Problems labeled “CL” are from the text.

1. CL 3.14
2. CL 3.17
3. CL 3.18
4. (a) CL 3.11
 Note that if all of the models of a theory are isomorphic, they must all have the same cardinality. We will see later that this implies that the theory has only finite models.
 (b) Show that if T is a theory with at least one countably infinite model, and all of the countably infinite models of T (those whose underlying set is bijective with the set of natural numbers) are isomorphic, then T is complete.
5. CL 3.21
6. Let $\mathcal{L} = \langle < \rangle$ have a single binary relation symbol, and consider the theory T of dense linear orders whose axioms are the following:
 \[
 \neg \exists x \exists y (x < y \land y < x) \\
 \forall x \forall y \forall z ((x < y \land y < z) \Rightarrow x < z) \\
 \forall x \forall y (x = y \lor x < y \lor y < x) \\
 \forall x \forall y (x < y \Rightarrow \exists z (x < z \land z < y))
 \]
 These are the linear orders where no element has an immediate successor or predecessor.
 (a) Show that T is not complete. [Hint: Consider whether there can be least or greatest elements.]
 How many inequivalent complete extensions of T are there?
 (b) Let T' be the theory of dense linear orders without endpoints, i.e. T together with with the sentence:
 \[
 \forall x \exists y \exists z (x < y \land z < x)
 \]
 Note that this theory has no finite models. Show that $\langle \mathbb{Q}, < \rangle$ is a model of T', so that T' is consistent.
 (c) Show that the theory of dense linear orders without endpoints is countably categorical, i.e. if \mathcal{M} and \mathcal{N} are two countable models of T', then $\mathcal{M} \cong \mathcal{N}$ (and so both are isomorphic to $\langle \mathbb{Q}, < \rangle$). [Hint: Construct an isomorphism using what is called a “back-and-forth” argument. Enumerate the elements of the underlying sets of \mathcal{M} and \mathcal{N}. Define progressively larger partial isomorphisms in such a way that elements are alternately added to the domain and range of the maps to achieve a bijection, and use density and lack of endpoints to ensure that this can be done indefinitely.]
7. CL 2.4
8. CL 2.18