Problem 1: Griffiths 9.33 Suppose

\[E(r, \theta, \phi, t) = E_0 \frac{\sin \theta}{r} \left[\cos(kt - \omega t) - \left(\frac{1}{kr} \right) \sin(kt - \omega t) \right] \hat{\phi}, \text{ with } \frac{\omega}{k} = c \]

(a) Show that \(E \) obeys all four of Maxwell's equations, in vacuum, and find the associated magnetic field.

(b) Calculate the Poynting vector and the intensity vector \(I \).

(c) Determine the total power radiated.

Problem 1: Griffiths 9.36 Light from an aquarium goes from water \((n = 4/3)\) through a plane of glass \((n = 3/2)\) into air \((n = 1)\). Assuming it’s a monochromatic plane wave and that it strikes the glass at normal incidence, find the minimum and maximum transmission coefficients. You can see the fish clearly; how well can it see you?

Note: Transmission coefficient is given in the book:

\[T^{-1} = \frac{1}{4n_1n_3} \left[(n_1 + n_3)^2 + \frac{(n_1^2 - n_2^2)(n_2^2 - n_3^2)}{n_2^2} \sin^2 \left(\frac{n_2 \omega d}{c} \right) \right] \]