1. Let p be a rational prime, and let F be the property that

For all $a \in \mathbb{Z}$, \(\left(\frac{a}{p} \right) = -1 \iff a \text{ is a primitive root modulo } p. \)

Show that F holds if and only if p is a Fermat prime.

2. Let n be a composite integer. Show that \((n-1)! \equiv -1 \mod n\).

3. Let p be a rational prime. Show that \((p-1)! \equiv -1 \mod p\). Conclude that checking the value of \((m-1)! \mod m\) is a test for the primality of m. Is this a reasonable test? Check that 11 is prime using this test.

4. Why is ideal theory for fields an uninteresting topic?

5. Let n be a rational integer greater than 2. Show that there are no primitive roots modulo 2^n.