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a b s t r a c t 

In this paper, we propose a new stochastic simulation-based methodology for pricing discretely- 

monitored double barrier options and estimating the corresponding probabilities of execution. We de- 

velop our framework by employing a versatile tool for the estimation of rare event probabilities known 

as subset simulation algorithm. In this regard, considering plausible dynamics for the price evolution of 

the underlying asset, we are able to compare and demonstrate clearly that our treatment always outper- 

forms the standard Monte Carlo approach and becomes substantially more efficient (measured in terms 

of the sample coefficient of variation) when the underlying asset has high volatility and the barriers are 

set close to the spot price of the underlying asset. In addition, we test and report that our approach 

performs better when it is compared to the multilevel Monte Carlo method for special cases of barrier 

options and underlying assets that make the pricing problem a rare event estimation. These theoretical 

findings are confirmed by numerous simulation results. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

A barrier option is among the most actively-traded path-

ependent financial derivatives whose payoff depends on whether

he underlying asset 1 has reached (or exceeded) a predetermined

rice during the option’s contract term (e.g., Dadachanji, 2015;

ull, 2009 ). In the financial industry, a barrier option is traded,
� We are extremely grateful to the three anonymous reviewers and handling ed- 

tor Emanuele Borgonovo who have afforded us considerable assistance in enhanc- 

ng both the quality of the findings and the clarity of their presentation. The au- 

hors would like to thank Siu-Kui (Ivan) Au, James Beck, Damiano Brigo, Gianluca 

usai, Otto Konstadatos, Steven Kou, Ioannis Kyriakou, Zili Zhu, and the participants 

t the Global Finance 2018, Quantitative Methods in Finance 2018 and Quantitative 

inance and Risk Analysis 2019 Conferences and seminars at Caltech, University of 

iverpool, Monash University and Shanghai University for helpful comments. Any 

emaining errors are ours. 
∗ Corresponding author. 

E-mail addresses: Vasileios.Kontosakos@monash.edu (V.E. Kontosakos), 

endoncakeegan@gmail.com (K. Mendonca), Athanasios.Pantelous@monash.edu 

A .A . Pantelous), kostia@caltech.edu (K.M. Zuev). 
1 In practice, mostly currencies, commodities and interest rates are used as the 

nderlying asset(s). 
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ecause it more accurately represents investor’s beliefs 2 and of-

ers a more attractive risk–reward relation than the corresponding

lain–vanilla option. 3 Further, a barrier option’s advantage stems

rom its lower price that reflects the additional risk that the spot

rice might never reach (knock–in) or cross (knock–out) the bar-

ier throughout its life. 4 

In practice, to have a double barrier option with a very small

robability of execution (i.e., to be a very cheap option), we should

ither set the barriers close to the spot price(s) of the underlying

sset(s) at contract initiation or the underlying asset(s) need to be

f high volatility. Apparently, in both ways, the execution of the
2 Actually, a down-and-out barrier call option can serve the same purpose as a 

lain–vanilla call, but at a much lower cost given the investor has a strong indica- 

ion that the price of the underlying asset will increase. The downside of this strat- 

gy is the incomplete hedge it provides in case the market moves to the opposite 

irection. 
3 Note that the payoff at maturity of a barrier option is identical to that of a 

lain–vanilla European option, in case the price of the underlying asset has re- 

ained above the barrier (for a knock–out barrier option) or zero otherwise. 
4 Barrier options are cheaper than the corresponding plain vanilla ones because 

hey expire more easily and are less likely to be executed ( Jewitt, 2015 ). Further 

iscussion about ins and outs of barrier options can be found in Derman and Kani 

1996, 1997) . 

https://doi.org/10.1016/j.ejor.2020.07.044
http://www.ScienceDirect.com
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option will be a rare event . 5 In this paper, given that barrier options

are usually over-the-counter (OTC)–traded instruments, the devel-

opment of a framework able to deal efficiently with them, and

in particular, when a high volatility underlying asset(s) is consid-

ered, tackles an actual and challenging problem in computational

finance, which to our knowledge has not been explicitly studied so

far. 

The main contributions of this paper can be summarized as

follows. First, we develop a novel stochastic simulation-based

methodology for pricing discretely-monitored double barrier op-

tions which is based on the subset simulation (SubSim) method, a

Markov Chain Monte Carlo (MCMC)–based algorithm originally in-

troduced by Au and Beck (2001) to deal with complex engineered

systems. 6 

Second, we calculate the fair price for discretely-monitored

double barrier options on high volatility asset, and when, the barri-

ers set near the starting price of the underlying asset. Further, we

show that the proposed methodology is insensitive to the choice

of the underlying asset(s) dynamics. However, for illustration pur-

poses in our extensive simulation study, we consider two processes

for the evolution of the asset price: first, a standard geometric

Brownian motion (GBM) and second, the double exponential jump

diffusion process proposed in Kou (2002) . Under this challenging

setting, the very small exercise (rare event) probability corresponds

to the probability of the barrier option to be executed at maturity

(i.e., the price of the underlying asset to remain within the bar-

riers). This setting in a simple Monte Carlo simulation (MCS) setup

results – with an extremely large probability – in asset price trajec-

tories which cross the barriers, rendering the barrier option invalid

before maturity. 

Third, we show by measuring the coefficient of variation (CV),

and the mean squared error (MSE) that the proposed SubSim–

based algorithm is an efficient technique for the pricing of such

derivatives. In particular, the SubSim estimator has a CV which is

O (|log p E | 
r /2 ), where p E is the execution probability and 2 ≤ r ≤ 3 is

a constant. Comparing this against the MCS estimator whose CV is

O (p −1 / 2 
E 

) and for very small values of p E , we verify in a straight-

forward manner that the latter increases at a dramatically faster

pace compared to the SubSim estimator. Moreover, the MSE of the

derived SubSim estimator is O (p 2 
E 
| log p E | r−1 m 

−1 ) which is decreas-

ing with p E . We finally show that the computational cost (i.e., the

complexity) of the SubSim estimate for the discretely-monitored

double barrier option price can be bounded above by an amount

proportional to | log p E | mh −1 
s , where m is the number of samples

per subset and h s is the time step of the discretized underlying

stochastic process. 

Lastly, we compare our results against another popular

simulation-based methodology, namely the multi–level Monte Carlo

(MLMC) of Giles (2008a,b) approach and show that for very small

values of p E , the SubSim estimator outperforms the MLMC estima-

tor in terms of the observed CV. To conclude, our method might

be seen as a reliable alternative to price path–dependent options

that complements MLMC for special cases of underlying assets and

barrier setups. 

Our paper is organized as follows. In Section 2 , the connec-

tion with the existing literature on barrier options is provided. In
5 We should emphasise here that a barrier option on high volatility underlying 

asset(s) can be used in a similar way as a cheap, deep out–of–the–money option, 

serving as a hedge to provide insurance in a financial turmoil, given their volatility–

dependence Carr and Chou . Moreover, according to Andersen, Bollerslev, Diebold, 

and Ebens (2001) , the mean realized annual volatility of the thirty stocks in the 

Dow Jones Industrial Average (DJIA) is approximately 28% (ranging between 22% and 

42%) while it is not uncommon to record stocks with volatility levels between 33% 

and 40%. 
6 This is later extended by Zuev, Wu, and Beck (2015) to complex networks (see, 

also in Au & Wang, 2014 ). 
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ection 3 , we show how SubSim can be used specifically for the

stimation of the execution probability and the option payoff at

aturity. Section 4 subsequently presents the main theorem and

ts proof. This establishes the limiting behaviour of the MSE and

he computational complexity for a broad category of applications.

inally, numerical results and comparisons with the standard MCS

nd the MLMC methods are presented in Sections 5 and 6 to pro-

ide support for the theoretical analysis followed by some conclud-

ng remarks and directions for further research in Section 7 . 

