Bayesian Subset Simulation for failure probability estimation

K.M. Zuev & J.L. Beck

Division of Engineering and Applied Science California Institute of Technology

August 11, 2010

Outline

- Dynamic Reliability Problem
- Original Subset Simulation method
- Bayesian Subset Simulation
 - General strategy of "Bayesianization"
 - ▶ Prior and Posterior for $p_k = P(F_k|F_{k-1})$
 - ▶ Products of stochastic variables
 - Posterior PDF of p_F
 - lacktriangle Approximation of the posterior PDF of p_F
- Example
- Summary

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- \bullet $F\subset \mathbb{R}^N$ is a failure domain, $F=\{\theta:G(\theta)\geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- \bullet $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- \bullet $F\subset \mathbb{R}^N$ is a failure domain, $F=\{\theta:G(\theta)\geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- $\bullet \ F \subset \mathbb{R}^N \text{ is a failure domain, } F = \{\theta: G(\theta) \geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

- ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)
- ullet N is very large, $N\sim 1000$

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- $\bullet \ F \subset \mathbb{R}^N \text{ is a failure domain, } F = \{\theta: G(\theta) \geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

- ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)
- $\bullet~N$ is very large, $N\sim 1000 \Rightarrow$ numerical quadrature methods are not suitable

Dynamic Reliability Problem: To estimate the probability of failure $p_{\it F}$

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- $\bullet \ F \subset \mathbb{R}^N \text{ is a failure domain, } F = \{\theta: G(\theta) \geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

- ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)
- $\bullet~N$ is very large, $N\sim 1000 \Rightarrow$ numerical quadrature methods are not suitable
- \bullet p_F is very small, $p_F \sim 10^{-3} 10^{-6}$

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $oldsymbol{ heta} heta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- $\bullet \ F \subset \mathbb{R}^N \text{ is a failure domain, } F = \{\theta: G(\theta) \geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

- ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)
- $\bullet~N$ is very large, $N \sim 1000 \Rightarrow$ numerical quadrature methods are not suitable
- p_F is very small, $p_F \sim 10^{-3} 10^{-6} \Rightarrow$ Monte Carlo method is not suitable

Dynamic Reliability Problem: To estimate the probability of failure p_F

$$p_F = P(\theta \in F) = \int_{\mathbb{R}^N} \pi(\theta) I_F(\theta) d\theta$$

Notation:

- $\theta \in \mathbb{R}^N$ is a stochastic vector with the joint PDF π
- $\bullet \ F \subset \mathbb{R}^N \text{ is a failure domain, } F = \{\theta: G(\theta) \geq b^*\}$
- $I_F(\theta) = 1$ if $\theta \in F$ and $I_F(\theta) = 0$ if $\theta \notin F$

Assumptions:

- ullet We can calculate $I_F(heta)$ for any heta, but it is expensive (structural analysis)
- $\bullet~N$ is very large, $N \sim 1000 \Rightarrow$ numerical quadrature methods are not suitable
- ullet p_F is very small, $p_F \sim 10^{-3} 10^{-6} \Rightarrow$ Monte Carlo method is not suitable

We need advanced simulation methods

◆□ > →□ > → □ > → □ >

S.K. Au & J.L. Beck (Prob. Eng. Mech., 2001):

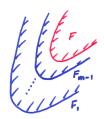
S.K. Au & J.L. Beck (Prob. Eng. Mech., 2001):

$$\mathbb{R}^{N} = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$F = \{\theta : G(\theta) \ge b^*\}$$

$$F_i = \{\theta : G(\theta) \ge b_i^*\}$$

$$b_1^* < b_2^* < \dots < b_m^* = b^*$$



S.K. Au & J.L. Beck (Prob. Eng. Mech., 2001):

