Nonradiative Recombination Processes in GaN-based Semiconductors Probed by the Transient Grating Method

Koichi Okamoto†, Yoichi Kawakami1, Shigeo Fujita1, Masahide Terazima2, and Shuji Nakamura3*

1Department of Electronic Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
2Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
3Department of Research and Development, Nichia Chemical Industries Ltd., Tokushima 774-8601, Japan

Transient grating (TG) method with nanosecond pulsed laser was used to detect the heat released by the nonradiative recombination of carriers and/or excitons in GaN-based semiconductors at room temperature. Obtained TG signal rises immediately within the excitation pulse (few nanosecond) and decayed within few tens nanosecond. This decay profile can be fitted by a single exponential function. By solving the diffusion equation, it was found that the pre-exponential factor and the rate constant obtained from fitting suggest the increase of temperature (∆T) originating from the nonradiative recombination and the thermal diffusivity (Dth) in material, respectively. Obtained Dth value (0.41 cm²s⁻¹) is close to the theoretical value (0.44 cm²s⁻¹) calculated by the density (ρ), heat capacity (Cp), and thermal conductivity (λc) as Dth=λc/ρCp. The excitation power dependence of ∆T showed the linear relationship, which is different from the reported case of ZnSe. Such discrepancy can be understood as a difference in capture cross section of carriers and/or excitons to nonradiative recombination centers.

KEYWORD: nonradiative recombination, transient grating, GaN-based semiconductor; thermal diffusivity

1. Introduction

GaN-based semiconductors are very advantageous materials for light emitting diode (LED) and laser diode (LD) within blue-UV spectral region. In spite of high threading dislocation density (10⁸-10¹⁰ cm⁻²), the external quantum (ηex) of emission for GaN-based LEDs are very high (10-15%) which is comparable to the value achieved in ZnSe-based semiconductors with low etch pit densities (<10⁴ cm⁻²). Some group studied the relationship between the threading dislocation and the emission efficiencies probed by the cathodoluminescence (CL) mapping, or site selective time-resolved photoluminescence (PL) and so on. Obtained results show that macroscopic dislocation do act as nonradiative recombination centers. It is likely that point defects such as vacancy, anti-site, or complex centers coupled with impurities are the factor to limit the emission efficiency. Such measurements are based on the observation of radiative recombination processes of carriers and/or excitons in materials. On the other hand, direct observations of nonradiative recombination dynamics have been only few reports so far. However, both radiative and nonradiative processes should be known to elucidate the carrier dynamics and to develop the device properties because the internal quantum efficiency (ηint) is determined from the radiative and nonradiative recombination lifetime.

The heat dynamics can be assessed by measuring the photo-induced refractive index change (∆n) by using the Transient grating (TG) method. The TG method is one of the third order nonlinear spectroscopy, which has been used to detect the several optical properties of semiconductor at the very fast region with the pico or femto second order. However, the observation of heat dynamics in semiconductors by the TG method with a nanosecond pulsed laser has not so far been investigated. Quite recently, we reported that the thermal dynamics of nonradiative recombination processes in ZnSe-based semiconductors can be detected directory by using the TG method. In this paper, we observed the nonradiative recombination processes of GaN-based semiconductors directly by the TG method with a nanosecond pulsed laser. Obtained results were compared to there in ZnSe-based semiconductors.

2. Experimental procedure

The sample of GaN epitaxial layer was grown on a (0001) oriented sapphire substrate with a thickness of 4 µm by a two-flow metalorganic chemical vapor...
The sample is excited by this optical grating and the carriers and/or excitons are created. Then, the densities of carriers and/or excitons are also moderated alone the optical grating (population grating). The excited area releases the heat by the nonradiative recombination of carriers and/or excitons and the temperature of the sample is modulated (thermal grating). The refractive index (n) and the absorbance (k) of the materials are also modulated by these gratings. Such modulation of optical properties (Δn, Δk) are similar to the refractive grating. A probe beam from a He-Ne laser (633nm) was partly diffracted (TG signal) by these gratings. The intensity of the TG signal can be written by

\[I_{TG} = \alpha \Delta n^2 + \beta \Delta k^2 \]

(4)

where \(\alpha \) and \(\beta \) are constants. The TG signal was detected by a photomultiplier tube (Hamamatsu R-928) after isolation from the probe light with a pinhole and a glass filter (Toshiba R-62), recorded with a digital oscilloscope (Tektronix 2430A), and analyzed with a microcomputer. The signals were averaged about 320 times to improve the S/N ratio. The whole measurements have been done at room temperature (23°C).

