1. Let \(n \geq 1 \) be a positive integer. Prove
\[
1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n + 1)^2}{4}.
\]

Solution: When \(n = 1 \), the left side is 1 and the right side is \(\frac{1^2 \cdot 2^2}{4} = 1 \). Now assume that the equality holds from some positive integer \(n \). We claim the statement holds for \(n + 1 \). Indeed,
\[
1^3 + 2^3 + \cdots + n^3 + (n + 1)^3 = \frac{n^2(n + 1)^2}{4} + (n + 1)^3
\]
\[
= (n + 1)^2 \left[\frac{n^2}{4} + n + 1 \right]
\]
\[
= (n + 1)^2 \left[\frac{n^2 + 4n + 4}{4} \right]
\]
\[
= \frac{(n + 1)^2(n + 2)^2}{4}.
\]
Thus by Mathematical Induction, the statement holds for all positive integers \(n \).

2. Prove that for any integer \(n \geq 1 \),
\[
(cos(\theta) + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta),
\]
where \(i^2 = -1 \).

Solution: Equality clearly holds for \(n = 1 \). Now suppose \(n \geq 2 \) is a positive integer, and \((cos(\theta) + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta)\). Then
\[
(cos(\theta) + i \sin(\theta))^{n+1} = (cos(\theta) + i \sin(\theta))^n (cos(\theta) + i \sin(\theta))
\]
\[
= (cos(n\theta) + i \sin(n\theta)) \cdot (cos(\theta) + i \sin(\theta))
\]
\[
= (cos(n\theta) \cos(\theta) - \sin(n\theta) \sin(\theta)) + i(sin(n\theta) \cos(\theta) + \sin(\theta) \cos(n\theta))
\]
\[
= \cos((n + 1)\theta) + i \sin((n + 1)\theta)
\]
Thus by Mathematical Induction, the statement holds for all positive integers \(n \).

3. For each of the following, prove or disprove the limit exists.

(a) \[
\lim_{x \to 3} (2x - 1).
\]
Solution: Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{2}$. Then if x satisfies $0 < |x - 3| < \delta$, then

$$|(2x - 1) - 5| = |2x - 6| = 2|x - 3| < 2\delta = \epsilon.$$

Thus, by the definition of a limit,

$$\lim_{x \to 3} (2x - 1) = 5.$$

(b)

$$\lim_{x \to 3} x^2.$$

Solution: We claim $\lim_{x \to 3} x^2 = 9$. Indeed, given $\epsilon > 0$, we choose $\delta > 0$ to be

$$\delta = \min \left\{ \frac{\epsilon}{7}, 1 \right\}.$$

Then if $0 < |x - 3| < \delta$, we have

$$|x^2 - 9| = |x - 3||x + 3| = |x - 3|(|x - 3 + 6|) \leq |x - 3||x - 3| + 6) < 7|x - 3| < \epsilon.$$

The last inequality comes from the fact that $|x - 3| < \epsilon/7$. The second last inequality comes from the fact that $|x - 3| < 1$.

(c)

$$\lim_{x \to 0} \frac{1}{x}.$$

Solution: Suppose otherwise. That is, suppose $\lim_{x \to 0} \frac{1}{x} = L$ for some real number L. We’ll assume $L \geq 0$; the argument for when $L < 0$ is similar. Let $\epsilon = 1$. Then for any arbitrary $\delta > 0$ it suffices to find a value of x with $|x| < \delta$ such that $f(x) > L + 1$. choose

$$x = \min \left\{ \frac{\delta}{2}, \frac{1}{2(L + 1)} \right\}.$$

Certainly x satisfies $|x| < \delta$, and we see that

$$f(x) = \frac{1}{x} \geq \frac{1}{2(L+1)} = 2(L + 1) > L + 1.$$

We conclude

$$\lim_{x \to 0} \frac{1}{x}$$

does not exist.

4. Give examples to show that the following definitions of $\lim_{x \to a} f(x) = \ell$ are not correct.
(a) For all \(\delta > 0 \) there is an \(\epsilon > 0 \) such that if \(0 < |x - a| < \delta \) then \(|f(x) - \ell| < \epsilon \).

Solution: This statement is true for any bounded function, regardless if it’s continuous or not. As an example, consider the function \(f(x) \) defined by \(f(x) = 1 \) if \(x \geq 0 \) and \(f(x) = -1 \) if \(x < 0 \). For this function, \(\lim_{{x \to 0}} f(x) \) does not exist. However, given any \(\delta > 0 \), if we pick \(\epsilon = 3 \) we have that if \(x \) is in the range of values for which \(0 < |x - 0| < \delta \), then \(|f(x) - f(1)| \) is at most 2, and hence \(|f(x) - f(1)| < 3 \), so this definition would imply \(\lim_{{x \to 0}} f(x) = 1 \), which is false.

(b) For all \(\epsilon > 0 \) there is a \(\delta > 0 \) such that if \(|f(x) - \ell| < \epsilon \) then \(0 < |x - a| < \delta \).

Solution: We will show that there are functions that have limits at a specific point, but violate the given definition. Consider the function \(f(x) = 2 \) for every \(x \). Certainly, \(\lim_{{x \to 1}} f(x) = 2 \). However, the given definition implies does not hold. Indeed, choose \(\epsilon > 0 \), and let \(\delta > 0 \) be any thing. Then, in fact, every single value of \(x \) satisfies \(|f(x) - 2| < \epsilon \), but certainly if we make \(x \) very large it will not satisfy \(|x - 0| < \delta \).