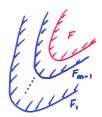
$$\mathbb{R}^{N} = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$\Rightarrow p_F = \prod_{k=0} P(F_{k+1}|F_k)$$

$$F = \{\theta : G(\theta) \ge b^*\}$$

$$F_i = \{\theta : G(\theta) \ge b^*_i\}$$

$$b_1^* < b_2^* < \dots < b_m^* = b^*$$



S.K. Au & J.L. Beck (Prob. Eng. Mech., 2001):

$$\mathbb{R}^{N} = F_0 \supset F_1 \supset \dots \supset F_m = F$$

$$F = \{\theta : G(\theta) \ge b^*\}$$

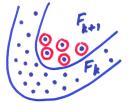
$$F_i = \{\theta : G(\theta) \ge b_i^*\}$$

$$b_1^* < b_2^* < \dots < b_m^* = b^*$$

$$\Rightarrow p_F = \prod_{k=0}^{m-1} P(F_{k+1}|F_k)$$

$$P(F_{k+1}|F_k) \approx \frac{1}{N} \sum_{i=1}^{N} I_{F_{k+1}}(\theta_k^{(i)})$$

$$\theta_k^{(i)} \sim \pi(\theta|F_k) = \frac{\pi(\theta)I_{F_k}(\theta)}{P(F_k)}$$



The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k|F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F^{SS} = \prod_{k=1}^{m} \frac{n_k}{N}$$

The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F^{SS} = \prod_{k=1}^{m} \frac{n_k}{N}$$

Bayesian SS:

 $\bullet \ \, \mathsf{Specify} \ \, \mathsf{prior} \ \, \mathsf{PDFs} \ \, p(p_k) \ \, \mathsf{for all} \ \, p_k = P(F_k|F_{k-1}), \ \, k = 1, \dots, m.$

The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F^{SS} = \prod_{k=1}^{m} \frac{n_k}{N}$$

Bayesian SS:

- Specify prior PDFs $p(p_k)$ for all $p_k = P(F_k|F_{k-1})$, $k = 1, \ldots, m$.
- $\textbf{ § Find the posterior PDFs} \ p(p_k|\mathcal{D}_{k-1}) \ \text{via Bayes' theorem,} \\ \text{using new data } \mathcal{D}_{k-1} = \{\theta_{k-1}^{(1)}, \ldots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1})\}$

The key idea of SS:

$$p_F = \prod_{k=1}^{m} p_k, \quad p_k = P(F_k | F_{k-1})$$

Original ("frequentist") SS:

$$p_k \approx \hat{p}_k = \frac{1}{N} \sum_{i=1}^{N} I_{F_k}(\theta_{k-1}^{(i)}) = \frac{n_k}{N}, \quad p_F \approx \hat{p}_F^{SS} = \prod_{k=1}^{m} \frac{n_k}{N}$$

Bayesian SS:

- Specify prior PDFs $p(p_k)$ for all $p_k = P(F_k|F_{k-1})$, $k = 1, \ldots, m$.
- **②** Find the posterior PDFs $p(p_k|\mathcal{D}_{k-1})$ via Bayes' theorem, using new data $\mathcal{D}_{k-1} = \{\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1})\}$
- ① Obtain the posterior PDF $p(p_F|\bigcup_{k=0}^{m-1}\mathcal{D}_k)$ of $p_F=\prod_{k=1}^m p_k$ from $p(p_1|\mathcal{D}_0),\ldots,p(p_m|\mathcal{D}_{m-1})$.

• Prior PDF $p(p_k)$ Principle of Maximum Entropy:

$$p(p_k) = 1, \quad 0 \le p_k \le 1.$$

• Prior PDF $p(p_k)$ Principle of Maximum Entropy:

$$p(p_k) = 1, \quad 0 \le p_k \le 1.$$

2 Posterior PDF $p(p_k|\mathcal{D}_{k-1})$

• Prior PDF $p(p_k)$ Principle of Maximum Entropy:

$$p(p_k) = 1, \quad 0 \le p_k \le 1.$$

- ② Posterior PDF $p(p_k|\mathcal{D}_{k-1})$
 - ▶ If $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$ are i.i.d. according to $\pi(\cdot|F_{k-1})$
 - $\Rightarrow I_{F_k}(\theta_{k-1}^{(1)}), \dots, I_{F_k}(\theta_{k-1}^{(N)})$ can be interpreted as Bernoulli trials
 - \Rightarrow Bayes' Theorem (1763):

$$p(p_k|\mathcal{D}_{k-1}) = \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

