Agenda

- Example: Two Coins Tossing
- General Framework
- Type I Error and Type II Error
- Significance Level
- Power
- Neyman-Pearson Lemma
- Example: the likelihood ratio test for Gaussian variables
- The Concept of p-value
- Summary
Example: Two Coins Tossing

Suppose Bob has two coins:
- Coin “0” has probability of heads $p_0 = 0.5$
- Coin “1” has probability of heads $p_1 = 0.7$

Bob chooses one of the coins, tosses it $n = 10$ times and tells Alice the number of heads, but does not tell her whether it was coin 0 or coin 1.

On the basis of the number of heads, Alice has to decide which coin it was. How should her decision rule be?

Let X denote the number of heads.

$$X \in \mathcal{X} = \{0, 1, 2, \ldots, 10\}$$

Then for each coin we can compute the probability that Bob got exactly x heads:

$$P_i(X = x) = \binom{n}{x} p_i^x (1 - p_i)^{n-x}, \quad i = 0, 1.$$
Example: Two Coins Tossing

Suppose that Bob observed 2 heads. Then \(\frac{P_0(X=2)}{P_1(X=2)} \approx 30 \), and, therefore, coin 0 was about 30 times more likely to produce this result than was coin 1.

On the other hand, if there were 8 heads, then \(\frac{P_0(X=8)}{P_1(X=8)} \approx 0.19 \), which would favor coin 1.
Hypothesis Testing

The example with two coins is an example of hypothesis testing:

- **The Null Hypothesis** H_0: Bob tossed coin 0
- **The Alternative Hypothesis** H_1: Bob tossed coin 1

Alice would accept H_0 if the likelihood ratio

$$\frac{\mathcal{L}(\text{Data|Coin 0})}{\mathcal{L}(\text{Data|Coin 1})} = \frac{\mathbb{P}_0(X = x)}{\mathbb{P}_1(X = x)} > 1$$

and she would reject H_0 if the likelihood ratio

$$\frac{\mathcal{L}(\text{Data|Coin 0})}{\mathcal{L}(\text{Data|Coin 1})} = \frac{\mathbb{P}_0(X = x)}{\mathbb{P}_1(X = x)} < 1$$

In this example, Alice would accept H_0 if

$$x \leq 6$$

and she would reject H_0 if

$$x > 6$$
Hypothesis Testing: General Framework

More formally, suppose that we partition the parameter space Θ into two disjoint sets Θ_0 and Θ_1 and that we wish to test

$$H_0 : \theta \in \Theta_0 \text{ versus } H_1 : \theta \in \Theta_1$$

We call H_0 the **null hypothesis** and H_1 the **alternative hypothesis**.

Let X be data and let \mathcal{X} be the range of X. We test a hypothesis by finding an appropriate subset of outcomes $\mathcal{R} \subseteq \mathcal{X}$ called the **rejection region**. If $X \in \mathcal{R}$ we reject the null hypothesis, otherwise, we do not reject the null hypothesis:

$$X \in \mathcal{R} \Rightarrow \text{ reject } H_0$$

$$X \notin \mathcal{R} \Rightarrow \text{ accept } H_0$$

In the Two Coins Example,

- X is the number of heads
- \mathcal{X} is $\{0, 1, 2, \ldots, 10\}$
- \mathcal{R} is $\{7, 8, 9, 10\}$
Hypothesis Testing: General Framework

Usually the rejection region \mathcal{R} is of the form

$$
\mathcal{R} = \{ x \in \mathcal{X} : T(x) < c \}
$$

where T is a test statistic and c is a critical value. The main problem in hypothesis testing is to find an appropriate test statistic T and an appropriate cutoff value c.

In the Two Coins Example,

- $T(x) = \frac{p_0(x=x)}{p_1(x=x)}$ is the likelihood ratio
- $c = 1$
Main Definitions

In hypothesis testing, there are two types of errors we can make:

- Rejecting H_0 when H_0 is true is called a **type I error**
- Accepting H_0 when H_1 is true is called a **type II error**

Definition

- The **probability of a type I error** is called the **significance level** of the test and is denoted by α

$$\alpha = \mathbb{P}(\text{type I error}) = \mathbb{P}(\text{Reject } H_0 | H_0)$$

- The **probability of a type II error** is denoted by β

$$\beta = \mathbb{P}(\text{type II error}) = \mathbb{P}(\text{Accept } H_0 | H_1)$$

- $(1 - \beta)$ is called the **power** of the test

$$\text{power} = 1 - \beta = 1 - \mathbb{P}(\text{Accept } H_0 | H_1) = \mathbb{P}(\text{Reject } H_0 | H_1)$$

Thus, the **power** of the test is the **probability of rejecting H_0 when it is false**.
Neyman-Pearson Lemma

Definition

- A hypothesis of the form $\theta = \theta_0$ is called a **simple hypothesis**.
- A hypothesis of the form $\theta > \theta_0$ or $\theta < \theta_0$ is called a **composite hypothesis**.