. Literature review 

As we have seen before, a barrier option is typically classified

s either knock -in or -out depending on whether it is activated or

xpires worthless when the price of the underlying asset crosses a

ertain level (i.e., the barrier) ( Derman & Kani, 1996; 1997; Guarda-

oni & Sanfelici, 2016 ). Barrier options were estimated that they

ccounted for approximately half the volume of all traded ex-

tic options ( Luenberger & Luenberger, 1999 ). Despite the 2007–08

redit crunch and the subsequent drop in the demand for path–

ependent instruments, barrier options can still be a useful invest-

ent or hedging vehicle. 7 

Overall, the pricing of barrier options is a very challenging

roblem due to the need to monitor the price of the underly-

ng asset and compare it against the barriers at multiple discrete

oints during the contract life ( Kou, 2007 ). In essence, we have to

olve a multi–dimensional integral of normal distribution function-

ls, where the dimension of the integral is defined by the number

f discrete monitoring points ( Fusai & Recchioni, 2007 ). 

Computationally, certain barrier options, such as down-and-out

ptions, can be priced by appropriately adjusting Black–Scholes (BS)

quation (see Lo, Lee, & Hui, 2003; Merton, 1973 ). This idea can

e further extended to more complicated barrier options, which

an be priced using replicating portfolios of vanilla options in a

S framework Carr and Chou . All these approaches, however, suf-

er from the BS model’s dependence on a number of assumptions

hich are not met in real–world trading (e.g., Hull, 2009 ). As a

esult, the estimates we obtain for option prices under the equiv-

lent martingale measure are often inaccurate. In addition, we find

odels for barrier options with analytical solutions, such as jump-

iffusion models ( Kou, 2002; Kou & Wang, 2004 ), the constant

lasticity of variance (CEV) model ( Boyle & Tian, 1999; Davydov

 Linetsky, 2001 ), exact analytical approaches ( Fusai, Abrahams,

 Sgarra, 2006 ) and methods based on Lévy processes that use

he Hilbert transform ( Feng & Linetsky, 2008; Fusai, Germano, &

arazzina, 2016; Jeannin & Pistorius, 2010; Lian, Zhu, Elliott, & Cui,

017; Phelan, Marazzina, Fusai, & Germano, 2019 ). 

Another set of methods for pricing barrier options based on

olving partial differential equations (PDEs) was proposed in Boyle

nd Tian (1998) , Zvan, Vetzal, and Forsyth (20 0 0) , Buchen and Kon-

tandatos (2009) , Zhu and De Hoog (2010) and Golbabai, Ballestra,

nd Ahmadian (2014) . Although these methods are generally pow-

rful, they depend on being able to accurately model the op-

ion with PDEs and cannot be used in all circumstances. Other

pproaches used in the pricing of exotic derivatives include the

ethod of lines ( Chiarella, Kang, & Meyer, 2012 ), where the Greeks

re also estimated, robust optimization techniques ( Bandi & Bert-

imas, 2014 ), applicable also to American options, finite–difference

ased approaches ( Wade, Khaliq, Yousuf, Vigo-Aguiar, & Deininger,

007 ), where a Crank–Nicolson smoothing strategy to treat dis-

ontinuities in barrier options is presented, and regime–switching

odels ( Elliott, Siu, & Chan, 2014; Rambeerich & Pantelous, 2016 ). 
7 For an up-to-date estimate of their traded volume the interested reader is re- 

erred to the OTC derivatives statistics for 2018 by the Bank of International Settle- 

ents, found here: https://www.bis.org/statistics/derstats.htm 

https://www.bis.org/statistics/derstats.htm
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MCS is often used for option pricing ( Schoutens & Symens,

003 ) and particularly for barrier options ( Glasserman & Staum,

001 ). In the latter, an importance sampling (IS) based method is

eveloped for the pricing of several types of barrier options. Al-

hough IS is known to be an efficient algorithm for sampling, in a

are event estimation context, it is not as efficient as SubSim when

ampling is performed in high-dimensional spaces, i.e., the dimen-

ion N of the approximated equation is very large (see, Au and

eck, 2003; Katafygiotis and Zuev, 2008 , for the details). The main

eason for the exponential drop of efficiency of the standard IS in

igh-dimensional spaces is that the importance sampling density,

mployed within IS, should be very carefully tailored to the prob-

em under consideration, which has been proved to be a very diffi-

ult task ( Beskos, Crisan, & Jasra, 2014; Snyder, Bengtsson, Bickel,

 Anderson, 2008 ). The theoretical aspects of this phenomenon

re described in ( Bengtsson, Bickel, & Li, 2008 ). More recently the

collapse of IS in high dimensions” is discussed in Agapiou, Pa-

aspiliopoulos, Sanz-Alonso, and Stuart (2017) . 

The main advantage of MCS over other pricing methods is

ts model–free property and its non–dependence on the dimen-

ion N of the approximated equation. The latter is an important

roperty since as N → ∞ ( �t → 0), the price of a discretely mon-

tored barrier option converges to that of a continuously moni-

ored one ( Broadie, Glasserman, & Kou, 1997; Phelan, Marazzina,

usai, & Germano, 2018 ). However, MCS has a serious drawback,

s high volatility makes it difficult for the asset to remain within

arriers -especially when the gap between them is small- which

n turn, makes a positive payoff a rare event ( Glasserman, Hei-

elberger, Shahabuddin, & Zajic, 1999 ). As a result, any standard

CS method will be inaccurate and highly unstable ( Geman & Yor,

996 ). This motivates the development of more advanced stochas-

ic simulation methods which inherit the robustness of MCS, and

et are more efficient in estimating barrier option prices. A range

f stochastic simulation techniques for speeding up the conver-

ence have been proposed, such as the MCS approximation cor-

ection for constant single barrier options ( Beaglehole, Dybvig, &

hou, 1997 ), the simulation method based on the large deviations

heory ( Baldi, Caramellino, & Iovino, 1999 ) and the sequential MCS

ethod ( Shevchenko & Del Moral, 2017 ). 

. Barrier option pricing with subset simulation 

The starting point in option pricing is modeling the price S t of

he underlying asset. In our study, we consider two dynamics for

he evolution of asset price; we assume that the underlying asset

rice follows either a GBM or a more complex double exponen-

ial jump diffusion process with i.i.d. price jumps ( Kou, 2002; Kou

 Wang, 2004 ). Although both models are well established and

idely used in academic research, particularly for option pricing,

e present briefly here their basic features. 