• Prior PDF $p(p_k)$ Principle of Maximum Entropy:

$$p(p_k) = 1, \quad 0 \le p_k \le 1.$$

- **②** Posterior PDF $p(p_k|\mathcal{D}_{k-1})$
 - ▶ If $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$ are i.i.d. according to $\pi(\cdot|F_{k-1})$ ⇒ $I_{F_k}(\theta_{k-1}^{(1)}), \dots, I_{F_k}(\theta_{k-1}^{(N)})$ can be interpreted as Bernoulli trials ⇒ Bayes' Theorem (1763):

$$p(p_k|\mathcal{D}_{k-1}) = \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

▶ In fact, $\theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)}$ are MCMC samples (for $k \geq 2$) $\Rightarrow \theta_{k-1}^{(1)}, \dots, \theta_{k-1}^{(N)} \sim \pi(\cdot|F_{k-1})$, however, they are not independent

$$p(p_k|\mathcal{D}_{k-1}) \approx \frac{p_k^{n_k} (1 - p_k)^{N - n_k}}{B(n_k + 1, N - n_k + 1)}$$

<u>Last step</u>: To find the PDF of the product of stochastic variables $p_F = \prod_{k=1}^m p_k$, given the distribution of all factors p_k

<u>Last step</u>: To find the PDF of the product of stochastic variables $p_F = \prod_{k=1}^m p_k$, given the distribution of all factors p_k

Theorem (Rohatgi's formula)

If X_1 and X_2 are continuous stochastic variables with joint PDF f_{X_1,X_2} , then the PDF of $Y=X_1X_2$ is $f_Y(y)=\int_{-\infty}^{+\infty}f_{X_1,X_2}\left(x,\frac{y}{x}\right)\frac{1}{|x|}dx$

<u>Last step</u>: To find the PDF of the product of stochastic variables $p_F = \prod_{k=1}^m p_k$, given the distribution of all factors p_k

Theorem (Rohatgi's formula)

If X_1 and X_2 are continuous stochastic variables with joint PDF f_{X_1,X_2} , then the PDF of $Y=X_1X_2$ is $f_Y(y)=\int_{-\infty}^{+\infty}f_{X_1,X_2}\left(x,\frac{y}{x}\right)\frac{1}{|x|}dx$

Our case: All factors are beta variables, $p_k \sim Beta(n_k + 1, N - n_k + 1)$

<u>Last step</u>: To find the PDF of the product of stochastic variables $p_F = \prod_{k=1}^m p_k$, given the distribution of all factors p_k

Theorem (Rohatgi's formula)

If X_1 and X_2 are continuous stochastic variables with joint PDF f_{X_1,X_2} , then the PDF of $Y=X_1X_2$ is $f_Y(y)=\int_{-\infty}^{+\infty}f_{X_1,X_2}\left(x,\frac{y}{x}\right)\frac{1}{|x|}dx$

Our case: All factors are beta variables, $p_k \dot{\sim} Beta(n_k+1, N-n_k+1)$

Theorem (Tang and Gupta, 1984)

Let X_1, \ldots, X_m be beta variables, $X_k \sim Beta(a_k, b_k)$, and $Y = X_1 X_2 \ldots X_m$. Then the density function of Y can be written as follows:

$$f_Y(y) = \left(\prod_{k=1}^m \frac{\Gamma(a_k + b_k)}{\Gamma(a_k)}\right) y^{a_m - 1} (1 - y)^{\sum_{k=1}^m b_k - 1} \cdot \sum_{r=0}^\infty \sigma_r^{(m)} (1 - y)^r, \quad 0 < y < 1.$$

Let $p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)$ denote the posterior of p_F obtained from the theorem.

Let $p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)$ denote the posterior of p_F obtained from the theorem.

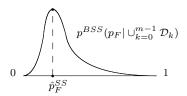
What is the relationship between p^{BSS} and \hat{p}_F^{SS} ?

