1 Definition of a Markov algorithm

A Markov Algorithm on an alphabet \(A \) is a finite sequence \(\langle I_1, \ldots, I_k \rangle \) of pairs of words in \(A^* \), \(I_i = (x_i, y_i) \) for \(1 \leq i \leq k \). A Markov algorithm proceeds as follows: Given an initial string \(w \in A^* \), we find the first \(i \) such that \(x_i \) occurs in \(w \) and replace the right-most occurrence by \(y_i \). Formally, if \(w = ux_iv \) is such that whenever \(x_i v = u'x_i v' \) we must have \(u' = \emptyset \), then we replace \(w \) by \(uy_i v \). We then replace \(w \) by this new word and repeat this process as long as some \(x_i \) occurs in \(w \), halting if and only if we reach a word with no such occurrences.

Definition 1 Let \(A \supseteq \{\ast, B, 1\} \). A function \(f : \mathbb{N}^n \rightarrow \mathbb{N} \) is computed by a Markov algorithm if, for all \(x_1, \ldots, x_n \in \mathbb{N}^n \):

1. \(f(x_1, \ldots, x_n) \downarrow \) if and only if the algorithm terminates when started with the string
 \[\ast 1^{x_1+1}B1^{x_2+1}B \ldots B1^{x_n+1} \]
2. if \(f(x_1, \ldots, x_n) \downarrow \), then the algorithm halts with the output string \(1^{f(x_1, \ldots, x_n)} \).

Functions on larger alphabets can be defined similarly.

A function is Markov Algorithm-Computable (MA-computable) if there is a Markov algorithm which computes it.

Example: The function \(f(x) = x - 1 \) is computed by the algorithm:

\[
I_1 = (\ast 11, \emptyset) \\
I_2 = (\ast 1, \emptyset)
\]

2 MA-computability

Proposition 2 Every TM-computable function is MA-computable.

Proof: We use a Markov algorithm to simulate the running of the Turing machine \(M = (A, Q, I) \). We use the alphabet \(B = \{\ast, \bullet\} \cup A \cup Q \) (assuming these are disjoint). The idea is to have our string represent the tape description, the state, and the head position at a given time, with instructions simulating one step of the machine. We will assume that \(M \) follows the same input-output conventions as above, but that the Markov algorithm uses \(\bullet \) instead of \(\ast \), so that the initial tape descriptions will be \(\ast w \) for some \(w \in A^* \) and the initial word for the algorithm will be \(\bullet w \). Our word will have the form \(\ast w_1 q w_2 \) where \(w_1, w_2 \in A^* \) and \(q \in Q \) to indicate that the machine is in state \(q \), the tape contains \(\ast w_1 w_2 \) and the head is reading the rightmost character of \(\ast w_1 \). The instructions are as follows:
1. \((\bullet, *q_0)\)

2. For each \((q_i, s_i, q_j, s_j, L) \in M\) we include \((s_i q_i, q_j s_j)\).

3. For each \((q_i, s_i, q_j, s_j, R) \in M\) and \(a \in A\) we include \((s_i q_i a, s_j a q_j)\).

4. For each \((q_i, s_i, q_j, s_j, 0) \in M\) we include \((s_i q_i, s_j q_j)\).

5. \((*, \emptyset)\).

Note that except for the first and last instruction, the order is irrelevant; precisely one of the given \(x_i\)'s occurs, unless the machine has reached the halt state in which case none of them do. The intermediate instructions then modify one TM state description to the successive state description.

Proposition 3 Every MA-computable function is While-computable.

The idea is to use the fact that the occurrence and replacement functions are all primitive recursive, hence While-computable. Then so too is the function which finds the least \(i\) such that \(x_i\) occurs in \(w\) and replaces it by \(y_i\), as this can be built from cases. Then we need a single while loop which repeats as long as some \(x_i\) occurs in \(w\).

Corollary 4 The classes of While-computable, TM-computable and MA-computable partial functions are all the same.