Hamiltonian Mechanics
From last week, we have the Euler-Lagrange equation.

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = 0 \]

This will be useful for solving a system where we have holonomic constraints and conservative forces.

From the Lagrangian, we can define the Hamiltonian to be

\[H = \sum_k \dot{q}_k \frac{\partial L}{\partial \dot{q}_k} - L. \]

H is often written as T + V, the sum of kinetic and potential energy. However, it is important to remember that this is only true in the case of a system having only scleronomic constraints (constraints that do not have explicit time dependence).

If a coordinate (ie, x, y,...) does not show up in the Lagrangian but its times derivative does, we call that coordinate ignorable, or cyclic. Ignorable or cyclic coordinates in a system will result in some conservation law of its corresponding momentum.

In an optimizing problem, given that we want to find an extremum of the functional \(I = \int_{x_0}^{x_1} F \left(y, \frac{dy}{dx}, x \right) dx \), (a functional is a function of functions, ie. in our case, \(F \) is a function of \(y \) and \(y \) is a function of \(x \)), the general solution is just

\[\frac{\partial F}{\partial y} = \frac{d}{dx} \left(\frac{\partial F}{\partial \frac{dy}{dx}} \right) \]

It turns out that if we replace our functional with the Lagrangian and integrate it with respect to time, the solution that optimizes the integral \(S[q] = \int_{t_0}^{t_1} L(q(t), \dot{q}(t), t) dt \), (called action), is just the Euler-Lagrange equation. Since we know that the Euler-Lagrange equation is equivalent to Newton’s Laws, we can find the equation of motion of a system by optimizing the action integral.

In a system with more than one degree of freedom, \(N \), that are all independent from one another, by setting changes in the action integral to 0, we can obtain \(N \) Euler-Lagrange equations to obtain the \(N \) equations of motion of the system.

Problem 1: HF 1-22 (Box sliding horizontally) A box of mass M slides horizontally on a frictionless surface. The distance of the box’s center of mass from the origin is denoted by \(X \). Suspended from inside the center of the box is a pendulum of length \(l \) at the bottom of which is a mass m. All the motion takes place in the XY plane. What is the Lagrangian for this system? What are the EOMs?

Problem 2: Consider the function \(y(x) = x + \alpha \sin x \). Find \(\alpha \) to minimize the distance between the limit \(x = 0 \) and \(x = 2\pi \).

Problem 3: Brachistochrone: Consider a particle moving in a constant force field starting at rest from some point \((x_1, y_1)\) to some lower point \((x_2, y_2)\). Find the path that allows the particle to accomplish the transit in the least possible time.