Let $p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)$ denote the posterior of p_F obtained from the theorem.

What is the relationship between p^{BSS} and \hat{p}_F^{SS} ?

$$\hat{p}_F^{SS} = p_{MAP}^{BSS}$$

$$p_{MAP}^{BSS} = \arg\max_{p_F \in [0,1]} p^{BSS}(p_F | \cup_{k=0}^{m-1} \mathcal{D}_k)$$

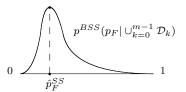


Let $p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)$ denote the posterior of p_F obtained from the theorem.

What is the relationship between p^{BSS} and \hat{p}_F^{SS} ?

$$\hat{p}_F^{SS} = p_{MAP}^{BSS}$$

$$p_{MAP}^{BSS} = \arg\max_{p_F \in [0,1]} p^{BSS}(p_F | \cup_{k=0}^{m-1} \mathcal{D}_k)$$



Drawback of $p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)$: Its expression contains an infinite sum.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Approximation of the posterior PDF of p_F

 $\underline{\mathsf{Idea:}}$ To approximate p_F by a single beta variable

Approximation of the posterior PDF of p_F

<u>Idea:</u> To approximate p_F by a single beta variable

Theorem (Da-Yin Fan, 1991)

Let X_1, \ldots, X_m be beta variables, $X_k \sim Beta(a_k, b_k)$, and $Y = X_1 X_2 \ldots X_m$. Then Y is approximately distributed as $\tilde{Y} \sim Beta(a, b)$, where

$$a = \mu_1 \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2}, \quad b = (1 - \mu_1) \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2},$$

$$\mu_1 = \prod_{k=1}^m \frac{a_k}{a_k + b_k}, \quad \mu_2 = \prod_{k=1}^m \frac{a_k(a_k + 1)}{(a_k + b_k)(a_k + b_k + 1)}.$$

Approximation of the posterior PDF of p_F

<u>Idea:</u> To approximate p_F by a single beta variable

Theorem (Da-Yin Fan, 1991)

Let X_1, \ldots, X_m be beta variables, $X_k \sim Beta(a_k, b_k)$, and $Y = X_1 X_2 \ldots X_m$. Then Y is approximately distributed as $\tilde{Y} \sim Beta(a, b)$, where

$$a = \mu_1 \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2}, \quad b = (1 - \mu_1) \frac{\mu_1 - \mu_2}{\mu_2 - \mu_1^2},$$

$$\mu_1 = \prod_{k=1}^m \frac{a_k}{a_k + b_k}, \quad \mu_2 = \prod_{k=1}^m \frac{a_k(a_k + 1)}{(a_k + b_k)(a_k + b_k + 1)}.$$

Nice property of this approximation:

$$\mathbb{E}[\tilde{Y}] = \mathbb{E}[Y]$$

$$\mathbb{E}[\tilde{Y}^2] = \mathbb{E}[Y^2]$$

Approximation \tilde{p}^{BSS} of the posterior PDF of p_F

$$p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k) \approx \tilde{p}^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k) = Beta(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k+1}{N+2} \left(1 - \prod_{k=1}^{m} \frac{n_k+2}{N+3}\right)}{\prod_{k=1}^{m} \frac{n_k+2}{N+3} - \prod_{k=1}^{m} \frac{n_k+1}{N+2}}$$

$$b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

Approximation \tilde{p}^{BSS} of the posterior PDF of p_F

$$p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k) \approx \tilde{p}^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k) = Beta(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k+1}{N+2} \left(1 - \prod_{k=1}^{m} \frac{n_k+2}{N+3}\right)}{\prod_{k=1}^{m} \frac{n_k+2}{N+3} - \prod_{k=1}^{m} \frac{n_k+1}{N+2}}$$

$$b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k+1}{N+2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k+2}{N+3}\right)}{\prod_{k=1}^{m} \frac{n_k+2}{N+2} - \prod_{k=1}^{m} \frac{n_k+2}{N+3}}$$

What is the relationship between \hat{p}^{BSS} and \hat{p}_F^{SS} ?

