Let R be a ring, with $1 \in R$.

1. When is R a simple module over itself?

2. (a) List all non-isomorphic semisimple rings with 81 elements.
 (b) Which of these are commutative?

3. Let R be a left Artinian ring, and let I be an ideal of R. Assume that $I^2 = (0)$ implies that $I = (0)$ for all I. Prove that R is semisimple.

5. Let G be a group and let H be a subgroup of G of finite index. Let K be a field such that the characteristic does not divide $[G : H]$.
 Let V be a KG-module with a submodule W and let U_o be a KH-module such that $V = W \oplus U_o$.
 Show that there exists a KG-submodule U of V such that $V = W \oplus U$.

6. Let K be a field and define
 \[S := \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in K \right\}. \]
 How many simple modules does S have? Is S a semisimple ring?