1. For a pair of vertices u, v in a graph G, the distance between u and v, denoted $d(u, v)$, is the number of edges in the path from u to v using as few edges as possible. The diameter of G is

$$\max_{u,v \in V(G)} d(u, v).$$

Let d, k be positive integers. Let G be a graph with maximum degree d and diameter k. Show that

$$|V(G)| \leq 1 + d \sum_{i=0}^{k-1} (d - 1)^i.$$

Give an example of an G with $(d, k) = (3, 2)$ where equality holds.

2. A cycle in a graph is Hamiltonian if it goes through all vertices. Suppose G is a graph on n vertices with the property that for every pair of vertices u, v that are not adjacent, $\deg(u) + \deg(v) \geq n$. Prove that G has a Hamiltonian cycle. Can we replace n in the previous inequality by any value smaller than n and guarantee G is Hamiltonian?

3. (No Collaboration) Determine, with proof, the value of $ex(n, K_{1,r})$ for every pair of positive integers n, r.

4. (a) Suppose G is a graph not containing C_4 (a cycle on four vertices) as a subgraph. Prove that

$$\sum_{v \in V(G)} \left(\frac{\deg(v)}{2} \right) \leq \left(\binom{n}{2} \right),$$

and use this to prove there is a constant $C > 0$ such that

$$ex(n, C_4) \leq C \cdot n \sqrt{n}$$

for all $n \geq 4$.

(b) Let q be any prime and \mathbb{F}_q be the finite field of order q. Consider the bipartite graph G_q with bipartition $(\mathcal{P}_q, \mathcal{V}_q)$ where \mathcal{P}_q is the set of 2-dimensional subspaces of \mathbb{F}_q^3 and \mathcal{V}_q is the set of 1-dimensional subspaces of \mathbb{F}_q^3, with $p \in \mathcal{P}_q$ adjacent to $v \in \mathcal{V}_q$ if and only if v lies in p. Show that for any prime q, G_q does not contain C_4 as a subgraph, and

$$|E(G_q)| \geq \frac{n \sqrt{n}}{2 \sqrt{2}},$$

where $n = |V(G_q)|$. Hence there is a constant $C > 0$ such that for infinitely many n,

$$ex(n, C_4) \geq C \cdot n \sqrt{n}.$$
Recall that for any graphs G_1, G_2, \ldots, G_k, we define $R(G_1, G_2, \ldots, G_k)$ to be the smallest positive integer n so that for any k-coloring of the edges of K_n, say with colors c_1, c_2, \ldots, c_k, there must exist some i for which G_i is a subgraph, all of whose edges are colored with color c_i. For simplicity, we denote $R(K_{r_1}, K_{r_2}, \ldots, K_{r_k})$ by $R(r_1, r_2, \ldots, r_k)$.

5. (No Collaboration) Let m, n be positive integers, and assume $(m - 1)|(n - 1)$. Determine, with justification, a function $f(m, n)$ for which $R(T, K_{1,n}) = f(m, n)$ for every tree T on m vertices.

6. In this problem, we shall prove $R(3, 4) = 9$.

 (a) Consider the graph G whose vertex set is $\{1, 2, 3, 4, 5, 6, 7, 8\}$, with i and j adjacent if and only if $i - j = \pm 1$ or $\pm 4 \text{ mod } 8$. Show that G does not have K_3 and a subgraph, and \overline{G} does not contain K_4 as a subgraph.

 (b) Show that for any graph G on 9 vertices, either G has K_3 as a subgraph, or \overline{G} has K_4 as a subgraph. (Hint: Consider three cases: The existence of a vertex with degree at least 4, the existence of a vertex of degree at most 2, and G being 3-regular).

7. (a) Show that $R(3, 3, \ldots, 3) \leq \lfloor e \cdot r! \rfloor + 1$.

 (b) Suppose the integers $\{1, 2, \ldots, n\}$ are partitioned into r disjoint sets A_1, A_2, \ldots, A_r. Show that if $n \geq \lfloor e \cdot r! \rfloor + 1$, then one of the sets A_i contains three elements x, y, z such that $x + y = z$.