Approximation \tilde{p}^{BSS} of the posterior PDF of p_F

$$p^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)\approx \tilde{p}^{BSS}(p_F|\cup_{k=0}^{m-1}\mathcal{D}_k)=Beta(p_F|a,b)$$

$$a = \frac{\prod_{k=1}^{m} \frac{n_k + 1}{N+2} \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N+3} \right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N+3} - \prod_{k=1}^{m} \frac{n_k + 1}{N+2}}$$

$$b = \frac{\left(1 - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}\right) \left(1 - \prod_{k=1}^{m} \frac{n_k + 2}{N + 3}\right)}{\prod_{k=1}^{m} \frac{n_k + 2}{N + 3} - \prod_{k=1}^{m} \frac{n_k + 1}{N + 2}}$$

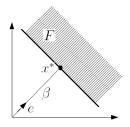
What is the relationship between \tilde{p}^{BSS} and \hat{p}^{SS}_{F} ?

$$\mathbb{E}_{ ilde{p}^{BSS}}[p_F]
ightarrow \hat{p}_F^{SS}$$
, as $N
ightarrow \infty$

 $\mathbb{E}_{ ilde{p}^{BSS}}[p_F] pprox \hat{p}_F^{SS}$, when N is large

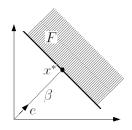
Example

Linear problem



Example

Linear problem

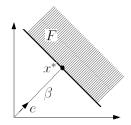


Geometry

- N = 1000
- $\bullet \ \pi(x) = \mathcal{N}(0, I_N)$
- $p_F = 10^{-3}$, $\beta = 3.09$

Example

Linear problem



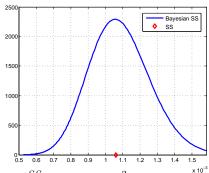
Geometry

•
$$N = 1000$$

$$\bullet \ \pi(x) = \mathcal{N}(0, I_N)$$

•
$$p_F = 10^{-3}$$
, $\beta = 3.09$

BSS vs SS



•
$$\hat{p}_F^{SS} = 1.06 \times 10^{-3}$$

x 10

•
$$\tilde{p}_{MAP}^{BSS} = 1.05 \times 10^{-3}$$

•
$$\mathbb{E}_{\tilde{p}^{BSS}}[p_F] = 1.08 \times 10^{-3}$$

•
$$\delta = \frac{\sqrt{\mathbb{V}ar_{\tilde{p}^{BSS}}[p_F]}}{\mathbb{E}_{\tilde{p}^{BSS}}[p_F]} = 0.16$$

Bayesian Subset Simulation

Bayesian Subset Simulation

• BSS produces the posterior PDF p^{BSS} of the failure probability p_F and its approximation \tilde{p}^{BSS} , which is more convenient for further computations.

Bayesian Subset Simulation

- BSS produces the posterior PDF p^{BSS} of the failure probability p_F and its approximation \tilde{p}^{BSS} , which is more convenient for further computations.
- Relationship between BSS and SS:

$$\hat{p}_F^{SS} = p_{MAP}^{BSS}$$

$$\mathbb{E}_{\tilde{p}^{BSS}}[p_F] o \hat{p}_F^{SS}, \text{ as } N o \infty$$

Bayesian Subset Simulation

- BSS produces the posterior PDF p^{BSS} of the failure probability p_F and its approximation \tilde{p}^{BSS} , which is more convenient for further computations.
- Relationship between BSS and SS:

$$\hat{p}_F^{SS}=p_{MAP}^{BSS}$$

$$\mathbb{E}_{\hat{p}^{BSS}}[p_F]\to \hat{p}_F^{SS}, \text{ as } N\to\infty$$

 \bullet The PDF \tilde{p}^{BSS} can be fully used for life-cost analyses, decision making, etc.

$$\mathbb{E}[\operatorname{Loss}(p_F)] = \int \operatorname{Loss}(p_F)\tilde{p}^{BSS}(p_F)dp_F$$

Thank you for attention!

