1. Solution:
 a. First we consider triples. For any fixed number, there are $\binom{5}{3}$ possible triples, because we could have triples of differing colors. Thus we have $8 \cdot \binom{5}{3}$ triples. Now we have pairs remaining. Of the pairs, there are 7 possible values left to choose, and their colors must be the remaining colors left. Thus there are $7 \cdot 8 \cdot \binom{5}{3}$ possible Full Houses.

 b. This obviously holds since k and l are symmetric.

 The left side counts the number of ways of choosing k objects from a set of n, and then choosing ℓ objects from the remaining objects. We could have done this instead by picking the ℓ objects first, and then choosing k from the remaining, which is the right side.

 c. There are n people, and each can shake hands with either 0, 1, 2, \ldots, $n - 1$ people. If the set of handshakes that take place has size less than n, then by the Pigeon-Hole principle, two people shook the same number of hands. Otherwise, the set of handshakes is the set $\{0, 1, 2, \ldots, n - 1\}$. But this is impossible because the person who shook $n - 1$ hands shook everyone’s hand, so there can’t be someone who shook 0 hands.

2. Solution:
 Ask instructor (Solution to come).

3. Solution:
 a. Expand the LHS:

 $$LHS = \sum_{k=m}^{n} \frac{n!}{(n-k)!k!(k-m)!m!} = \sum_{k=m}^{n} \frac{(n-m)!}{(n-k)!(k-m)!m!} \cdot \frac{n!}{n!} = 2^{n-m} \binom{n}{m}$$

 b. The RHS counts the number of ways to choose two disjoint sets from n objects, s.t. one set has cardinality m. It’s then equivalent to choose k ($k > m$) objects from these n objects first, and then partitioned these k objects into two piles, s.t. one pile has m objects, which is just LHS.

4. Solution:
 The set of surjections $S = (\bigcup_{i=1}^{n} A_{i})^{c}$, where A_{i} denotes the set of mappings whose images do not contain i.

 By Inclusion-Exclusion Principle, we have:

 $$|S| = \sum_{j=0}^{n} (-1)^{j}|N_{j}|$$

 where $N_{j} := \sum_{|I|=j} N(I)$ and $N(I) := |\bigcap_{i \in I} A_{i}|$.

 Clearly, for $|I| = j$, $|N(I)| = (n-j)^{m}$, so $|S| = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j}(n-j)^{m}$. □
5. Solution:

a. Since the chalkboard’s width is only 2, consider the first column of this chalkboard.

Case 1: there are just two 1×1 square tiles in the first column.
Remove these 2 tiles, we get a chalkboard of $2 \times (n - 1)$.
Case 2: there are one 1×1 square tile and one L-shaped tile in the first two columns.
Clearly, it has 4 ways to put the 1×1 square tile and then the corresponding L-shaped tile is also fixed.
Remove these 2 tiles, we get a chalkboard of $2 \times (n - 2)$.
Case 3: there are 2 L-shaped tiles in the first three columns.
Clearly, it has 2 ways to put these L-shaped tiles in the first three columns.
Remove these 2 tiles, we get a chalkboard of $2 \times (n - 3)$.
Combining these 3 cases, we get a recursion formula for $n \geq 3$:
$$T_n = T_{n-1} + 4T_{n-2} + 2T_{n-3}$$

b. Consider the generating function $f(x) = \sum_{n \geq 0} T_n x^n$, with initial conditions $T_0 = 1, T_1 = 1, T_2 = 5$, we have:
$$f(x) = \sum_{n \geq 0} T_n x^n = 1 + x + 5x^2 + \sum_{n \geq 3} (T_{n-1} + 4T_{n-2} + 2T_{n-3})x^n$$
$$= 1 + x + 5x^2 + x(f(x) - x - 1) + 4x^2(f(x) - 1) + 2x^3f(x)$$
$$f(x) = \frac{1}{1 - x - 4x^2 - 2x^3} = \frac{1}{1 + x - \frac{2x}{2x^2 + 2x - 1}} = \frac{1}{1 + x - \frac{3 + \sqrt{3}}{2}x - \frac{3 - \sqrt{3}}{2}}$$
Expand RHS and we get
$$T_n = (-1)^n + \frac{\sqrt{3}}{3}[(1 + \sqrt{3})^n - (1 - \sqrt{3})^n]$$
It’s then easy to check that $T_3 = 11, T_4 = 33, T_5 = 87$. □