
February 8, 2012
Repeated Eigenvalues

We study homogeneous autonomous system:

$$\frac{dx}{dt} = Ax$$

In Lecture 10 and 11, we learn how to solve this system when eigenvalues λ_1 and λ_2 of matrix A are real and different and complex conjugate, respectively.

The last (third) possibility for λ_1 and λ_2 is to be real and equal

$$\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$$

In this case there are two different possibilities for the corresponding eigenvectors:

- v_1 and v_2 are linearly independent, i.e. λ has two independent eigenvectors.
- v_1 and v_2 are linearly dependent, i.e. λ has only one independent eigenvector.
\[\lambda \text{ has 2 independent eigenvectors} \]

It is easy to show that \(A \) has a repeated eigenvalue \(\lambda \) and two independent eigenvectors if and only if

\[
A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}
\]

In this case the general solution of

\[
\frac{dx}{dt} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} x
\]

is given by

\[
x = c_1 e^{\lambda t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{\lambda t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} c_1 e^{\lambda t} \\ c_2 e^{\lambda t} \end{pmatrix}
\]
\(\lambda \) has only one independent eigenvector

This is a more common case: matrix \(\mathbf{A} \) is nondiagonal. Let \(\mathbf{v} \) be the only independent eigenvector that corresponds to \(\lambda \). Then

\[
\mathbf{x}_1 = e^{\lambda t} \mathbf{v}
\]

(1)

is a solution of the system \(d\mathbf{x}/dt = \mathbf{A}\mathbf{x} \). To find a fundamental set of solutions, we must find an additional solution. Let us look for another solution in the following form:

\[
\mathbf{x}_2 = t e^{\lambda t} \mathbf{v} + e^{\lambda t} \mathbf{w},
\]

(2)

where \(\mathbf{w} \) is a vector to be determined. If (2) is a solution of the system, then \(\mathbf{w} \) must satisfy

\[
(\mathbf{A} - \lambda \mathbf{I}) \mathbf{w} = \mathbf{v}
\]

(3)

Definition

The vector \(\mathbf{w} \) is called a **generalized eigenvector** corresponding to the eigenvalue \(\lambda \).

- Linear algebra: (3) can be always solved for \(\mathbf{w} \)
- Wronskian \(W[\mathbf{x}_1, \mathbf{x}_2] \neq 0 \Rightarrow \mathbf{x}_1 \) and \(\mathbf{x}_2 \) form a fundamental set
- The general solution is then \(\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 \)
Examples

Find the general solution of the system

\[\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{x} \]

\[\mathbf{x}' = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix} \mathbf{x} \]
We study homogeneous autonomous system:

\[
\frac{dx}{dt} = Ax
\]

with repeated eigenvalues \(\lambda_1 = \lambda_2 = \lambda \).

- If \(A \) is diagonal, \(A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \), then the general solution is given by

\[
x = \begin{pmatrix} c_1 e^{\lambda t} \\ c_2 e^{\lambda t} \end{pmatrix}
\]

- If \(A \) is nondiagonal, then a fundamental set of solution is formed by

\[
\begin{align*}
x_1 &= e^{\lambda t} v \\
x_2 &= te^{\lambda t} v + e^{\lambda t} w
\end{align*}
\]

where

* \(v \) is the only independent eigenvector corresponding to \(\lambda \)

* \(w \) is the generalized eigenvector corresponding to \(\lambda \), \((A - \lambda I)w = v \)
Homework

Section 3.5

- Find the general solution: 3, 5
- Find the solution of the initial value problem: 9, 11