.1. GBM 

Under a standard GBM, the price S t of the underlying asset fol-

ows the stochastic differential equation (SDE) 

S t = S t μt dt + S t σt dW t , (1)

 risk–neutral process, where μt is the drift, σ t is volatility, and

 t is the standard Brownian motion defined on a common proba-

ility space (�, F , P ) . The discretized solution of Eq. (1) can then

e written as follows 

 n = S n −1 exp 

((
μn − σ 2 

n 

2 

)
�t + σn 

√ 

�t Z n 

)
, (2) 

here Z 1 , . . . , Z N ∼ N (0 , 1) are i.i.d. standard normal random vari-

bles. 
.2. Double exponential jump diffusion 

The main contribution of Kou’s jump diffusion model is the in-

orporation of a discrete jump component into the continuous part

f the classic diffusion model as presented on the RHS of Eq. (1) .

he price S t then evolves according to the following SDE: 

S t = S t μt dt + S t σt dW t + d 

( N t ∑ 

i =1 

(V i − 1) 
)
, (3)

here W t is the standard Brownian motion as in Eq. (1) defined

n the same probability space, N t is a Poisson process with rate λ
i.e., the expected number of jumps) and { V i } is a sequence of i.i.d.

andom variables which satisfies that X = log V has an asymmet-

ic double exponential distribution with probability density function

pdf) given by 

f X (x ) = pη1 e 
−η1 x 1 R + (x ) + qη2 e 

η2 x 1 R − (x ) . (4)

n Eq. (4) , η1 > 1, η2 > 0, and they control the jump magnitude,

p + q = 1 with p , q ≥ 0 and they represent the probability for an

pward and a downward jump, respectively. It follows that, 

 = log V 

d = 

{
ξ+ , with probability p 

−ξ− , with probability q 

}
, (5) 

here ξ+ and ξ− are exponentially distributed random variables

ith mean values 1/ η1 and 1/ η2 , respectively, while the 
d = symbol

enotes equality in distribution. The solution to the SDE in Eq. (3) ,

n its discretized form, yields the following asset price dynamics:

 n = S n −1 exp 

((
μn − σ 2 

n 

2 

)
�t + σn 

√ 

�t Z n 

)
N n ∏ 

i =1 

V i , (6) 

here again Z 1 , . . . , Z N ∼ N (0 , 1) are i.i.d. standard normal random

ariables. For simplicity, both in the GBM case in Eq. (1) and in

he jump diffusion model in Eq. (3) , μ( t ) and σ ( t ) are time in-

ariant and are set equal to μ and σ . In practice, our pricing

ramework can be applied potentially to any plausible underlying

rice dynamics; alternatively, we could use the constant elastic-

ty of variance (CEV) process in place of the double exponential

ump diffusion process. Notwithstanding the existence of analytical

r semi-analytical solutions for the pricing of path-dependent se-

urities (see Davydov and Linetsky, 2001; Sesana, Marazzina, and

usai, 2014 , for applications of the CEV model in pricing exotics)

nder the CEV process, its underlying return distribution exhibits

 thinner tail compared to the jump diffusion model. As a result it

ails to capture the leptokurtic feature of asset returns to the same

xtent as the latter ( Kou, 2002 ). 

.3. Subset simulation for barrier options 

We first consider how SubSim can be used specifically for pric-

ng barrier options and why it is especially efficient for options

ith small probability of execution. The goal is to estimate the

rice P at t = 0 given by the following discounted expectation un-

er the risk–neutral measure Q : 

 = E 

[ 

h (S N ) 
N ∏ 

n =1 

1 [ L n ,U n ] (S n ) 

] 

, (7) 

here h ( S N ) is the payoff at the contract maturity ( t = T ), h (S N ) =
ax { S N − K, 0 } , K is the strike price, and 1 [ A , B ] ( x ) stands for the in-

icator function: 1 [ A,B ] (x ) = 1 if A ≤ x ≤ B , where A and B are the

pper and lower barriers respectively, and zero otherwise. 

In order to use the SubSim method, we need to bring the prob-

em in Eq. (7) in a form suitable to become an input for the

ethod. Suppose that the time–evolution of the dynamic system
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Eq. (2)

Fig. 1. Target event . The target event E consists of all Z -vectors that lead to the 

positive payoff (option execution). The mapping between Z - and S -spaces is given 

by either Eq. (2) or Eq. (6) . 
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Fig. 2. Performance function . The function g ( S ) quantifies how far the asset price 

trajectory S is from the positive payoff, which occurs when S stays between the 

barriers U and L and ends up above the strike K . The value of g ( S ) on the depicted 

trajectory is the negative sum of the heights of the vertical bars above the upper 

barrier (red), below the lower barrier (blue), and ending below the strike (purple).. 
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under study (e.g., evolution of the asset price S n ) is modeled by

the following discrete model: 

S n = F (S n −1 , U n ) , n = 1 , 2 , . . . , N, (8)

where S n is the price of the underlying asset at time t n , S =
(S 1 , . . . , S N ) is the trajectory of the underlying asset, U n is a ran-

dom input at time t n , and F is a certain function that governs the

evolution of S (i.e., the GBM Eq. (1) or the jump diffusion in Eq.

(3) in our case). Let g ( S ) be the performance function – a function

related to the quantity of interest S – (e.g. the maximum value of

the asset price g(S) = max n =1 , ... ,N S n ). We say that a target event E

occurs if g ( S ) exceeds a critical threshold α: 

E = { U = (U 1 , . . . , U N ) : g(S(U)) ≥ α} ⊂ R 

N . (9)

The central idea behind SubSim is to break down the “rare ” event

of interest E into a series of “less rare ” events that have easier-to-

compute probabilities. This idea is implemented by considering a

collection of nested subsets starting from the entire input space

R 

N and finishing at the target rare event, 

R 

N = E 0 ⊃ E 1 ⊃ . . . ⊃ E L ≡ E. (10)

The intermediate events E i can be defined by simply repeatedly re-

laxing the value of the critical threshold α in Eq. (9) , 

E i = { U = (U 1 , . . . , U N ) : g(S(U)) ≥ αi } , α1 < α2 < . . . < αL ≡ α. 

(11)

To make SubSim directly applicable, we need to specify suitable

functions for the underlying asset price trajectory and the expected

payoff at maturity. Let E ⊂ R 

N be a set of vectors Z = (Z 1 , . . . , Z N )

that lead to a positive payoff. In other words, E represents the tar-

get event for our problem and consists of all vectors Z that result

into those asset price trajectories that remain within barriers and

end up above the strike price. This is schematically illustrated in

Fig. 1 . Let π be the payoff function, 

π(Z) = 

{
S N − K, if Z ∈ E, 

0 , if Z / ∈ E, 
(12)

equal to the payoff of a plain vanilla call in case the asset price

trajectory remains within the barriers and ends up above the strike

price or zero otherwise. 

As for the performance function, in the case of option pricing,

this quantifies how far the asset price trajectory S = (S 1 , . . . , S N )

lies from the positive payoff, or equivalently, how far Z =
(Z 1 , . . . , Z) is from E . We define it as follows: 

g(S) = 

N ∑ 

n =1 

g n (S n ) , (13)

where g n ( S n ) quantify how far the asset prices S n is from the bar-

riers L n , U n and strike K , 
g n (S n ) = 

⎨ ⎩ 

U n − S n , if S n > U n , 

S n − L n , if S n < L n , 

0 , otherwise . 

for n = 1 , . . . , N − 1 . 

 N (S N ) = 

⎧ ⎨ ⎩ 

U N − S N , if S N > U N , 

S N − K, if S n < K, 

0 , otherwise . 

