.2 The norm in Rn

Consider the n-dimensional Euclidean space

Rn = {x = (x1, x2, · · · , xn) |xi ∈ R, ∀i},

equipped with the inner product (also called the scalar product)

〈x, y〉 =
n∑

j=1

xjyj,

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, and the norm (or length) given by

||x|| = 〈x, x〉1/2 ≥ 0.

Note that 〈x, y〉 is linear in each variable, and that ||x|| = 0 iff x = 0.

Basic Properties:

(i) ||cx|| = |c| ||x||, for all c ∈ R and x ∈ Rn.

(ii) (triangle inequality) ||x + y|| ≤ ||x||+ ||y||, for all x, y ∈ Rn.

(iii) (Cauchy-Schwarz inequality) |〈x, y〉| ≤ ||x||||y||, for all x, y in Rn.

Proof. Part (i) follows from the definition. We claim that part (ii) follows from part (iii).
Indeed, by the bilinearity and symmetry of 〈., .〉,

〈x + y, x + y〉 = 〈x, x〉+ 〈y, y〉+ 2〈x, y〉.

By the Cauchy-Schwartz inequality, |〈x, y〉| ≤ ||x||||y||, whence the claim.

It remains to prove part (iii). Since the assertion is trivial if x or y is zero, we may assume
that x 6= 0 and y 6= 0. If w = αx + βy, with α, β ∈ R, we have

(∗) 0 ≤ 〈w, w〉 = α2〈x, x〉+ 2αβ〈x, y〉+ β2〈y, y〉.

Since this holds for all α, β, we are free to choose them. Put

α = 〈y, y〉, β = −〈x, y〉.
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Dividing (∗) by α, we obtain the inequality

0 ≤ 〈x, x〉〈y, y〉 − 〈x, y〉2.
Done.

The scalar product 〈., .〉 and norm ||.|| can both be defined on Cn as well. For this we set

〈x, y〉 =
n∑

j=1

xjyj,

where z denotes, for any z ∈ C, the complex conjugate of z. Here 〈x, y〉 is linear in the first
variable, but conjugate linear in the second, i.e., 〈αx, y〉 = α〈x, y〉, while 〈x, αy〉 = α〈x, y〉,
for any complex scalar α. In French such a product will be said to be sesquilinear (meaning
“one and a half” linear). In any case, note that 〈x, x〉 is a non-negative real number, which
is positive iff x 6= 0. So again it makes good sense to say that the norm (or length) of any
x ∈ Cn to be ||x|| =

√
〈x, x〉. It is a routine exercise to verify that the basic properties (i),

(ii), (iii) above continue to hold in this case.

We may define a sequence of vectors v1, v2, . . . , vm, . . . in Rn a Cauchy sequence iff for
every ε > 0, we can find an N > 0 such that for all m, r > N , ||vm − vr|| < ε. In other
words, the vectors in the sequence eventually become bunched up together, as tightly as one
requires.

Theorem 3 Rn is complete with respect to the norm || ||.

Idea of Proof. The inequality

|xi| =
√

x2
i ≤

√
x2

1 + · · ·+ x2
n = ||x||

shows that the components of any || ||-Cauchy sequence in Rn are ordinary Cauchy sequences
in R. Hence we are reduced to part (a) of Theorem 1.

1.3 Basic Open Sets in Rn

There are (at least) two types of basic “open” sets in Rn, one round, using open balls, and
the other flat, using rectangular boxes.
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For each a ∈ Rn and r > 0 set

Ba(r) = {x ∈ Rn | ||x− a|| < r},
and call it the open ball of radius r and center a; and

B̄a(r) = {x ∈ Rn | ||x− a|| ≤ r},
the closed ball of radius r and center a. One also defines the sphere

Sa(r) = {x ∈ Rn| ||x− a|| = r}.

A closed rectangular box in Rn is of the form

[a, b] = [a1, b1]× [a2, b2]× · · · × [an, bn] = {x ∈ Rn | xi ∈ [ai, bi], ∀i},
for some a = (a1, · · · , an) ∈ Rn and b = (b1, · · · , bn) ∈ Rn.

An open rectangular box is of the form

(a, b) = (a1, b1)× (a2, b2)× · · · × (an, bn) = {x ∈ Rn | ∀i xi ∈ (ai, bi)}.

Definition. A basic open set in R2n is (either) an open ball or an open rectangular box.

You can use either or both. One gets the same answers for our problems below. In
this vein, observe that every open ball contains an open rectangular box, and conversely.