The **Neyman-Pearson Lemma** shows that the test that is based on the likelihood ratio (as in the Two Coins Example) is **optimal** for simple hypotheses:

Neyman-Pearson Lemma

Suppose that H_0 and H_1 are simple hypotheses, $H_0 : \theta = \theta_0$ and $H_1 : \theta = \theta_1$. Suppose that the **likelihood ratio test** that rejects H_0 whenever the likelihood ratio is less than c,

\[
\text{Reject } H_0 \iff \frac{L(\text{Data}|\theta_0)}{L(\text{Data}|\theta_1)} < c
\]

has significance level α_{LR}. Then **any other test** for which the significance level $\alpha \leq \alpha_{LR}$ has power less than or equal to that of the likelihood ratio test,

\[1 - \beta \leq 1 - \beta_{LR}\]
Example

Let \(X_1, \ldots, X_n \sim N(\mu, \sigma^2) \), where \(\sigma^2 \) is known. Consider two simple hypotheses:

\[
H_0 : \mu = \mu_0 \\
H_1 : \mu = \mu_1 > \mu_0
\]

Construct the likelihood ratio test with significance level \(\alpha \).

Answer:

\[
\text{Reject } H_0 \iff \overline{X}_n > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}
\]

- **Neyman-Pearson**: this test is the most powerful test among all tests with significance level \(\alpha \).
The Concept of p-value

Reporting “reject H_0” or “accept H_0” is not very informative.
For example, if the test just reposts to reject H_0, this does not tell us how strong the evidence against H_0 is. This evidence is summarized in terms of p-value.

Definition

Suppose for every $\alpha \in (0, 1)$ we have a test of significance level α with rejection region R_α. Then, the p-value is the smallest significance level at which we can reject H_0:

$$\text{p-value} = \inf\{\alpha : X \in R_\alpha\}$$

Informally, the p-value is a measure of the evidence against H_0: the smaller the p-value, the stronger the evidence against H_0

Typically, researchers use the following evidence scale:

- p-value < 0.01: very strong evidence against H_0
- $0.01 < p$-value < 0.05: strong evidence against H_0
- $0.05 < p$-value < 0.10: weak evidence against H_0
- p-value > 0.10: little or no evidence against H_0
Summary

In general, we partition the parameter space Θ into two disjoint sets Θ₀ and Θ₁ and test

\[H_0 : \theta \in \Theta_0 \quad \text{versus} \quad H_1 : \theta \in \Theta_1 \]

- \(H_0 \) is called the null hypothesis
- \(H_1 \) is called the alternative hypothesis
- If \(H_i : \theta = \theta_i \), then the hypothesis is called simple

If \(X \) is data and \(\mathcal{X} \) is the range of \(X \), then we reject \(H_0 \) \(\iff \) \(X \in \mathcal{R} \subset \mathcal{X} \).

- Rejection region \(\mathcal{R} = \{ x : T(x) < c \} \)
- For the likelihood ratio test, \(T(x) = \frac{\mathbb{P}(X=x|H_0)}{\mathbb{P}(X=x|H_1)} \)

Type I Error: Rejecting \(H_0 \) when \(H_0 \) is true

- \(\alpha = \mathbb{P}(\text{Reject } H_0|H_0) \) is called significance level (small \(\alpha \) is good)

Type II Error: Accepting \(H_0 \) when \(H_1 \) is true

- \(1 - \beta = 1 - \mathbb{P}(\text{Accept } H_0|H_1) \) is called power (large power is good)

Neyman-Pearson Lemma: basing the test on the likelihood ratio is optimal.

p-value summarizes the evidence against the null hypothesis,

\[p\text{-value} = \inf\{\alpha : X \in \mathcal{R}_\alpha \} \].