Lecture 15. Accuracy of estimation of the population mean $\overline{X}_n \approx \mu$

February 25, 2013
In Lecture 12, we discussed the basic mathematical framework of survey sampling:

- We have the target population of size \(N \) (\(N \) is very large).
- A numerical value of interest \(x_i \) (age, weight, income, etc) is associated with \(i^{th} \) member of the population.
- We are interested in population parameters:
 - Population mean \(\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \)
 - Population variance \(\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \)
- We estimate \(\mu \) by the sample mean \(\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \), where \(X_1, \ldots, X_n \) is a sample drawn from the population using the simple random sampling.

We proved that \(\overline{X}_n \) is an unbiased estimate of \(\mu \):

\[
\mathbb{E}[\overline{X}_n] = \mu
\]

In other words, on average \(\overline{X}_n \approx \mu \).

Our next goal is to investigate how variable \(\overline{X}_n \) is.
As a measure of the dispersion of \overline{X}_n about μ, we will use the standard deviation of \overline{X}_n, $\sigma_{\overline{X}_n} = \sqrt{\mathbb{V}[\overline{X}_n]}$.

Thus, we want to find

$$\mathbb{V}[\overline{X}_n] = ?$$

$$\mathbb{V}[\overline{X}_n] = \mathbb{V} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \mathbb{V} \left[\sum_{i=1}^{n} X_i \right]$$

Remark: If sampling were done with replacement then X_i would be independent, and we would have:

$$\mathbb{V}[\overline{X}_n] = \frac{1}{n^2} \mathbb{V} \left[\sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{V}[X_i] = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}$$

In simple random sampling, we do sampling without replacement. This induces dependence among X_i. And therefore

$$\mathbb{V}[\overline{X}_n] = \frac{1}{n^2} \mathbb{V} \left[\sum_{i=1}^{n} X_i \right] \neq \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{V}[X_i]$$
Recall Lecture 6:

\[\mathbb{V} \left[\sum_{i=1}^{n} \alpha_i X_i \right] = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \text{Cov}(X_i, X_j) \]

Thus, we have:

\[\mathbb{V}[\bar{X}_n] = \frac{1}{n^2} \mathbb{V} \left[\sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, X_j) \]

So, we need to find \(\text{Cov}(X_i, X_j) \).

Lemma

If \(i \neq j \), then the covariance between \(X_i \) and \(X_j \) is

\[\text{Cov}(X_i, X_j) = -\frac{\sigma^2}{N-1} \]
Theorem

The variance of \overline{X}_n is given by

\[\text{Var}[\overline{X}_n] = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right) \]

Important observations:

- If $n << N$, then
 \[\text{Var}[\overline{X}_n] \approx \frac{\sigma^2}{n}, \quad \sigma_{\overline{X}_n} \approx \frac{\sigma}{\sqrt{n}} \]

 \(1 - \frac{n-1}{N-1}\) is called finite population correction.

- To double the accuracy of $\mu \approx \overline{X}_n$, the sample size must be quadrupled

- If σ is small (the population values are not very dispersed), then a small sample will be fairly accurate. But if σ is large, then a larger sample will be required to obtain the same accuracy.
Summary

- The main result of this lecture is the expression for the variance of \overline{X}_n:

$$\text{Var}[\overline{X}_n] = \frac{\sigma^2}{n} \left(1 - \frac{n - 1}{N - 1} \right)$$

- The corresponding standard deviation

$$\sigma_{\overline{X}_n} = \sqrt{\text{Var}[\overline{X}_n]}$$

measures the dispersion of \overline{X}_n about μ.