Remark. It is important to note that given any pair of basic open sets V1, V2, we can find
a nonempty basic open set W contained in their intersection V1 ∩ V2 if this intersection is
non-empty.

1.4 Open and closed sets

Given any subset X of Rn, let us denote by Xc the complement Rn −X in Rn. Clearly, the
complement of the empty set ∅ is all of Rn.

Let A be a subset of Rn and let y be a point in Rn. Then there are three possibilities for
y relative to A.

(IP) There exists a basic open set U containing y such that U ⊆ A.
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(EP) There exists a basic open set U centered at y which lies completely in the complement
of A. i.e., in Rn − A.

(BP) Every basic open set centered at y meets both A and Ac.

In case (IP), y is called an interior point of A. In case (EP), y is called an exterior
point of A. In case (BP), y is called a boundary point of A. Note that in case (IP)
y ∈ A, in case (EP) y 6∈ A, and in case (BP) y may or may not belong to A.)

Definition. A set A in Rn is open if and only if every point of A is an interior point.

Explicitly, this says: “Given any z ∈ A, we can find a basic open set U containing z such
that U ⊆ A.”

Definition. A ⊆ Rn is closed if its complement is open.

Lemma 1 A subset A of Rn is closed iff it contains all of its boundary points.

Proof. Let y be a boundary point of A. Suppose y is not in A. Then it belongs to Ac,
which is open. So, by the definition of an open set, we can find a basic open set U containing
y with U ⊆ Ac. Such a U does not meet A, contradicting the condition (BP). So A must
contain y.

Conversely, suppose A contains all of its boundary points, and consider any z in Ac. Then
z has to be an interior point or a boundary point of Ac. But the latter possibility does not
arise as then z would also be a boundary point of A and hence belong to A (by hypothesis).
So z is an interior point of Ac. Consequently, Ac is open, as was to be shown.

Examples. (1) Basic open sets are open: Indeed, let y belong to the open ball Ba(r) =
{x | ||x − a|| < r}. Then, since || y − a || < r, the number r′ = 1

2
(r − || y − a ||) is positive,

and the open ball By(r
′) around y is completely contained in Bx0(r). The case of open

rectangular boxes is left as an easy exercise.

(2) The empty set φ and Rn are both open and closed.

Since they are complements of each other, it suffices to check that they are both open,
which is clear from the definition.

(3) Let {Wα} be a (possibly infinite and perhaps uncountable) collection of open sets in
Rn. Then their union W = ∪αWα is also open.
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Indeed, let y ∈ W . Then y ∈ Wα for some index α, and since Wα is open, there is an
open set V ⊆ Wα containing y. Then we are done as y ∈ V ⊆ Wα ⊆ W .

(4) Let {W1,W2, · · · , Wn} be a finite collection of open sets. Then their intersection

W =
n⋂

i=1

Wi is open.

Proof. Let y ∈ W . Then y ∈ Wi, ∀i. Since each Wi is open, we can find a basic open set Vi

such that y ∈ Vi ⊆ Wi. Then, by the remark at the end of the previous section, we can find
a basic open set U contained in the intersection of the Vi such that y ∈ U . Done.

Warning. The intersection of an infinite collection of open sets need not be open, already
for n = 1, as shown by the following (counter)example. Put, for each k ≥ 1, Wk =

(− 1
k
, 1

k

)
.

Then ∩kWk = {0}, which is not open.

(5) Any finite set of points A = {P1, . . . , Pr} is closed.

Proof. For each j, let Uj denote the complement of Pj (in Rn). Given any z in Uj, we can
easily find a basic open set Vj containing z which avoids Pj. So Uj is open, for each j. The
complement of A is simply ∩r

j=1Uj, which is then open by (4).

More generally, one can show, by essentially the same argument, that a finite union of
closed sets is again closed.

It is important to remember that there are many sets A in Rn which are neither open
nor closed. For example, look at the half-closed, half-open interval [0, 1) in R.

1.5 Compact subsets of Rn.

It is easy to check that the closed balls Ba(r) and the closed rectangular boxes [a, b] are
indeed closed. But they are more than that. They are also bounded in the obvious sense.
This leads to the notion of “compactness”.

Definition. An open covering of a set A in Rn is a collection U = {Vα} of open sets in
Rn such that

A ⊆ ∪αVα.

In other words, each Vα in the collection is open and any point of A belongs to some Vα.
Note that U may be infinite, possibly uncountable.

Clearly, any subset A of Rn admits an open covering. Indeed, we can just take U to be
the singleton {Rn}.
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A subcovering of an opencovering U = {Vα} of a set A is a subcollection U ′ of U such
that any point of A belongs to some set in U ′.