(14)

The difference between g n for n = 1 , 2 , . . . , N − 1 and g N stems

rom the fact that at maturity t N = T , the role of the lower bar-

ier is played by the strike price K . The performance function g

s schematically shown in Fig. 2 . In terms of g , the positive-payoff

vent E can be written, according to the definition of the perfor-

ance function g ( S ) in Eq. (14) , as follows: 

 = { Z = (Z 1 , . . . , Z N ) : g(S(Z)) ≥ 0 } , (15)

here α is now replaced by zero and the defined performance

unction brings the problem of estimating the probability of pos-

tive payoff p E into the general SubSim framework developed in Au

nd Beck (2001) . Then, combining Eqs. (12) and (14) , the option

rice, which in our case is the expected payoff of the contract at

aturity, can be rewritten as follows: 

 = E [ π(Z)] 

= E [ π(Z) | Z ∈ E] P (Z ∈ E) + E [ π(Z) | Z / ∈ E] P (Z / ∈ E) 

= E [ π(Z) | Z ∈ E] P (Z ∈ E) = E [ S N − K| Z ∈ E ] P (E ) 

= P (E)(E [ S N | Z ∈ E] − K) . (16)

ow, the problem boils down to estimating the execution probabil-

ty, p E = P (E) , and the expectation of the payoff at maturity, given

y the second term in the product of Eq. (16) . The analysis carried

ut in the next section is insensitive to the choice of the under-

ying price dynamics; the results hold regardless of whether the

BM or the jump diffusion or another stochastic process is used. 

. Probability of contract execution p E and option payoff h via 

ubSim 

We start with the calculation of p E to notice that given the se-

uence in Eq. (10) , the small probability p E of rare event E can be

ritten as a product of conditional probabilities: 

p E = P (E L ) = P (E L | E L −1 ) P (E L −1 ) 

= P (E L | E L −1 ) P (E L −1 | E L −2 ) P (E L −2 ) = . . . = 

L ∏ 

i =1 

P (E i | E i −1 ) . (17)
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δ  
y choosing the intermediate thresholds, αi , appropriately (in the

ctual implementation of SubSim described below, αi are chosen

daptively on the fly), we can make all conditional probabilities

 (E i | E i −1 ) sufficiently large, and estimate them efficiently by MC-

ike simulation methods. In fact, the first factor in the right-hand

ide of Eq. (17) , P (E 1 | E 0 ) = P (E 1 ) , can be directly estimated by

CS: 

 (E 1 ) ≈ 1 

m 

m ∑ 

i =1 

1 E 1 

(
U 

(i ) 
)
, U 

(1) , . . . , U 

(m ) ∼ f U . (18)

owever, estimating the remaining factors, P (E i | E i −1 ) , for i ≥ 2, is

ot trivial, since this requires sampling from the conditional distri-

ution, f U (u | E i −1 ) ∝ f U (u ) I E i −1 
(u ) , which is a computationally de-

anding process, especially at later levels, where E i −1 becomes a

are event. In SubSim, this is achieved by using the so-called mod-

fied Metropolis algorithm (MMA) ( Au & Beck, 2001; Zuev & Katafy-

iotis, 2011 ), which belongs to a large family of MCMC algorithms

 Liu, 2001; Robert & Casella, 2004 ) for sampling from complex

robability distributions. 8 

To sample from f U (u | E i −1 ) , MMA generates a Markov chain

hose stationary distribution is f U (u | E i −1 ) . The key difference be-

ween MMA and the original Metropolis algorithm is how the

candidate ” state of a Markov chain is generated (in Appendix A ,

he MMA algorithm used for the sampling is presented). Then, us-

ng the detailed balance equation, it can be shown (see Au and

eck, 2001 , for the details) that if U 

( j ) is distributed according to

he target distribution, U 

( j) ∼ f U (u | E i −1 ) , then so is U 

( j+1) , and

f U (u | E i −1 ) is thus indeed the stationary distribution of the Markov

hain generated by MMA. Now, to estimate the small probability

f execution, p E , the method starts by generating m MCS sam-

les, U 

(1) , . . . , U 

(m ) ∼ f U , and computing the corresponding sys-

em trajectories, S (1) , . . . , S (m ) , via Eq. (8) and performance values,

 

(i ) 
U 

= g(S (i ) ) . Without loss of generality, we can assume that 

 

(1) 
U 

≥ g (2) 
U 

≥ . . . ≥ g (m ) 
U 

. (19) 

ndeed, to achieve this ordering, we can simply renumber the sam-

les accordingly. Since E is a rare event, all U 

( i ) �∈ E with large prob-

bility. The ordering in Eq. (19) means however that, in the metric

nduced by the performance function, U 

(1) , is the closest sample to

 , U 

(2) is the second closest, etc. Let us define the first intermedi-

te threshold, α1 , as the average between the performance values

f the ˜ m th and ( ̃  m + 1) th system trajectories, where ˜ m = βm with

∈ (0, 1): 9 

1 = 

g 
(βm ) 
U 

+ g 
(βm +1) 
U 

2 

, 0 < β < 1 . (20)

etting α1 to this value has two important corollaries: (1) the MCS

stimate of P (E 1 ) given by Eq. (18) is exactly β , and (2) samples

 

(1) , . . . , U 

(βm ) are i.i.d. random vectors distributed according to

he conditional distribution f U ( u | E 1 ). In the next step, SubSim gen-

rates ˜ m = βm Markov chains by MMA starting from ˜ m most clos-

st to E samples U 

(1) , . . . , U 

(βm ) as “seeds ”: 

 

(i ) = V 

(i, 1) MMA −→ V 

(i, 2) MMA −→ . . . 
MMA −→ V 

(i,l) . (21)

ince by construction, all seeds are in the stationary state, U 

(i ) ∼
f U (u | E 1 ) , i = 1 . . . , ˜ m , so are all Markov chains states, V (i, j) ∼
f U (u | E 1 ) , j = 1 , 2 , . . . , l. The length of each chain is l = 1 /β, which

akes the total number of states, ˜ m l = m . To simplify the notation,
8 The MMA algorithm is a component-wise modification of the original 

 Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953 ) algorithm, which is 

pecifically tailored for sampling in high dimensions, where the original algorithm 

s known to perform poorly (see, Katafygiotis and Zuev, 2008 , for the details). 
9 For an analysis around the choice of β , the interested reader is directed to 

ppendix B . 

w  

M  

i

i

et us denote samples V 

( i , j ) by simply V (1) , . . . , V (m ) . Next, the sec-

nd intermediate threshold, α2 , is similarly defined as follows: 

2 = 

g 
(βm ) 
V 

+ g 
(βm +1) 
V 

2 

, (22) 

here g (1) 
V 

≥ g (2) 
V 

≥ . . . ≥ g (m ) 
V 

are the ordered performance values

orresponding to samples V (1) , . . . , V (m ) . Again, by construction,

 (E 2 | E 1 ) ≈ β and V (1) , . . . , V (βm ) ∼ f U (u | E 2 ) . The SubSim method,

chematically illustrated in Fig. 3 , proceeds in this way by direct-

ng Markov chains towards the rare event E until it is reached and

ufficiently sampled. Specifically, it stops when the number m E of

amples in E , which a priori 0 ≤ m E ≤ m , is m E ≥βm . All but the last

actor in the right-hand side of Eq. (17) are then approximated by

and P (E| E L −1 ) ≈ m E /m . This results into the following estimate:

p E ≈ ˆ p SubSim 

E = βL −1 m E 

m 

, (23) 

here L 10 is the number of subsets in Eq. (17) required to reach E .

he total number of samples used by SubSim is then 

 = m ︸︷︷︸ 
MCS 

+ m (1 − β)(L − 1) ︸ ︷︷ ︸ 
MMA 

. (24) 

he first factor, the probability of positive payoff p E = P (E) , can be

eadily estimated by SubSim, 

 (E) ≈ ˆ p SubSim 

E . (25) 

oreover, the conditional expectation in Eq. (16) for the terminal

sset price can be estimated using the samples generated by Sub-

im at the last level. Namely, let Z (1) , . . . , Z (m ) be the last batch of

MA samples generated by SubSim before it stops, 

 

