Generalization of the Likelihood Ratio Test

The Neyman-Pearson Lemma says that the likelihood ratio test is optimal for simple hypotheses.

Goal: to develop a generalization of this test for use in situations in which the hypotheses are not simple.

- Generalized likelihood ratio tests are not generally optimal, but they perform reasonably well.
 - Often there are no optimal tests at all.
- Generalized likelihood ratio tests have wide utility.
 - They play the same role in testing as MLEs do in estimation.
Generalized Likelihood Ratio Test

Let $X = (X_1, \ldots, X_n)$ be data and let $\pi(x|\theta)$ be the joint density of the data. The likelihood function is then

$$L(\theta) = \pi(X|\theta)$$

Suppose we wish to test

$$H_0 : \theta \in \Theta_0 \quad \text{versus} \quad H_1 : \theta \in \Theta_1$$

where Θ_0 and Θ_1 are two disjoint sets of the parameter space Θ, $\Theta = \Theta_0 \sqcup \Theta_1$.

- Based on the data, a measure of relative plausibility of the hypotheses is the ratio of their likelihoods.
- If the hypotheses are composite, each likelihood is evaluated at that value of θ that maximizes it.

This yields the **generalized likelihood ratio**:

$$\Lambda^* = \frac{\max_{\theta \in \Theta_0} L(\theta)}{\max_{\theta \in \Theta_1} L(\theta)}$$

Small values of Λ^* tend to discredit H_0.
Generalized Likelihood Ratio Test

For technical reasons, it is preferable to use the following statistic instead of Λ^*:

$$\Lambda = \frac{\max_{\theta \in \Theta_0} L(\theta)}{\max_{\theta \in \Theta} L(\theta)}$$

- Λ is called the likelihood ratio statistic.
- Note that

$$\Lambda = \min\{\Lambda^*, 1\}$$

Thus, small values of Λ^* correspond to small values of Λ.

The rejection region R for a generalized likelihood test has the following form:

$$\text{reject } H_0 \iff X \in R = \{X : \Lambda(X) < \lambda\}$$

The threshold λ is chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha,$$

where α is the desired significance level of the test.
Example

Let X_1, \ldots, X_n be i.i.d. from $\mathcal{N}(\mu, \sigma^2)$, where variance σ^2 is known. Consider testing the following hypothesis:

$$H_0 : \mu = \mu_0 \quad \text{and} \quad H_1 : \mu \neq \mu_0$$

Construct the generalized likelihood test with significance level α.

Answer:

$$\text{Reject } H_0 \iff \frac{\sqrt{n}|\bar{X}_n - \mu_0|}{\sigma} > z_{\frac{\alpha}{2}}$$
Distribution of $\Lambda(X)$

In order for the generalized likelihood ratio test to have the significance level α, the threshold λ must be chosen so that

$$\mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha$$

If the distribution of $\Lambda(X)$ under H_0 is known, then we can determine λ.

- In the Example, $-2 \log \Lambda(X) \sim \chi^2_1$.

Generally, the distribution of Λ is not of a simple form, but in many situations the following theorem provides the basis for an approximation of the distribution.

Theorem

Under smoothness conditions on $\pi(x|\theta)$, the null distribution of $-2 \log \Lambda(X)$ (i.e. distribution under H_0) tends to a χ^2_d as the sample size $n \to \infty$, where

$$d = \dim \Theta - \dim \Theta_0,$$

where $\dim \Theta$ and $\dim \Theta_0$ are the numbers of free parameters in Θ and Θ_0.

- In the Example, $\dim \Theta = 1$ and $\dim \Theta_0 = 0$.
Summary

- **Generalized likelihood ratio tests** are used when the hypothesis are composite
 - They are not generally **optimal**, but perform reasonably well.
 - They play the same role in testing as MLEs do in estimation.

- The **rejection region** \mathcal{R} for a generalized likelihood test has the following form:

 \[
 \text{reject } H_0 \iff X \in \mathcal{R} = \{X : \Lambda(X) < \lambda\}
 \]

 - Λ is the likelihood ratio statistic,
 \[
 \Lambda = \frac{\max_{\theta \in \Theta_0} \mathcal{L}(\theta)}{\max_{\theta \in \Theta} \mathcal{L}(\theta)}
 \]

 - The **threshold** λ is chosen so that
 \[
 \mathbb{P}(\Lambda(X) < \lambda | H_0) = \alpha,
 \]
 where α is the desired significance level of the test.

- As sample size $n \to \infty$, the null distribution of $-2 \log \Lambda(X)$ tends to a χ^2_d, where
 \[
 d = \text{dim } \Theta - \text{dim } \Theta_0
 \]