Definition. A set A in Rn is compact if and only if any open covering U = {Vα} of A
contains a finite subcovering.

Example of a set which is not compact: Let A = (0, 1) be the open interval in R. Look at
U = {W1, W2, · · · } where Wm = ( 1

m
, 1− 1

m
), for each m. We claim that U is an open covering

of A. Indeed, each Wm is clearly open and moreover, given any number x ∈ A, then x ∈ Wm

for some m. But no finite subcollection can cover A, which can be seen as follows. Suppose
A is covered by Wm1 , . . . , Wmr for some r, with m1 < m2 < . . . < mr. Then Wmj

⊂ Wmr for
each j, while the point 1/(mr + 1) belongs to A, but not to Wmr , leading to a contradiction.
Hence A is not compact.

Example of a set which is compact: Let A be a finite set ⊆ Rn. Then A is compact.
Prove it!

Theorem 4 (Heine–Borel) The closed interval [a, b] in R is compact for any pair of real
numbers a, b with a < b.

Proof. Let U = {Vα} be an open covering of [a, b]. Let us call a subset of [a, b] good if
it can be covered by a finite number of Vα. Put

J = {x ∈ [a, b]| [a, x] is good}.
Clearly, a belongs to J , so J is non-empty, and by Theorem 1 of section 2.1, J has a least
upper bound; denote it by z. Since b is an upper bound of J , z ≤ b. We claim that z lies
in J . Indeed, pick any open set Vβ in U which contains z. (This is possible because U is
an open covering of [a, b] and z lies in this interval.) Then Vβ will contain points to the left
of z; call one of them y. Then, by the definition of lub, y must lie in J and consequently,
[a, y] is covered by a finite subcollection {Vα1 , . . . , Vαr} of U . Then [a, z] is covered by U ′ =
{Vβ, Vα1 , . . . , Vαr}, which is still finite; so z ∈ J . In fact, z has to be b. Otherwise, the open
set Vβ will also contain points to the right of z, and if we call one of them t, say, [a, t] will
be covered by U ′, implying that t lies in J , contradicting the fact that z is an upper bound
of J . Thus b lies in J , and the theorem is proved.

Call a subset A in Rn bounded if we can enclose it in a closed rectangular box.

Theorem 5 Let A be a subset of Rn which is closed and bounded. Then A is compact.
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Corollary 1 Closed balls and spheres in Rn are compact.

Remark. It can be shown that the converse of this theorem is also true, i.e., any compact
set in Rn is closed and bounded.

Proof of Theorem 5. The first step is to show that any closed rectangular box
R = [a, b] in Rn is compact: When n = 1, this is just the Heine-Borel theorem. So let
n > 1 and assume by induction that the assertion holds in dimension < n. Now we can write

R = [a1, b1]×R′, with R′ = [a2, b2]× . . .× [an, bn].

Let U = {Wα} be an open covering of R. Then, for each y = t × y′ in R with t in [a1, b1]
and y′ = (y2, . . . , yn) in R′, there is a open set Wα(y) in U containing this point. By the
openness of Wα(y), we can then find an interval (c1, d1) ⊂ R and an open rectangular box
(c′, d′) ⊂ Rn−1 such that t × y ∈ (c1, d1) × (c′, d′) ⊂ Wα(y). Then the collection of the sets
(c′, d′) for y′ ∈ R′ and t fixed covers R′. Since R′ is compact by the induction hypothesis,
we can find a finite set, call it V ′, of the (c′, d′) whose union covers R′. Let I(t) denote the
intersection of the corresponding finite collection of open intervals (c1, d1), which is open
(cf. the previous section) and contains t. Then the collection {I(t)} is an open covering of
[a1, b1]. By Heine-Borel, we can then extract a finite subcovering, say V , of [a1, b1]. It is now
easy to see that V × V ′ is a finite subcovering of [a, b]. For any (c1, d1) ∈ V and (c′, d′) ∈ V ′
we have (c1, d1)×(c′, d′) ⊆ Wα for some α so R is contained in a union of finitely many Wα’s.

The next step is to consider any closed, bounded set A in Rn. Pick any open covering
U of A. Since A is bounded, we can enclose it completely in a closed rectangular box [a, b].
Since A is closed, its complement Ac is open. Thus U ∪ {Ac} is an open covering of [a, b].
Then, by the first step, a finite subcollection, say {Vα1 , . . . , Vαr , A

c} covers [a, b]. Then, since
Ac ∩ A = ∅, the (finite) collection {Vα1 , . . . , Vαr} covers A. Done.