5. Define the function \(f(x) \) on the interval \([0, 1]\) by

\[
 f(x) = \begin{cases}
 0 & \text{if } x \text{ is irrational} \\
 1/n & \text{if } x \in \mathbb{Q} \text{ and } x = m/n \text{ in reduced form}
\end{cases}
\]

Determine, with proof, whether or not

\[
 \lim_{{x \to \frac{9}{2012}}} f(x) = f\left(\frac{9}{2012}\right).
\]

Also, determine, with proof, whether or not

\[
 \lim_{{x \to \frac{1}{\sqrt{2}}}} f(x) = f\left(\frac{1}{\sqrt{2}}\right).
\]

Solution: We first consider

\[
 \lim_{{x \to \frac{9}{2012}}} f(x) = f\left(\frac{9}{2012}\right).
\]

We claim this statement is not true. Observe that there are only finitely many rational numbers in the interval \([0, 1]\) whose denominators are greater than 2012. Let \(M \) be the minimum distance from \(\frac{9}{2012} \) to any of these rational numbers. Then for any \(x \) in the interval \(\frac{9}{2012} - \frac{M}{2} \leq x \leq \frac{9}{2012} + \frac{M}{2} \) we have \(f(x) \leq \frac{1}{2013} \).

Now let \(\epsilon = \frac{1}{2012} - \frac{1}{2013} \). Now given any \(\delta > 0 \), choose a real number \(x \) such that that is in the interval \(\frac{9}{2012} - \frac{M}{2} \leq x \leq \frac{9}{2012} + \frac{M}{2} \) and the interval \(\frac{9}{2012} - \delta \leq x \leq \frac{9}{2012} + \delta \). Then \(0 \leq f(x) \leq \frac{1}{2013}, \) so

\[
 |f(x) - f\left(\frac{9}{2012}\right)| = \left| f(x) - \frac{1}{2012} \right| = \frac{1}{2012} - f(x) \geq \frac{1}{2012} - \frac{1}{2013} = \epsilon.
\]
Now consider
\[\lim_{x \to \sqrt{2}} f(x) = f \left(\frac{1}{\sqrt{2}} \right) = 0. \]

We prove this statement is in fact true. Choose \(\epsilon > 0 \). Let \(N \) be any integer such that \(\frac{1}{N} < \epsilon \). There are only finitely many fractions whose denominators are less than or equal to \(N \). Let \(M \) be the minimum distance from any of these fractions to \(\frac{1}{\sqrt{2}} \). Let \(\delta = M \). Then for any \(x \) satisfying \(0 < |x - \frac{1}{\sqrt{2}}| < M \), we have
\[|f(x) - f \left(\frac{1}{\sqrt{2}} \right)| = |f(x) - 0| = |f(x)| < \frac{1}{N} < \epsilon. \]

6. Compute the following limits (you don’t need to use the definition of a limit at all):

(a) \(\lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x}) \).

Solution: Observe that
\[\sqrt{x+1} - \sqrt{x} = \frac{(x+1) - x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}. \]
Thus
\[\lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x}) = \lim_{x \to \infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0. \]
Now since \(0 \leq \frac{1}{\sqrt{x+1} + \sqrt{x}} \leq \frac{1}{2\sqrt{x}} \), and both \(\lim_{x \to 0} 0 = \lim_{x \to 0} \frac{1}{2\sqrt{x}} = 0 \), we conclude by the Squeeze Theorem
\[\lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x}) = 0. \]

(b) \(\lim_{x \to 0} \frac{\tan(3x)}{x} \).

Solution: The argument in the limit is \(\frac{\tan(3x)}{x} = \frac{\sin(3x)}{x \cos(3x)} \). Thus, our limit is
\[3 \cdot \lim_{x \to 0} \cos(3x) \cdot \lim_{x \to 0} \frac{\sin(3x)}{3x} = 3 \cdot 1 \cdot 1 = 3. \]

(c) \(\lim_{x \to \infty} (7^x + 2^x)^{\frac{1}{x}} \).

Solution: Notice that \(7^x \leq 7^x + 2^x \leq 2(7^x) \), the last inequality being true because \(2^x < 7^x \) for positive \(x \) (which is sufficient to look at because we want to know about the limit as \(x \) goes to infinity). Thus
\[(7^x)^{\frac{1}{x}} \leq (7^x + 2^x)^{\frac{1}{x}} \leq [2(7^x)]^{\frac{1}{x}}. \]
Simplifying, we have
\[7 \leq (7^x + 2^x)^{\frac{1}{x}} \leq 7 \cdot 2^{\frac{1}{x}}. \]
Since \(\lim_{x \to 0} 2^{\frac{1}{x}} = 1 \) (because \(\lim_{x \to 0} \frac{1}{x} = 0 \)), we have that \(\lim_{x \to 0} 7 = \lim_{x \to 0} 7 \cdot 2^{\frac{1}{x}} = 7 \). Thus
\[\lim_{x \to \infty} (7^x + 2^x)^{\frac{1}{x}} = 7. \]