(1) , . . . , Z (m ) ∼ N (z| E L −1 ) , E L −1 ⊃ E L ≡ E, (26)

here N (z| A ) ∝ N (z) I A (z) denotes the standard multivariate nor-

al distribution conditioned on A . By construction (this is the Sub-

im stopping criterion), at least ˜ m = βm of these samples are in E .

et 

 

(1) , . . . , Z (m 

∗) ∼ N (Z| E) , βm ≤ m 

∗ < m, (27)

enote those samples. The conditional expectation can then be es-

imated as follows: 

 [ S N | Z ∈ E] ≈ ̂ E 

SubSim 

Q = 

1 

m 

∗

m 

∗∑ 

i =1 

S N (Z (i ) ) , (28)

here S N (Z (i ) ) = S N (Z (i ) 
1 

, . . . , Z (i ) 
N 

) is the final value of the asset

rice. The expression in Eq. (28) in essence gives the expected ter-

inal price of the underlying asset under the risk–neutral measure

s the average of all the generated asset price paths. Combining

qs. (25) and (28) , we obtain the SubSim estimate of the option

rice: 

 ≈ ̂ P SubSim = 

ˆ p SubSim 

E ( ̂  E 

SubSim 

Q − K) . (29)

ubSim as described above, yields an estimator for the execution

robability, p E , which scales like a power of the logarithm of p E 
 Au & Beck, 2001 ): (

ˆ p SubSim 

E 

)
= 

√ 

(1 + γ )(1 − β) 

Mβ(| ln β| ) r | ln p E | r ∝ | ln p E | r/ 2 , (30)

here γ is a constant that depends on the correlation of the

arkov chain states and 2 ≤ r ≤ 3. Comparing Eq. (30) against the
10 The total number of subsets (levels) L is not a parameter set but the user by it 

s decided endogenously by the method, based on how rare the event in question 

s. A rarer event, apparently, needs more levels to be accurately estimated. 
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Fig. 3. Schematic illustration of Subset Simulation . First, Monte Carlo samples U (1) , . . . , U (m ) are generated. Next, ˜ m = βm “seeds” (the closest samples to E ) are chosen 

and MMA is used to generate V (1) , . . . , V (m ) from these seeds in the direction of E . The SubSim algorithm proceeds in this way until the target rare event E has been reached 

and sufficiently sampled. In this visualization, m = 6 and β = 1 / 3 . 
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CV of a standard MCS method ( Liu, 2001; Robert & Casella, 2004 )

δ
(

ˆ p MC 
E 

)
= 

√ 

Var 
[

ˆ p MC 
E 

]
E 

[
ˆ p MC 

E 

] = 

√ 

1 − p E 
Mp E 

∝ p −1 / 2 
E 

, (31)

reveals a serious drawback of MCS, as it makes it inefficient in

estimating small probabilities of rare events. Indeed, as p E → 0,

then δ
(

ˆ p MC 
E 

)
≈ 1 / 

√ 

Mp E . This means that the number of samples

M needed to achieve an acceptable level of accuracy is inversely

proportional to p E , and therefore very large, M ∝ 1/ p E � 1. Therefore,

for rare events, where probabilities are small p E � 1, the CV of Sub-

Sim is significantly lower than that of MCS, δ
(

ˆ p SubSim 

E 

)
� δ

(
ˆ p MC 

E 

)
.

This property guaranties that SubSim produces more accurate (on

average) estimates of small probabilities of rare events. 

In case the asset price S has high volatility, then discrete as-

set price trajectories S 1 , . . . , S N will have large variability and with

large probability will either cross the barriers and expire or end up

below the strike. This means that having a positive payoff will be

a rare event. This suggests – and we confirm this by simulation in

Section 6 – that SubSim should be substantially more efficient in

estimating prices of barrier options on high volatility assets than

MC-based methods. 

5. Complexity theorem 

The complexity theorem provides upper bounds for the MSE

and the computational complexity/cost of the SubSim estimator P̂ 

for the option price P at t = 0 , by examining their limiting be-

havior. Both upper bounds are given in terms of the execution

probability, p E . Note that the theorem does not make any assump-

tions regarding the underlying SDE or the functional of the solu-

tion used. We want to re-emphasise here that our treatment is in-

sensitive to the choice of the underlying price dynamics. 

However, before we proceed to showing the main result in this

section, we introduce two lemmas in order to establish important

statistical properties of the barrier option price estimator ˆ P as re-

gards its bias and its corresponding CV. 

Lemma 1. The fractional bias of the SubSim estimator ˆ P is of order

1/ M , for every M. That is: 

| E 

[ ˆ P − P 

P 

] 
| = O 

(
1 

M 

)
, (32)

where M denotes the total number of samples. 
roof. For each simulation level i , we can define the following

tandardized variable: 

 i = 

ˆ P i − P i 
σi 

= 

̂ p i (S T − K) − p i (S T − K) 

σi 

, (33)

here it is clear that the mean and variance equal to E [ Z i ] = 0 and

 [ Z 2 
i 

] = 1 , respectively. We can solve Eq. (33) for ˆ P i to get ˆ P i = P i +
i Z i . We also have that 

ˆ P − P 

P 
= 

L ∏ 

i =1 

ˆ P i − P i 
P i 

= 

L ∏ 

i =1 

̂ p i (S T − K) + − p i (S T − K) + 

p i (S T − K) + 

= 

L ∏ 

i =1 

̂ p i (S T − K) + 

p i (S T − K) + 
− 1 , (34)

here L is the number of simulation levels the SubSim generates.

sing Eq. (33) , we can rewrite Eq. (34) as 

ˆ P − P 

P 
= 

L ∏ 

i =1 

(1 + δi Z i ) − 1 , (35)

here δi = σi /P i denotes the CV of P i . The RHS of Eq. (35) can be

urther expanded as 

L 
 

i =1 

(1 + δi Z i ) − 1 = 

L ∑ 

i =1 

δi Z i + 

∑ 

i> j 

δi δ j Z i Z j 

+ 

∑ 

i> j>k 

δi δ j δk Z i Z j Z k + · · · + 

L ∏ 

i =1 

δi Z i . (36)

he expected value of Eq. (36) , using E [ Z i ] = 0 , is equal to 

 

[ ˆ P − P 

P 

] 
= 

∑ 

i> j 

δi δ j E [ Z i Z j ] 

+ 

∑ 

i> j>k 

δi δ j δk E [ Z i Z j Z k ] + · · · + E 

( L ∏ 

i =1 

Z i 

) L ∏ 

i =1 

δi . (37)

n case every Z is independent of each other, the expectation of

q. (37) is equal to zero and there is no bias for ˆ P . In the more

eneral case where Z ’s are correlated, using that δi is O (1 / 
√ 

M ) we

ave that the first term of the RHS of Eq. (37) is O (1/ M ) and the

est of the terms are of order at least O (1 / (M 

√ 

M )) . Finally, from

he Cauchy inequality we have that | E [ Z i Z j ] | ≤
√ 

E [ Z i ] 
2 E [ Z j ] 

2 . Ap-
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Fig. 4. Mean squared error and complexity/cost of the SubSim estimator ˆ P . The simulation results on the left panel show that the MSE scales like p 2 E | log p E | r−1 m 

−1 , r = 2 

(in general 2 ≤ r ≤ 3). In accordance with the theoretical findings, simulated MSE drops with respect to p E . Computational cost/complexity of SubSim with respect to the 

probability of execution is presented on the right panel. The simulation results show that the cost can be bounded above by a function of |log p E |. 
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Table 1 

Simulation results . This table shows the mean values and coefficients of variations of the estimates of the 

execution probability p E and the barrier option price P 0 , obtained by SubSim and MCS for different values of 

volatility σ . All statistics are obtained from 100 independent runs of the algorithms. 