3. Result and discussion

Figure 2 shows the time profile of a typical TG signal taken for GaN and ZnSe epitaxial layers. The crossing angle of two excitation beams and fringe

![Fig. 2. Time profile of the TG signal of ○ZnSe and ■GaN epitaxial layer at room temperature.](image-url)
space are 4° and 4.7 μm, respectively. These signals rise immediately within the excitation pulse (few nanosecond) and decay within few tens nanosecond. This signal is due to the population grating and/or thermal grating. When the two components contribute simultaneously to the TG signal, the analysis of the TG signals should be very difficult. However, with few tens nanosecond region after excitation, the excitons or carriers should be already terminated. Therefore, the obtained TG signal should be due to only the thermal grating.

To analyze the time profile of the TG signals, the time profile of the carrier dynamics should be considered. The time and spatial dependence of the carrier density \(N(x, t) \) is given by the following rate equation.

\[
\frac{dN(x, t)}{dt} = D \frac{\partial^2 N(x, t)}{\partial t^2} - (k_{\text{rad}} + k_{\text{non}})N(x, t)
\]

(5)

where \(k_{\text{rad}} \) and \(k_{\text{non}} \) are the radiative and nonradiative recombination rate constants (inverse of the lifetime) and \(D \) is the diffusion coefficient of carriers and/or excitons. Then, the temperature change \(\delta T(x, t) \) by the nonradiative recombination of the carriers are given by

\[
\frac{d\delta T(x, t)}{dt} = a k_{\text{non}} \delta T(x, t) + D_a \frac{\partial^2 \delta T(x, t)}{\partial t^2}
\]

(6)

where, \(D_a \) is thermal diffusivity in the materials and \(a \) is the proportional constant. By solving Eq. (5)-(6) with condition \(D \gg D_a \), following relationship is obtained.

\[
\delta T(q, t) = \frac{a k_{\text{non}} N(q, 0)}{k_{\text{rad}} + k_{\text{non}} + D_a q^2} \left\{ \exp\left[-\left(k_{\text{rad}} + k_{\text{non}} + D_a q^2 \right) t \right] \right\} \\
+ \exp\left[-D_a q^2 t \right]
\]

(7)

where \(\delta T(q, t) \) is the Fourier component of \(\delta T(x, t) \). Because the diffusion processes of carriers are slower than the recombination processes \((k_{\text{rad}} + k_{\text{non}} \gg D_a q^2) \) and faster than the thermal conduction \((D \gg D_a) \), Eq. (7) can be reduced as follows.

\[
\delta T(q, t) = \frac{a k_{\text{non}} N(q, 0)}{k_{\text{rad}} + k_{\text{non}}} \exp(-D_a q^2 t)
\]

(8)

By Eq. (4), the TG signal intensity is given by the sum of the square of \(\Delta n \) and \(\Delta k \). As ZnSe and GaN-based semiconductors do not have the absorption at the wavelength of the probe beam (633 nm), the TG signal is contributed only from \(\Delta n \). The time and spatial dependence of the refractive index change by the temperature change is given by

\[
\delta n(q, t) = \frac{dn}{dT} \delta T(q, t).
\]

(9)

Therefore, the time profile of the TG signals can be explained by following equation.

\[
I_{\text{TG}}(q, t) \propto \Delta T \exp(-D_a q^2 t)
\]

