#### Konstantin Zuev

Department of Mathematics University of Southern California

http://www-bcf.usc.edu/~kzuev

Joint work with J.L. Beck (Caltech)

April 4, 2012

### Outline

- Reliability Problem
- Original Subset Simulation method
- Bayesian Subset Simulation
- Example
- Summary

## Reliability Problem

Reliability Problem: To estimate the probability of failure  $p_F$ 

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta$$

## Reliability Problem

Reliability Problem: To estimate the probability of failure  $p_F$ 

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta$$

#### Notation:

- $oldsymbol{ heta} heta \in \mathbb{R}^d$  represents the uncertain excitation of a system
  - $\theta$  is a random vector with joint PDF  $\pi(\theta)$
- ullet  $F\subset\mathbb{R}^d$  is a failure domain (unacceptable system performance)

$$F = \{\theta : g(\theta) \ge b^*\}$$

- $g(\theta)$  is a performance function (loss function)
- $\bullet$   $b^*$  is a critical threshold for performance
- $I_F(\theta) = 1$  if  $\theta \in F$ ; and  $I_F(\theta) = 0$  if  $\theta \notin F$



3 / 12

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

ullet The relationship between heta and  $I_F( heta)$  is not explicitly known

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

- ullet The relationship between heta and  $I_F( heta)$  is not explicitly known
- We can compute  $I_F(\theta)$  for any  $\theta$ , but this computation is expensive

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

- ullet The relationship between heta and  $I_F( heta)$  is not explicitly known
- ullet We can compute  $I_F( heta)$  for any heta, but this computation is expensive
- ullet The probability of failure  $p_F$  is very small,  $p_F \sim 10^{-2}-10^{-9}$

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

- ullet The relationship between heta and  $I_F( heta)$  is not explicitly known
- ullet We can compute  $I_F( heta)$  for any heta, but this computation is expensive
- ullet The probability of failure  $p_F$  is very small,  $p_F \sim 10^{-2}-10^{-9}$
- The dimension d is very large,  $d \sim 10^3$

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

- ullet The relationship between heta and  $I_F( heta)$  is not explicitly known
- ullet We can compute  $I_F( heta)$  for any heta, but this computation is expensive
- ullet The probability of failure  $p_F$  is very small,  $p_F \sim 10^{-2}-10^{-9}$
- The dimension d is very large,  $d \sim 10^3$

#### Consequences:

- Numerical integration is not suitable
- Standard Monte Carlo is computationally infeasible

4 / 12

$$p_F = \int_{\mathbb{R}^d} \pi(\theta) I_F(\theta) d\theta, \quad F = \{\theta : g(\theta) \ge b^*\}$$

### Typically in Applications:

- ullet The relationship between heta and  $I_F( heta)$  is not explicitly known
- ullet We can compute  $I_F( heta)$  for any heta, but this computation is expensive
- ullet The probability of failure  $p_F$  is very small,  $p_F \sim 10^{-2}-10^{-9}$
- The dimension d is very large,  $d \sim 10^3$

#### Consequences:

- Numerical integration is not suitable
- Standard Monte Carlo is computationally infeasible

We need advanced simulation methods



S.K. Au and J.L. Beck (2001):

5 / 12

### S.K. Au and J.L. Beck (2001):

$$\mathbb{R}^d = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$F = \{\theta : g(\theta) \ge b^*\}$$

$$F_i = \{\theta : g(\theta) \ge b_i^*\}$$

$$b_1^* < b_2^* < \dots < b_m^* = b^*$$



### S.K. Au and J.L. Beck (2001):

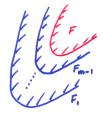
$$\mathbb{R}^d = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$F = \{\theta : g(\theta) \ge b^*\}$$

$$F_i = \{\theta : g(\theta) \ge b_i^*\}$$

$$b_1^* < b_2^* < \dots < b_m^* = b^*$$

$$\Rightarrow p_F = \prod_{k=0}^{m-1} P(F_{k+1}|F_k)$$



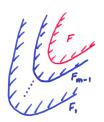
### S.K. Au and J.L. Beck (2001):

$$\mathbb{R}^d = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$F = \{\theta : g(\theta) \ge b^*\}$$

$$F_i = \{\theta : g(\theta) \ge b_i^*\}$$

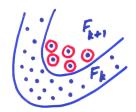
$$b_1^* < b_2^* < \dots < b_m^* = b^*$$



$$\Rightarrow p_F = \prod_{k=0}^{m-1} P(F_{k+1}|F_k)$$

$$P(F_{k+1}|F_k) \approx \frac{1}{N} \sum_{i=1}^{N} I_{F_{k+1}}(\theta_k^{(i)})$$

$$\theta_k^{(i)} \sim \pi(\theta|F_k) = \frac{\pi(\theta)I_{F_k}(\theta)}{P(F_k)}$$



