GENERAL OUTLINE
PHYSICAL ASPECTS OF FRACTURE

1. Introduction
2. Characterization of order/disorder in materials
 • Basic notions of probability theory
 • Characterization of order/disorder on atomic scales: waves scattering
 ➢ Scattering by perfect crystals
 ➢ Scattering by liquids or amorphous structures
3. Fracture mechanisms in heterogeneous materials
 • Defects and fracture mechanisms in metals
 • Brittle and quasi-brittle fracture
4. Fracture paths and fracture surfaces
 • Random walks; rough surfaces; self-similarity; self-affinity
 • Experimental characterization of rough fracture surfaces
 • A brief introduction to equilibrium statistical physics
 • Fluctuations of an elastic manifold at equilibrium
5. Models for fracture of heterogeneous media
 • An introduction to phase transitions
 • The example of percolation
 • “Fibre bundle” and “random fuse” models
 • Kinetic roughening models
6. Fracture of glasses
 • Atomistic simulations
 • Classical models of stress corrosion
 • Damage formation in glasses
 • Plasticity of amorphous systems