1. Show that all imaginary quadratic fields have only finitely many units, and determine these explicitly.

2. Prove that any positive definite binary integral quadratic form of discriminant 5 is equivalent over \(\mathbb{Z} \) to either \(x^2 + 5y^2 \) or \(2x^2 + 2xy + 3y^2 \). Show that these two forms are not equivalent to one another over \(\mathbb{Z} \).

3. Show that there are infinitely many units in \(\mathbb{Q}(\sqrt{2}) \), and hence exhibit three solutions to the equation

\[
x^2 - 2y^2 = 1, \ x, y \in \mathbb{Z}.
\]

Hint: find a unit in \(\mathbb{Q}(\sqrt{2}) \) which is not \(\pm 1 \), and show that it is not a root of unity.

4. Let \(A \) be the adeles of \(\mathbb{Q} \) and let \(A^f \) be the subring of the adeles whose real coordinate is 0. We see that \(\mathbb{Q} \) embeds diagonally into \(A^f \). Prove that the image of \(\mathbb{Q} \) is dense in \(A^f \).

5. Let \(S \) be a finite set of places of \(\mathbb{Q} \), and let \(A_S \) be the subring of \(A \) consisting of the elements of \(A \) whose \(v \)-coordinate is 0 for all \(v \in S \). Show that, if \(S \) is not empty, then \(\mathbb{Q} \) is dense in \(A_S \).

6. Let \(m \) be a squarefree integer. Show that the fields \(\mathbb{Q}(\sqrt{m}) \) are pairwise distinct, by considering the equation \(\sqrt{m} = a + b\sqrt{n} \) or otherwise.