(10)

where \(\Delta T \) is the temperature change from the heat released by the nonradiative recombination processes of carriers and/or excitons. This equation indicates that the decay profile of the TG signals should be fitted by a single exponential function. Therefore, from the pre-exponential factor and the decay rate constant, we can obtain \(\Delta T \) by the nonradiative recombination and \(D_a \). \(D_a \) is obtained as 0.084 cm²s⁻¹ and 0.41 cm²s⁻¹ for ZnSe and GaN, respectively. \(D_a \) of GaN is about 5 times larger than that of ZnSe, indicating that GaN has a merit for driving the heat out of an active layer. \(D_a \) can be calculated theoretically by \(D_a = \lambda_e / \rho C_p \). By using the literature values \(\lambda_e = 0.19 \text{ Wcm}^{-1}\text{K}^{-1}, \rho = 5.266 \text{ gcm}^{-3}, \) and \(C_p = 0.0086 \text{ calg}^{-1}\text{K}^{-1} \) as ZnSe, \(\lambda_e = 1.3 \text{ Wcm}^{-1}\text{K}^{-1}, \rho = 6.095 \text{ gcm}^{-3}, \) and \(C_p = 9.745 \text{ calmol}^{-1}\text{K}^{-1} \) as GaN), \(D_a \) was calculated as \(D_a = 1.00 \text{ cm}^2\text{s}^{-1} \) and 0.44 cm²s⁻¹.

![Fig. 3 Excitation energy dependence of the root square of the TG signal of ZnSe and GaN](image-url)
for ZnSe and GaN, respectively. These values are close to the experimental one.

Recently, we reported the excitation power dependence of ΔT of ZnSe and ZnCdSe/ZnSe quantum well and found that the ΔT in ZnSe was saturated under the high excitation energy region. This phenomenon probably suggests that photogenerated carriers or excitons in ZnSe-based semiconductors are more easily trapped by the nonradiative recombination centers, resulting in the lower threshold carrier density for the saturation. The radiative processes of ZnSe and GaN are similar (the external quantum efficiencies of LEDs of both materials are 10-15%), but the nonradiative processes of both materials may be different. Therefore, to elucidate the more detailed information on the nonradiative recombination, we measured the excitation energy dependence of the TG signals of GaN and compared with that of ZnSe.

Fig. 3 show the excitation power dependence of GaN and ZnSe. The straight lines are guide for eyes. It was found that the nonradiative center in GaN was not saturated, which is different from the reported case of ZnSe. Such discrepancy can be understood as a difference in the nonradiative recombination dynamics of the carriers and/or excitons. This is probably related to the fact that GaN epitaxial layers show substantially high PL efficiency in spite of the high dislocation in the crystals. In many semiconductors including ZnSe, dislocations of the crystals act as a nonradiative centers. However, recently, we reported that the nonradiative recombination lifetime of GaN is not so sensitive to the dislocation densities by using the time and spatially resolved PL spectroscopy. As mentioned in the section of introduction, the limiting factor is not probably macroscopic defects but point defects. Such difference in the nature of the nonradiative centers may reflect the variance of excitation energy dependence of ΔT between GaN and ZnSe. We considered that the carriers in GaN-based are hardly trapped in the nonradiative recombination centers. This property should be due to the immobility of carriers and to low diffusivities of the carriers in GaN-based semiconductor. This fact should be the origin of the strong emission intensity in GaN-based semiconductor despite the large dislocation densities. Similar measurement of InGaN/GaN is in progress and would give valuable information on the optical properties.

4. Conclusion

It was found that the TG method is the powerful tool to detect the thermal dynamics of nonradiative recombination processes of carriers and/or excitons in GaN-based semiconductors. Thermal diffusivity in GaN obtained by the decay rate constant of the TG signals ($D_{th} = 0.41 \text{ cm}^2\text{s}^{-1}$) was close to the calculated one ($D_{th} = 0.44 \text{ cm}^2\text{s}^{-1}$). We found that the nonradiative dynamics of GaN is different from that of ZnSe. It is possible to obtain further detailed information on recombination process by the quantitative estimation of the nonradiative processes probed by the TG method and the radiative processes probed by the PL spectroscopy. It is important to note that detailed information on the optical properties such as the ratio between internal quantum efficiency and external one by comparing nonradiative and radiative processes. Such an approach is in progress.

Acknowledgements

This work was partly supported by the Kyoto University-Venture Business Laboratory Project, Research Foundation for Opto-Science and Technology, Konica Imaging Science Foundation and a Grant-in- Aid for Scientific Research from the Japan Society for the Promotion of Science and Ministry of Education, Science and Culture.