1.6 Vector Fields and Continuity

We are interested in functions:
f : D → Rm

with D ⊆ Rn, called the domain of f . The image (or range) of f is f(D) ⊂ Rm. Such an
f is called a vector field. When m = 1, one says scalar field instead, for obvious reasons.

For each j ≤ m, we write fj(x) for the jth coordinate of f(x). Then f is completely
determined by the collection of scalar fields {fj|j = 1, . . . ,m}, called the component fields.
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Definition. Let a ∈ D, b ∈ Rm. Then b is the limit of f(x) as x tends to a, denoted

b = lim
x→a

f(x),

if the following holds: For any ε > 0 there is a δ > 0 so that for all x ∈ D satisfying
0 < ||x− a|| < δ, we have ||f(x)− b|| < ε.

This is just the like the definition of limits for functions on the real line but with the
absolute value replaced by the norm. In dimension 1, the existence of a limit is equivalent to
having a right limit and a left limit, and then having the two limits being equal. In higher
dimensions, one can approach a point a from infinitely many directions, and one way to
think of it will be to start with an open neighborhood of a and then shrinking it in many
different ways to the point a. So the existence of a limit is more stringent a condition here.

The definition of continuity is now literally the same as in the one variable case:

Definition. Let a be in the domain D. Then f(x) is continuous at x = a if and only if
lim
x→a

f(x) = f(a).

Remarks:

a) A vector field f is continuous at a iff each component field fj is continuous, for j =
1, . . . , m.

b) In these definitions we need not assume that a is an interior point of D. For example,
a could be a boundary point of a domain D which is a closed box. In an extreme case
a could also be the only point of D in some open ball. In this case continuity becomes
an empty condition; every function f is continuous at such a “discrete” point a.

Examples:

(1) Let f(x, y, z) = ((x2 + y2x)z2, xy + yz), D = R3. Then f : R3 → R2 is continuous at
any a in Rn.

More generally, any polynomial function is n variables is continuous everywhere. Ratio-

nal functions
P (x1, · · · , xn)

Q(x1, · · · , xn)
are continuous at all x = (x1, · · · , xn) where Q(x) 6= 0.

(2) f is a polynomial function of sines, cosines and exponentials.

It is reasonable to ask at this point what all this has to do with open sets and compact
sets. We answer this in the following two lemmas. We call a subset of D ⊆ Rn open, resp.
closed, if it is the intersection of an open, resp. closed set of Rn with D.
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Lemma 2 Let f : D → Rm be a vector field. Then f is continuous at every point a ∈ D if
and only if the following holds: For every open set W of Rm, its inverse image f−1(W ) :=
{x ∈ D|f(x) ∈ W} ⊆ D is open.

Warning: f continuous does not mean that the image of an open set is open. Take, for
instance, the constant function f : R → R, given by f(x) = 0, for all x ∈ R. This is a
continuous map, but any open interval (a, b) in R gets squished to a point, and f((a, b)) is
not open.

Proof. Let W be an open set in Rm and a ∈ f−1(W ). Then choose ε so that Bf(a)(ε) ⊆ W
which is possible since W is open. By continuity there is a δ so that f(Ba(δ)∩D) ⊆ Bf(a)(ε) ⊆
W which just means that Ba(δ) ∩ D ⊆ f−1(W ). Since a is arbitrary we find that f−1(W )
is open. Conversely, if f satisfies this condition then f−1(Bf (a)(ε)) is open since Bf (a)(ε) is
open. Hence we can find a small ball Ba(δ) ∩ D ⊆ f−1(Bf (a)(ε)) around a ∈ f−1(Bf (a)(ε))
which implies that f is continuous at a.

Remark: This Lemma shows that the notion of continuity does not depend on the par-
ticular norm function used in its definition, only on the collection of open sets defined via
this norm function (recall the equivalent ways of using boxes or balls to define open sets).

Lemma 3 Let f : Rn → Rm be continuous. Then, given any compact set C of Rn, f(C) is
compact.

Proof. Let C be a compact subset of Rn. Pick any open covering U = {Wα} of f(C).
Then by the previous lemma, if we put Vα = f−1(Wα), each Vα is an open subset of Rn.
Then the collection {Vα} will be an open covering of C. By the compactness of C, we ca
then find a finite subcovering {Vα1 , . . . , Vαr} of C. Since each Wα is simply f(Vα), f(C) will
be covered by the finite collection {Wα1 , . . . , Wαr}. Done.

As a consequence, any continuous image of a closed rectangular box or a closed ball or a
sphere will be compact.
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