This week’s problems will focus on the method of partial waves.

1. **Square-well potential** (Sakurai 7.3): Consider a potential $V = 0$ for $r > R$ and $V = V_0 = \text{constant}$ for $r < R$, where V_0 may be positive or negative. Using the method of partial waves, show that for $|V_0| \ll E = \hbar^2 k^2 / 2m$ and $kR \ll 1$ the differential cross section is isotropic and that the total cross section is given by

$$
\sigma_{\text{tot}} = \left(\frac{16\pi}{9} \right) \frac{m^2 V_0^2 R^6}{\hbar^4}.
$$

Suppose the energy is raised slightly. Show that that angular distribution can then be written as

$$
\frac{d\sigma}{d\Omega} = A + B \cos \theta,
$$

and obtain an approximate expression for B/A.

2. **Partial-wave scattering from a Yukawa potential** (Sakurai 7.4): A spinless particle is scattered by a weak Yukawa potential,

$$
V = \frac{V_0 e^{-\mu r}}{\mu r},
$$

where $\mu > 0$ but V_0 can be positive or negative. The first-order Born amplitude is given by

$$
f^{(1)}(\theta) = -\frac{2mV_0}{\hbar^2 \mu} \frac{1}{[2k^2(1 - \cos \theta) + \mu^2]}.
$$

a. Using $f^{(1)}(\theta)$ and assuming $|\delta_l| \ll 1$, obtain an expression for δ_l in terms of the Legendre function of the second kind,

$$
Q_l(\zeta) = \frac{1}{2} \int_{-1}^{1} \frac{P_l(\zeta')}{\zeta - \zeta'} d\zeta'.
$$
b. Use the expansion formula,

\[Q_l(\zeta) = \frac{l!}{1 \cdot 3 \cdot 5 \cdots (2l + 1)} \]

\[\times \left\{ \frac{1}{\zeta^{l+1}} + \frac{(l + 1)(l + 2)}{2(2l + 3)} \frac{1}{\zeta^{l+3}} + \frac{(l + 1)(l + 2)(l + 3)(l + 4)}{2 \cdot 4 \cdot (2l + 3)(2l + 5)} \frac{1}{\zeta^{l+5}} + \cdots \right\}, \quad (|\zeta| > 1) \]

to prove each of the following two assertions: (i) The phase shift \(\delta_l \) is negative (positive) when the potential is repulsive (attractive). (ii) When the de Broglie wavelength is much longer than the range of the potential, \(\delta_l \) is proportional to \(k^{2l+1} \). Find the proportionality constant.

3. **Scattering by an impenetrable sphere** (Sakurai 7.6): Consider the scattering of a particle by an impenetrable sphere: \(V(r) = 0 \) for \(r > a \) and \(V(r) = \infty \) for \(r < a \).
 a. Derive an expression for the s-wave \((l = 0) \) phase shift. (You need not know the detailed properties of the spherical Besel functions to be able to do this simple problem.)
 b. What is the total cross section \(\sigma_{\text{tot}} \) in the extreme low-energy limit, \(k \to 0 \). Compare your answer with the geometric cross section \(\pi a^2 \).