(30%) 1. (i) Let A be a wff and assume that the only connectives appearing in A are among \neg, \land, \lor (i.e., $\Rightarrow, \Leftrightarrow$ don’t appear). Let A^* be obtained from A by replacing each propositional variable p appearing in A by $\neg p$ and replacing \land by \lor and \lor by \land. Show that

$$\neg A \equiv A^*$$

(i.e., $\neg A, A^*$ are logically equivalent).

(ii) Suppose A is a wff as in (i). Let A' be the wff obtained from A by replacing \land by \lor and \lor by \land. We call A' the dual of A. (Example: $(p \lor q) \land \neg r$ is the dual of $(p \land q) \lor \neg r$.) Show that A is a tautology iff $\neg A'$ is a tautology.

(iii) (Principle of duality) For A, B wff as in (ii), show that

$$A \equiv B \iff A' \equiv B'.$$

(20%) 2. Consider the wff

$$A_n = ((\ldots (p_1 \Leftrightarrow p_2) \Leftrightarrow p_3) \Leftrightarrow \ldots) \Leftrightarrow p_n).$$

Show that a valuation v satisfies A_n exactly when $v(p_i) = 0$ for an even number of i in the interval $1 \leq i \leq n$.

(20%) 3. For each $n = 2, 3, 4, \ldots$ find a set $S = \{A_1, A_2, \ldots, A_n\}$ consisting of n wff such that S is not satisfiable, but any proper nonempty subset $S' \subseteq S$ is satisfiable.

(30%) 4. A set S of wff is independent if for any wff $A \in S$, $S \setminus \{A\} \not\models A$, i.e., A is not implied logically by the rest of the wff in S. (So, by definition, the empty set \emptyset is independent, and $S = \{A\}$ is independent iff A is not a tautology.)

(i) Which of the sets

(a) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow q\}$

(b) $\{p \Rightarrow q, q \Rightarrow r, p \Rightarrow r\}$

(c) $\{p \Rightarrow r, r \Rightarrow q, q \Rightarrow p, r \Rightarrow (q \Rightarrow p)\}$

are independent and which are not?

(ii) Two sets of wff, S, S' are called equivalent if $S \models A'$ for any $A' \in S'$ and $S' \models A$ for any $A \in S$. (So, by definition, if $S = \{A\}$, where A is a tautology, \emptyset is equivalent to S.) Show that for any finite set S of wff, there is a subset $S' \subseteq S$ which is independent and equivalent to S.

1