σ ˆ p SubSim 
E / ̂ p MCS 

E 
̂ P SubSim 

0 / ̂  P MCS 
0 δ( ̂ p SubSim 

E ) /δ( ̂ p MCS 
E ) δ( ̂  P SubSim 

0 ) /δ( ̂  P MCS 
0 ) 

0.200 8.30 ×10 −3 / 8 . 26 × 10 −3 2 . 93 × 10 −2 / 2 . 91 × 10 −2 0.030 / 0.0281 0.034 / 0.0347 

0.216 4.32 ×10 −3 / 4 . 34 × 10 −3 1.52 ×10 −2 / 1 . 53 × 10 −2 0.032 / 0.0391 0.036 / 0.0476 

0.233 2.04 ×10 −3 / 2 . 04 × 10 −3 7.18 ×10 −3 / 7 . 19 × 10 −3 0.039 / 0.0596 0.044 / 0.0673 

0.252 8.67 ×10 −4 / 8 . 76 × 10 −4 3.06 ×10 −3 / 3 . 11 × 10 −3 0.048 / 0.0788 0.055 / 0.0985 

0.272 3.23 ×10 −4 / 3 . 21 × 10 −4 1.14 ×10 −3 / 1 . 15 × 10 −3 0.057 / 0.126 0.062 / 0.160 

0.294 1.06 ×10 −4 / 1 . 08 × 10 −4 3.75 ×10 −4 / 3 . 80 × 10 −4 0.060 / 0.217 0.069 / 0.282 

0.317 2.91 ×10 −5 / 2 . 63 × 10 −5 1.03 ×10 −4 / 9 . 38 × 10 −5 0.076 / 0.406 0.081 / 0.476 

0.343 6.85 ×10 −6 / 5 . 66 × 10 −6 2.46 ×10 −5 / 2 . 14 × 10 −5 0.099 / 0.759 0.109 / 1.014 

0.370 1.31 ×10 −6 / 9 . 93 × 10 −7 4.69 ×10 −6 / 3 . 06 × 10 −6 0.153 / 1.971 0.160 / 2.337 

0.400 1.99 ×10 −7 / 2 . 45 × 10 −7 7.20 ×10 −7 / 1 . 10 × 10 −6 0.180 / 3.844 0.205 / 4.017 
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Fig. 6. Ratios of CVs. The ratios δ( ̂ p MCS 
E ) /δ( ̂ p SubSim 

E ) and δ( ̂  P MCS 
0 ) /δ( ̂  P SubSim 

0 ) versus the volatility σ are presented on the left panel. The right panel shows the total number 

of samples used in Subset Simulation against volatility σ when L = 90 and U = 110 . 
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t  
plying this result to Eq. (37) shows that 

| E 

[ ˆ P − P 

P 

] 
| ≤ ∑ 

i> j 

δi δ j + o(1 /M) = O 

(
1 

M 

)
. (38)

�

Remark 1. The result in Eq. (32) should come as no surprise. Given

that the payoff of the option is calculated only at the final simu-

lation level L , the final estimation of the exercise probability, p E ,

requires only one step, which adds no computational complexity

to the estimation. 

We next establish a result for the CV of the SubSim estimate P̂ 

introducing the following lemma: 

Lemma 2. The squared CV, δ2 , of the SubSim estimator ˆ P is of order

1/ M , for every M. That is: 

δ2 = E 

[ ˆ P − P 

P 

] 2 
= O 

(
1 

M 

)
, (39)

where M denotes the total number of samples. 

Proof. Rewriting the expectation E 

[ ˆ P −P 
P 

]2 
in terms of the product∏ L 

i =1 
ˆ P /P − 1 = 

∏ L 
i =1 (1 + δi Z i ) − 1 , where δi = σi /P i , ensures that

the same sequence of steps, as in the proof of Lemma 1 , can be

also applied here. This shows that ˆ P is a consistent estimator for P

and its CV δ is O (1 / 
√ 

M ) . �
With the two lemmas above, we show that the SubSim estimate

or the option price ˆ P has the same statistical properties as the ex-

rcise probability, p E . Subsequently, results established for the sec-

nd can be used for the first and vice versa. We now use the re-

ults in the two lemmas to derive the upper bounds for the MSE

nd the computational complexity for the SubSim estimate, ˆ P . 

heorem 1. The SubSim estimator, ˆ P , for a functional of the solution
ˆ 
 to a given SDE has 

(i) the MSE bounded from above by c 1 p 
2 
E | log p E | r−1 m 

−1 , 

(ii) with computational cost which has an upper bound of

c 2 ( | log p E | ) mh −1 
s , 

where c 1 , c 2 are constants, p E is the probability of positive pay-

ff at maturity, m is the number of samples per subset, 2 ≤ r ≤ 3 is a

arameter dependent on the correlation between the intermediate ex-

cution probabilities, and h s is the time-step used in the discretization

f the given SDE. 

roof. (i) From Eq. (30) , we have that the squared CV of the exer-

ise probability, p E , is equal to 

2 = 

(1 + γ )(1 − β) 

β| log β| r M 

| log p E | r , (40)

here γ is a constant related to the correlation between the states

f the Markov chains used for the sampling at different levels, β is

he level probability and M is the total number of samples used by
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c  

a  

c  

o  

c  

a  

e  
he method. Choosing L = log p E / log β the following holds: 

2 = 

(1 + γ )(1 − β) 

βLm 

| L | r 

= 

(1 + γ )(1 − β) 

β

∣∣∣∣ log p E 
log β

∣∣∣∣r−1 

m 

−1 

= O (| log p E | r−1 m 

−1 ) , (41) 

sing now that the total number of samples, M = Lm, where L is

he number of subsets (levels) and m the samples per subset. To

stimate the upper bound for the MSE of ˆ P , we notice that 

ˆ P 
= 

√ 

Var [ ̂  P ] 

E [ ̂  P ] 
= 

√ 

MSE [ ̂  P ] − Bias [ ̂  P , P ] 2 

E [ ̂  P ] 
. (42) 

quaring both sides of Eq. (42) gives 

2 
ˆ P 
= 

MSE [ ̂  P ] − Bias [ ̂  P , P ] 2 

E [ ̂  P ] 2 
, (43) 

hich equivalently can be written as 

SE [ ̂  P ] ≈δ2 
ˆ P 
E [ ̂  P ] 2 + Bias [ ̂  P , P ] 2 . (44)

o bound the MSE in Eq. (44) , we can make use of Lemmas 1 and

 which show that the first term of the MSE is O (1/ M ) while the

econd term is O (1/ M 

2 ). This results in a MSE bounded above by

p 2 
E 
/M as for large values of M the first term prevails. The term p 2 

E 
nters the upper bound of the MSE from the estimation of the
Table 2 

Simulation results for the GBM . Barrier option prices, CV and CPU running times for M

for the case of a single and double barrier option are presented in the bottom panel. 

