This week’s problems will continue with partial waves and also deal with resonant scattering and electron-atom scattering.

1. Consider a “shell potential,”

$$V(r) = \alpha \delta(r - r_0),$$

for \(r \), the radial spherical coordinate in three dimensions.

a. Find the \(s \)-state wavefunction for \(E > 0 \). Include an expression that determines the phase shift \(\delta_0 \). With \(\hbar k = \sqrt{2mE} \), show that in the limit \(k \to 0 \), \(\delta_0 \to ak \), with constant \(a \) (the “scattering length”). Solve for \(a \) in terms of \(\alpha \) and \(r_0 \).

b. How many bound states can exist for \(\ell = 0 \) and how does their existence depend on \(\alpha \)?

c. What is the scattering length \(a \) when a bound state appears at \(E = 0 \)? What happens to \(a \) as the shell potential changes from repulsive \((\alpha > 0)\) to attractive \((\alpha < 0)\), and when \(\alpha \) is sufficiently negative to form a bound state? Sketch \(a \) as a function of \(\alpha \).

2. In this problem you will consider the deuteron and neutron-proton scattering more carefully. The deuteron, a spin-triplet and \(\ell = 0 \) bound state of a neutron and a proton, has a binding energy of 2.26 MeV. It is also known that this is the only bound state of the neutron and proton (there are no excited bound states.) The neutron-proton scattering length (for the triplet) is \(a_t = 5.42 \text{ fm} \). Suppose we guess that the neutron-proton interaction is an attractive rectangular well of depth \(V_0 \) and radius \(R \) (i.e., \(V(r) = -V_0 \) for \(r < R \) and \(V(r) = 0 \) for \(r > R \).)

a. Find values for \(V_0 \) and \(R \) that reproduce this binding energy and scattering length.

b. Calculate the effective range \(r_0 \) you would expect from these parameters. How does this result compare with the experimental value of \(r_t = 1.73 \text{ fm} \)?

c. What is the total cross section at low energies? and how does it compare with \(\pi R^2 \)?

d. At what energies is it safe to approximate the total cross section just by the \(\ell = 0 \) cross section?
e. What is the total cross section for this potential at high energies? and how does it compare with \(\pi R^2 \)?

3. a. Derive equation (7.12.6) from Sakurai,

\[
\frac{d\sigma}{d\Omega} (0 \rightarrow n) = \frac{1}{(\hbar k/mL^3)} \frac{2\pi}{\hbar} |\langle k'n|V|0\rangle|^2 \left(\frac{L}{2\pi} \right)^3 \frac{(k'm)}{\hbar^2} \\
= \left(\frac{k'}{k} \right) L^6 \left[\frac{1}{4\pi} \frac{2m}{\hbar^2} \langle k', n|V|k, 0\rangle \right]^2,
\]

the differential cross section for inelastic electron-atom scattering. Here, \(k \) is the wavevector of the incident particle (of mass \(m \)) and \(k' \) that for the scattered particle. The operator \(V \) describes the interaction potential between the incident electron and the atomic nucleus and electrons, and \(L \) is the size the (very large) box that is assumed to enclose the system.

b. (Sakurai 7.11) Show that the differential cross section for the elastic scattering of a fast electron by the ground state of the hydrogen atom is given by

\[
\frac{d\sigma}{d\Omega} = \left(\frac{4m^2e^4}{\hbar^4q^4} \right) \left\{ 1 - \frac{16}{[4 + (qa_0)^2]^2} \right\}^2.
\]

Ignore the effect of identity of the incident and atom electron.