Chapter 8
(5) x is a discrete random variable, $\left\{\begin{array}{l}\mathbb{P}(X=1)=\theta \\ \mathbb{P}(X=2)=1-\theta\end{array}\right.$

Data: $x_{1}=1, x_{2}=2, x_{3}=2$
(a) Find the method of moments estimate of θ

$$
\begin{array}{lll}
\mu_{1}(\theta)=\hat{\mu}_{1} & \hat{\mu}_{1}=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)=\frac{5}{3} \\
\text { "theoretical" } \\
\text { moment }
\end{array} \underbrace{\text { moment }}_{\text {sample }} \quad \mu_{1}(\theta)=\mathbb{E}_{\theta}[x]=1 \cdot \theta+2 \cdot(1-\theta)=2-\theta)
$$

Thus, we have:

$$
2-\theta=\frac{5}{3} \quad \Rightarrow \quad \hat{\theta}_{M_{O M}}=2-\frac{5}{3}=\frac{1}{3}
$$

(b) What is the likelihood function?

$$
\mathcal{L}(\theta)=\prod_{i=1}^{3} \pi\left(X=x_{i} \mid \theta\right)=\prod_{i=1}^{3} \mathbb{P}\left(X=x_{i} \mid \theta\right)=\theta \cdot(1-\theta) \cdot(1-\theta)=\theta \cdot(1-\theta)^{2}
$$

(c) What is the MLE of θ ?

$$
\begin{aligned}
& \hat{\theta}_{M C E}=\arg \max _{\theta \in(0,1)} \mathcal{Z}(\theta) \\
& \mathcal{J}(\theta)=\theta^{3}-2 \theta^{2}+\theta \Rightarrow \mathcal{I}^{\prime}(\theta)=3 \theta^{2}-4 \theta+1 \\
& \mathcal{J}^{\prime}(\theta)=0 \Leftrightarrow \theta^{\prime} \Rightarrow \theta_{1}=\frac{1}{3} \\
& \hat{\theta}_{M L E}=1 / 3
\end{aligned}
$$

$\mathcal{L}(\theta)$

Chapter 8
(7) X follows a geometric distribution: $\mathbb{P}(x=k)=p(1-p)^{k-1}, k=1,2, \ldots$ $X_{1} \ldots X_{n}$ is an iii sample
(a) Find the MoM estimate of p.

$$
\underbrace{\mu_{1}(p)}_{\frac{1}{p}}=\underbrace{\hat{\mu}_{1}}_{\tilde{\bar{x}}_{n}} \Rightarrow \hat{P}_{M_{0 M}}=\frac{1}{\bar{x}_{n}}
$$

(b) Find the MLE of p.

The likelihood function is

$$
\mathcal{L}(p)=\prod_{i=1}^{n} \pi\left(x_{i} \mid p\right)=\prod_{i=1}^{n} \mathbb{P}\left(x=x_{i} \mid p\right)=\prod_{i=1}^{n} p(1-p)^{x_{i}-1}=p^{n}(1-p)^{\sum_{i=1}^{n} x_{i}-n}
$$

The log-likelihood:

$$
\begin{gathered}
l(p)=\log \mathcal{L}(p)=n \log p+\left(\sum_{i=1}^{n} x_{i}-n\right) \log (1-p) \\
l^{\prime}(p)=\frac{n}{p}+\frac{\sum_{i=1}^{n} x_{i}-n}{p-1} \Rightarrow \ell^{\prime}(p)=0 \Leftrightarrow \frac{n}{p}=\frac{\sum_{i=1}^{n} x_{i}-n}{1-p} \\
l^{\prime \prime}(p)=-\frac{n}{p^{2}}-\frac{\sum_{i}^{n} x_{i}-n}{(p-1)^{2}}<0 \quad n-n p=p \sum_{i=1}^{n} x_{i}-n p \\
\begin{array}{c}
\text { indeed } \\
\text { maximum }
\end{array} \\
\qquad \sum_{i=1}^{n} x_{i}=n \\
\hat{p}_{\text {MLE }}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}}=\frac{1}{\bar{x}_{n}}
\end{gathered}
$$