Monitoring frequency 

N = 25 

option price CV CPU time 

σ MC SubSim MC SubSim MC SubSim

0.10 0.8506 0.8486 0.0096 0.0095 7s 17s 

(0.0008) (0.0008) 

0.15 0.3010 0.3023 0.0183 0.0150 10s 45s 

(0.0005) (0.0004) 

0.20 0.0891 0.0898 0.0332 0.0228 6s 42s 

(0.0003) (0.0002) 

0.25 0.0230 0.0229 0.0698 0.0330 7s 77s 

(1.609e −04) (7.564e −05) 

0.30 0.0054 0.0054 0.1381 0.0432 6s 70s 

(7.554e −05) (2.328e −05) 

0.35 1.180e −03 1.197e −03 0.3081 0.0564 6s 96s 

(3.637e −05) (6.763e −6) 

0.40 2.634e −04 2.599e −04 0.5847 0.0703 7s 124s 

(1.540e −05) (1.827e −6) 

Single Barrier 

option price CV CPU time 

σ SubSim MLMC SubSim MLMC SubSim MLMC

0.10 9.1972 9.0358 0.0044 0.0004 80s 150s 

(0.0040) (0.0004) 

0.15 8.6094 8.2155 0.00711 0.0005 81s 279s 

(0.0061) (0.0004) 

0.20 8.2011 7.720 0.0088 0.0004 83s 332s 

(0.0072) (0.0003) 

0.25 7.9791 7.7022 0.0095 0.0004 82s 505s 

(0.0075) (0.0003) 

0.30 7.8412 7.3905 0.0115 0.0005 85s 788s 

(0.0090) (0.0004) 

0.35 7.803 7.4265 0.0125 0.0005 84s 1,058s

(0.0097) (0.0004) 

0.40 7.7991 7.5367 0.0150 0.0005 85s 1,445s

(0.01170) (0.0004) 
ption price ˆ P = E [ p E (S T − K)] at the final level L . Moreover, in

q. (41) , we show that δ2 is O (| log p E | r−1 m 

−1 ) which derives the

ollowing upper bound for the MSE of ˆ P : 

SE ≤ c 1 
p 2 E 

| log p E | 1 −r m 

. (45) 

ii) To estimate the complexity (or computational cost) involved in

he estimation of ˆ P , we make use of the result that 

 = 

| log p E | 
log β

= O ( | log p E | ) , (46)

o approximate the cost by 

 � Lmh 

−1 
s , (47) 

here h s is the discretization step. From Eq. (47) we can bound the

omputational cost above by 

 ≤ c 2 ( | log p E | ) mh 

−1 
s . (48)

�

The result in ( i ) shows that by decreasing the probability of

ontract execution (i.e., generating a more rare event) results in

 smaller MSE. Moreover, in ( ii ) we show that the computational

omplexity of SubSim is proportional to the natural logarithm

f the execution probability, p E . As the execution probability de-

reases, the absolute value of its logarithm increases, resulting in

 higher computational cost. Indeed, as expected, the smaller the

xecution probability, the more computationally demanding the
CS and SubSim are presented in the top panel. Results from SubSim and MLMC 

N = 125 

option price CV CPU time 

 MC SubSim MC SubSim MC SubSim 

0.6978 0.6983 0.0114 0.0125 22s 81s 

(0.0008) (0.0008) 

0.1944 0.1941 0.0230 0.0165 20s 214s 

(0.0004) (0.0003) 

0.0375 0.0375 0.0562 0.0322 21s 217s 

(0.0002) (0.0001) 

0.0053 0.0053 0.1479 0.0412 20s 329s 

(7.931e −05) (2.174e −05) 

5.363e −04 5.628e −04 0.4319 0.0709 21s 450s 

(2.316e −05) (3.9919e −6) 

3.932e −05 4.704e −05 1.5331 0.0893 19s 573s 

(6.029e −6) (4.203e −7) 

5.960e −6 3.1783e −6 4.006 0.1519 20s 827s 

(2.384e −6) (4.832e −8) 

Double Barrier 

option price CV CPU time 

 SubSim MLMC SubSim MLMC SubSim MLMC 

0.6977 0.7060 0.0112 0.0058 56s 37s 

(0.0008) (0.0004) 

0.1937 0.2250 0.0164 0.0174 140s 36s 

(0.0003) (0.0003) 

0.0378 0.0748 0.0329 0.0583 140s 37s 

(0.0001) (0.0004) 

0.0052 0.0278 0.0497 0.1559 213s 35s 

(2.630e-05) (4.347e-04) 

5.598e-04 5.742e-03 0.0648 0.2203 317s 37s 

(3.629e-6) (1.265e-04) 

 4.685e-04 2.971e-03 0.0973 0.2299 420s 36s 

(4.559e-7) (6.831e-05) 

 3.198e-6 9.937e-04 0.1446 0.2466 550s 36s 

(4.627e-8) (2.450e-05) 
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estimation of ˆ P is. Fig. 5 shows the results of a simulation run (re-

peated 100 times) to compare how the MSE and the computational

complexity scale with respect to p E according to the SubSim theory

and the experimental outputs. 

6. Simulation study 

6.1. Barrier options 

Our numerical experiments focus on pricing double knock-out

barrier call options, but it is straightforward to extend the pro-

posed methodology to other types of barrier options. For instance,

our method can be very easily adjusted to accommodate single

barrier options, or barrier put options, while it can even account

for options with varying barriers. All simulation runs where con-

ducted on a Intel i7 - 6700 with x64-based processor and CPU

speed at 3.40 Ghz. 

Suppose that barriers are monitored during time period [0, T ]

at equally spaced times 0 = t 0 < t 1 < . . . < t N = T with frequency

�t = T /N, and the option expires if the asset S t hits either the

upper U or the lower L barrier. Let us denote the corresponding

asset prices by S n = S t n , the drift by μn = μ(t n ) and the volatility

by σn = σ (t n ) . The quantity of interest is the barrier option price

at the beginning of the contract ( t 0 = 0 ), given by Eq. (7) , which

takes a non–zero value only in case the asset price trajectory re-

mains within the two barriers and ends up above the strike price

K . For illustrative purposes, Fig. 5 shows several asset trajectories

that lead to both option expiration and positive payoff. 
Table 3 

Simulation results for the double exponential jump diffusion model . Barrier optio

diffusion with jump rates λ = 1 (i.e., one jump expected between zero and T ) and λ =
zero and T . Volatility σ ranges between 0.10 and 0.40 where the benefits from using t

Monitoring Frequency 

N = 25 

option price CV CPU time 

σ MC SubSim MC SubSim MC SubSi

jump intensity λ = 1 

0.10 0.3669 0.3656 0.0155 0.0162 9s 28s 

(0.0006) (0.0006) 

0.15 (0.1324 0.1323 0.0262 0.0293 8s 29s 

(0.0003) 0.0004) 

0.20 0.0399 0.0395 0.0542 0.0510 8s 27s 

(0.0002) (0.0002) 

0.25 0.0103 0.0103 0.1053 0.1023 7s 29s 

(0.0001) (0.0001) 

0.30 0.0025 0.0026 0.2346 0.1563 8s 197s 

(5.7523e −05) (4.0405e −05) 

0.35 5.344e −04 5.834e −04 0.4801 0.1678 9s 198s 

(2.567e −05) (9.9581e −6) 

0.40 1.3750e −04 1.3665e −04 0.99672 0.22101 8s 205s 

(1.37e −05) (3.02e −6) 

jump intensity, λ = 3 

0.10 0.0774 0.0775 0.0349 0.03710 9s 28s 

(0.0003) (0.0003) 

0.15 0.0287 0.02904 0.0554 0.0542 8s 28s 

(0.0002) (0.0002) 

0.20 0.0087 0.0086 0.10691 0.11138 8s 27s 

(9.407e −05) (9.679e −05) 