5 / 12

### The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

### The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \widehat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \widehat{p}_F = \prod_{k=1}^{m} \frac{n_k}{N}$$

### The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F = \prod_{k=1}^{m} \frac{n_k}{N}$$

### Bayesian SS:

 $\bullet \ \, \mathsf{Specify prior PDFs} \,\, f(p_k) \,\, \mathsf{for all} \,\, p_k = P(F_k|F_{k-1}), \,\, k=1,\dots,m.$ 

### The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F = \prod_{k=1}^{m} \frac{n_k}{N}$$

### Bayesian SS:

- Specify prior PDFs  $f(p_k)$  for all  $p_k = P(F_k|F_{k-1})$ ,  $k = 1, \ldots, m$ .
- $\textbf{ § Find the posterior PDFs } f(p_k|\mathcal{D}_{k-1}) \text{ via Bayes' theorem,} \\ \text{ using new data } \mathcal{D}_{k-1} = \{\theta_{k-1}^{(1)}, \ldots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1})\}$

### The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F = \prod_{k=1}^{m} \frac{n_k}{N}$$

### Bayesian SS:

- Specify prior PDFs  $f(p_k)$  for all  $p_k = P(F_k|F_{k-1})$ ,  $k = 1, \ldots, m$ .
- ② Find the posterior PDFs  $f(p_k|\mathcal{D}_{k-1})$  via Bayes' theorem, using new data  $\mathcal{D}_{k-1} = \{\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1})\}$
- **Obtain the posterior PDF**  $f(p_F|\bigcup_{k=0}^{m-1} \mathcal{D}_k)$  of  $p_F = \prod_{k=1}^m p_k$  from  $f(p_1|\mathcal{D}_0), \ldots, f(p_m|\mathcal{D}_{m-1})$ .

• Prior PDF  $p(p_k)$ Principle of Maximum Entropy:

$$f(p_k) = 1, \quad 0 \le p_k \le 1.$$

• Prior PDF  $p(p_k)$ Principle of Maximum Entropy:

$$f(p_k) = 1, \quad 0 \le p_k \le 1.$$

2 Posterior PDF  $f(p_k|\mathcal{D}_{k-1})$ 

• Prior PDF  $p(p_k)$ Principle of Maximum Entropy:

$$f(p_k) = 1, \quad 0 \le p_k \le 1.$$

- 2 Posterior PDF  $f(p_k|\mathcal{D}_{k-1})$ 
  - ▶ If  $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$  are i.i.d. according to  $\pi(\cdot|F_{k-1})$ 
    - $\Rightarrow I_{F_k}(\theta_{k-1}^{(1)}), \dots, I_{F_k}(\theta_{k-1}^{(N)})$  can be interpreted as Bernoulli trials
    - $\Rightarrow$  Bayes' Theorem (1763):

$$f(p_k|\mathcal{D}_{k-1}) = \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

• Prior PDF  $p(p_k)$ Principle of Maximum Entropy:

$$f(p_k) = 1, \quad 0 \le p_k \le 1.$$

- ② Posterior PDF  $f(p_k|\mathcal{D}_{k-1})$ 
  - ▶ If  $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$  are i.i.d. according to  $\pi(\cdot|F_{k-1})$ ⇒  $I_{F_k}(\theta_{k-1}^{(1)}), \dots, I_{F_k}(\theta_{k-1}^{(N)})$  can be interpreted as Bernoulli trials ⇒ Bayes' Theorem (1763):

$$f(p_k|\mathcal{D}_{k-1}) = \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

▶ In fact,  $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$  are MCMC samples (for  $k \geq 2$ )  $\Rightarrow \theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1}), \text{ however, they are not independent}$ 

$$f(p_k|\mathcal{D}_{k-1}) \approx \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

<u>Last step</u>: To find the PDF of  $p_F = \prod_{k=1}^m p_k$ , given the PDFs of all factors

$$p_k \sim \mathcal{B}e(n_k+1, N-n_k+1)$$

<u>Last step</u>: To find the PDF of  $p_F = \prod_{k=1}^m p_k$ , given the PDFs of all factors

$$p_k \sim \mathcal{B}e(n_k + 1, N - n_k + 1)$$

Idea: To approximate  $p_F$  by a single beta variable

<u>Last step</u>: To find the PDF of  $p_F = \prod_{k=1}^m p_k$ , given the PDFs of all factors

$$p_k \sim \mathcal{B}e(n_k+1, N-n_k+1)$$

Idea: To approximate  $p_F$  by a single beta variable

### Theorem (Da-Yin Fan, 1991)

Let  $X_1, \ldots, X_m$  be beta variables,  $X_k \sim \mathcal{B}e(a_k, b_k)$ , and  $Y = X_1 X_2 \ldots X_m$ . Then Y is approximately distributed as  $\widetilde{Y} \sim \mathcal{B}e(a, b)$ , where

$$a = \mu_1 \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2}, \quad b = (1 - \mu_1) \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2},$$

$$\mu_1 = \prod_{k=1}^m \frac{a_k}{a_k + b_k}, \quad \mu_2 = \prod_{k=1}^m \frac{a_k(a_k + 1)}{(a_k + b_k)(a_k + b_k + 1)}.$$

<u>Last step</u>: To find the PDF of  $p_F = \prod_{k=1}^m p_k$ , given the PDFs of all factors

$$p_k \sim \mathcal{B}e(n_k+1, N-n_k+1)$$

Idea: To approximate  $p_F$  by a single beta variable

### Theorem (Da-Yin Fan, 1991)

Let  $X_1, \ldots, X_m$  be beta variables,  $X_k \sim \mathcal{B}e(a_k, b_k)$ , and  $Y = X_1 X_2 \ldots X_m$ . Then Y is approximately distributed as  $\widetilde{Y} \sim \mathcal{B}e(a, b)$ , where

$$a = \mu_1 \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2}, \quad b = (1 - \mu_1) \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2},$$

$$\mu_1 = \prod_{k=1}^m \frac{a_k}{a_k + b_k}, \quad \mu_2 = \prod_{k=1}^m \frac{a_k(a_k + 1)}{(a_k + b_k)(a_k + b_k + 1)}.$$

 $\underline{\text{Nice property of this approximation:}} \ \mathbb{E}[\widetilde{Y}] = \mathbb{E}[Y], \ \mathbb{E}[\widetilde{Y}^2] = \mathbb{E}[Y^2]$ 

4 ロ ト 4 回 ト 4 豆 ト 4 豆 ト 9 Q (^

8 / 12

Konstantin Zuev (USC) Bayesian Subset Simulation SIAM UQ 2012

Point estimate  $\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$ 

9 / 12

Point estimate 
$$\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N + 2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}} \quad b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

Point estimate 
$$\widehat{p}_F \leadsto \ \mathsf{PDF}\ f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N + 2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}} \ b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

• What is the relationship between  $f(p_F)$  and  $\widehat{p}_F$  ?

Point estimate 
$$\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N + 2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}} \ b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

• What is the relationship between  $f(p_F)$  and  $\widehat{p}_F$  ?

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

Point estimate 
$$\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N + 2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}} \ b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

• What is the relationship between  $f(p_F)$  and  $\widehat{p}_F$  ?

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

• Why is Bayesian Subset Simulation useful?

Point estimate 
$$\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N + 2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}} \quad b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

• What is the relationship between  $f(p_F)$  and  $\widehat{p}_F$  ?

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

- Why is Bayesian Subset Simulation useful?
  - lacktriangle CV of  $f(p_F)$  can be considered as a measure of uncertainty in the value of  $p_F$

Point estimate 
$$\widehat{p}_F \leadsto \operatorname{PDF} f(p_F) = \mathcal{B}e(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N+2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N+3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N+3} - \prod_{k=1}^{m} \frac{n_k + 1}{N+2}} \quad b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N+2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N+3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N+3} - \prod_{k=1}^{m} \frac{n_k + 1}{N+2}}$$

• What is the relationship between  $f(p_F)$  and  $\widehat{p}_F$  ?

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

- Why is Bayesian Subset Simulation useful?
  - $lackbox{ CV of } f(p_F)$  can be considered as a measure of uncertainty in the value of  $p_F$
  - ▶ The PDF  $f(p_F)$  can be fully used for life-cost analyses, decision making, etc.

$$\mathbb{E}[\operatorname{Loss}(p_F)] = \int \operatorname{Loss}(p_F) f(p_F) dp_F$$

4 D > 4 D > 4 E > 4 E > E 990

## Elasto-Plastic Structure Subjected to Ground Motion

### S.K. Au (Computers & Structures, 2005):

- 2D moment-resisting steel frame
- Synthetic ground motion a = a(Z)

$$Z = (Z_1, \ldots, Z_d) \overset{i.i.d}{\sim} \mathcal{N}(0,1)$$

$$\longrightarrow \overline{\mathsf{Filter}} \xrightarrow{a(Z)}$$

$$d = 1001$$

• Failure domain:

$$F = \{Z \in \mathbb{R}^d : \delta_{\max}(Z) > b\}$$
$$\delta_{\max} = \max_{i=1,\dots,6} \delta_i$$

 $\delta_i$  is the maximum absolute interstory drift ratio of the  $i^{\text{th}}$  story within the duration of study, 30~s

$$b = 0.5\% \Rightarrow p_F \approx 8.9 \times 10^{-3}$$

|           | G3              | G3 | G3       |    |  |
|-----------|-----------------|----|----------|----|--|
| 3.81 m C3 | G3 C6           | G3 | C6<br>G3 | C3 |  |
| 3.81 m C3 | G2 C6           | G2 | C6<br>G2 | C3 |  |
| 3.81 m C2 | G2 C5           | G2 | C5 G2    | C2 |  |
| 3.81 m C2 | GI C5           | GI | C5<br>G1 | C2 |  |
| 3.81 m C1 | GI C4           | GI | C4 G1    | CI |  |
| 5.49 m Cl | C4              |    | C4       | CI |  |
|           | 777             | 77 | ım       | m  |  |
|           | 3 @ 7.32 = 22 m |    |          |    |  |

## Elasto-Plastic Structure Subjected to Ground Motion

### S.K. Au (Computers & Structures, 2005):

- 2D moment-resisting steel frame
- Synthetic ground motion a = a(Z)

$$Z = (Z_1, \ldots, Z_d) \stackrel{i.i.d}{\sim} \mathcal{N}(0,1)$$

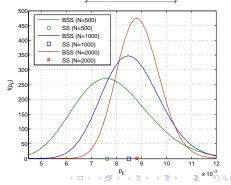
- $\longrightarrow \overline{\mathsf{Filter}} \xrightarrow{a(Z)}$
- d = 1001
- Failure domain:

$$F = \{ Z \in \mathbb{R}^d : \delta_{\max}(Z) > b \}$$

$$\delta_{\max} = \max_{i=1,\dots,6} \delta_i$$

 $\delta_i$  is the maximum absolute interstory drift ratio of the  $i^{\text{th}}$  story within the duration of study, 30 s  $b=0.5\% \Rightarrow p_F \approx 8.9 \times 10^{-3}$ 

|            | G3              | G3 | G3       |    |
|------------|-----------------|----|----------|----|
| 3.81 m C3  | G3 C6           | G3 | C6<br>G3 | C3 |
| 3.81 m C3  | G2 C6           | G2 | C6<br>G2 | C3 |
| 3.81 m C2  | G2 C5           | G2 | C5 G2    | C2 |
| 3.81 m C2  | GI C5           | GI | C5<br>G1 | C2 |
| 3.81 m C1  | GI C4           | GI | C4 GI    | CI |
| 5.49 m C1  | C4              |    | C4       | CI |
| → <u>"</u> | 77 77           | 77 | 11111    | m  |
|            | 3 @ 7 32 - 22 m |    |          |    |



### **Bayesian Subset Simulation**

• BSS is a new stochastic simulation method for solving reliability problems.

11 / 12

- BSS is a new stochastic simulation method for solving reliability problems.
  - ▶ BSS is a Bayesian analog of the Subset Simulation (Au and Beck, 2001)

- BSS is a new stochastic simulation method for solving reliability problems.
  - ▶ BSS is a Bayesian analog of the Subset Simulation (Au and Beck, 2001)
- Instead of a point estimate  $\widehat{p}_F$ , BSS produces an approximation of the posterior PDF  $f(p_F)$  of the failure probability.

- BSS is a new stochastic simulation method for solving reliability problems.
  - ▶ BSS is a Bayesian analog of the Subset Simulation (Au and Beck, 2001)
- Instead of a point estimate  $\widehat{p}_F$ , BSS produces an approximation of the posterior PDF  $f(p_F)$  of the failure probability.
- Relationship between BSS and SS:

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

#### **Bayesian Subset Simulation**

- BSS is a new stochastic simulation method for solving reliability problems.
  - ▶ BSS is a Bayesian analog of the Subset Simulation (Au and Beck, 2001)
- Instead of a point estimate  $\widehat{p}_F$ , BSS produces an approximation of the posterior PDF  $f(p_F)$  of the failure probability.
- Relationship between BSS and SS:

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

ullet CV of  $f(p_F)$  can be considered as a measure of uncertainty in the value of  $p_F$ 

- BSS is a new stochastic simulation method for solving reliability problems.
  - ▶ BSS is a Bayesian analog of the Subset Simulation (Au and Beck, 2001)
- Instead of a point estimate  $\widehat{p}_F$ , BSS produces an approximation of the posterior PDF  $f(p_F)$  of the failure probability.
- Relationship between BSS and SS:

$$\lim_{N \to \infty} \mathbb{E}_f[p_F] = \lim_{N \to \infty} \widehat{p}_F = p_F$$

- ullet CV of  $f(p_F)$  can be considered as a measure of uncertainty in the value of  $p_F$
- ullet The PDF  $f(p_F)$  can be fully used for life-cost analyses and decision making.

$$\mathbb{E}[\operatorname{Loss}(p_F)] = \int \operatorname{Loss}(p_F) f(p_F) dp_F$$



## Thank you for attention!