0.25 0.0023 0.0024 0.2199 0.1518 8s 198s 

(3.9374e −6) (5.027e −05) 

0.30 5.898e −04 5.2492e −04 0.4166 0.2141 8s 200s 

(2.457e −05) (1.102e −05) 

0.35 1.360e −04 1.371e −04 0.8468 0.2212 8s 195s 

(1.152e −05) (3.034e −6) 

0.40 2.212e −05 1.439e −05 2.3702 0.42937 8s 372s 

(5.2443e −06) (6.1812e −08) 
.2. Simulation results for SubSim vs standard MCS 

In the first of our numerical experiments, we consider a double

nock-out barrier call option with a starting price (spot) S 0 = 100

hat evolves under the GBM in Eq. (1) , strike K = 100 , and constant

ower and upper barriers, L = 90 and U = 110 . A double knock–

ut option expires worthless in case either the upper or the lower

arrier is crossed by the asset price trajectory over the life of the

ption ([0, T ]). In any other case, the payoff at maturity is calcu-

ated as a plain vanilla European call option (i.e., P = (S T − K) + ,
here S T is the terminal asset price). The option is discretely mon-

tored during time period [0, T ] at equally spaced times 0 = t 0 <

 1 < . . . < t N = 1 with frequency �t = T /N, where N = 250 which

mplies daily monitoring of the barrier option price. We further as-

ume that the drift of the underlying asset is constant μ = 0 . 10 . To

bserve the effect of high volatility, we vary the value of σ over

en different values logarithmically spaced between σmin = 0 . 20

nd σmax = 0 . 40 . 

The quantity of interest, the fair option price at the beginning

f the contract ( t 0 = 0 ) is given by 

 0 = P exp 

(
−

∫ T 

0 

r(t ) dt 

)
, (49)

here P is the value of the option at the end of time period given

y Eq. (7) and estimated by Eq. (29) , e −
∫ T 

0 r(t) dt is the discounting

actor from maturity t N = T to t 0 = 0 , and r ( t ) is the interest rate,

hich is assumed to be constant in this example, r = 0 . 10 . 
n prices, CV and CPU running times for the case of double exponential jump 

 3 and two different monitoring frequencies, n = 25 and n = 125 times between 

he SubSim method over Monte Carlo are more evident. 

N = 125 

option price CV CPU time 

m MC SubSim MC SubSim MC SubSim 

0.2943 0.2943 0.0148 0.01812 39s 139s 

(0.0004) (0.0005) 

0.0826 0.0823 0.0356 0.0350 39s 153s 

(0.0003) (0.0002) 

0.0161 0.0162 0.0862 0.0686 39s 133s 

(0.0001) (0.0001) 

0.0022 0.0023 0.2326 0.1290 38s 980s 

(4.99e-05) (3.11e-05) 

2.185e-04 2.629e-04 0.7007 0.1959 36s 985s 

(1.531e −05) (5.1525e −6) 

2.868e −05 2.353e −5 2.013 0.2963 37s 976s 

(4.555e −6) (2.515e −7) 

– 6.3643e −7 NaN 0.43878 37s 990s 

– (2.7925e −8) 

0.0530 0.05346 0.0414 0.0404 38s 130s 

(0.0002) (0.0002) 

0.0150 0.0151 0.0912 0.0779 38s 136s 

(0.0001) (0.0001) 

0.0021 0.0015 0.21829 0.1491 35s 970s 

(4.586e −05) (2.266e −05) 

4.110e −04 3.505e −04 0.5081 0.2484 36s 974s 

(2.089e −05) (8.4622e −6) 

7.663e −05 5.139e −05 1.1297 0.7291 36s 1,617s 

(8.657e −6) (3.747e −6) 

3.545e −6 2.083e −7 5.3177 0.6942 36s 2,400s 

(1.885e −6) (1.446e −8) 

– 6.833e −9 NaN 0.7677 36s 2,412s 

– (2.658e −9) 
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First, we use SubSim with m = 50 , 0 0 0 samples per subset to

stimate both the probability p E of having a positive payoff at the

nd of the period, p E ≈ ˆ p SubSim 

E 
, and the option price, 

 0 ≈ ̂ P SubSim 

0 = ̂

 P SubSim e −rT . (50) 

he mean values of estimates and their CVs computed from

00 independent runs of the SubSim algorithm are presented in

able 1 . As expected, as the asset volatility σ increases, the event

f having a positive payoff becomes increasingly rare (e.g. if σ =
 . 40 , then p E ≈ 2 × 10 −7 ), and thus, the option becomes cheaper.

he right plot in Fig. 6 shows the average (based on 100 runs) to-

al number of samples M used by SubSim versus the volatility σ .

he obtained trend is again expected: as σ increases, the probabil-

ty p E becomes smaller, and, therefore, the number L of subsets in

q. (23) increases, which leads to the increase in the total number

f samples Eq. (24) . 

Next, we use MCS to estimate p E and P 0 . To ensure fair com-

arison of the two methods, for each value of σ , MCS is imple-

ented with the same total number of samples as in SubSim. The

ean values of Monte Carlo estimates for the execution probabil-

ty ˆ p MCS 
E 

and the option price ̂ P MCS 
0 

= ̂

 P MCS e −rT , with their CVs are

resented in Table 1 . The mean values of ˆ p MCS 
E 

and 

̂ P MCS 
0 

are ap-

roximately the same as those of ˆ p SubSim 

E 
and 

̂ P SubSim 

0 
, which con-

rms that SubSim estimates are approximately unbiased. The CVs,

owever, differ drastically. Namely, δ( ̂  p SubSim 

E 
) and δ( ̂  P SubSim 

0 
) are

ubstantially smaller than δ( ̂  p MCS 
E 

) and δ( ̂  P MCS 
0 

) , respectively. This

ffect is more pronounced the larger the volatility. For example,

f σ = 0 . 40 , then SubSim is approximately 20 times more efficient

han MCS, i.e., on average, SubSim produces 20 times more accu-

ate estimates, where the accuracy is measured by the CV. As ex-

lained at the end of Section 4 , this result stems from the fact that

ubSim is more efficient than MCS in estimating small probabilities

f rare events, and if volatility is large, then the event of having a

ositive payoff is rare. 
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ig. 7. Ratios of CVs and CPU times of MCS and SubSim. Ratios of the CVs δ for the o

ethods and the two price dynamics. The CPU (P MCS 
0 ) / CPU (P SubSim 

0 ) ratio expresses the p

elative to that of SubSim. The trade-off between efficiency and execution time is clear: a

he latter. 
To visualize how SubSim outperforms MCS as the volatility

ncreases, in the left plot of Fig. 6 we plot the ratios of CVs

( ̂  p MCS 
E 

) /δ( ̂  p SubSim 

E 
) and δ( ̂  P MCS 

0 
) /δ( ̂  P SubSim 

0 
) versus σ . Since the

ean values of SubSim and MCS estimates are approximately the

ame, the ratios of CVs are approximately the ratios of the corre-

ponding standard errors. Graphically, the cases where SubSim out-

erforms MCS for the estimation of the execution probability and

he option price are those for which the corresponding value of

( ̂  p MCS 
E 

) /δ( ̂  p SubSim 

E 
) or δ( ̂  P MCS 

0 
) /δ( ̂  P SubSim 

0 
) lies above the horizontal

ine y = 1 (dotted line in Fig. 6 ). At that level, both methods would

xhibit the same level of accuracy measured by the CV, since δMCS 

ould equal δSubSim . We notice that SubSim outperforms MCS in

very examined case as both lines (for ˆ P 0 and ˆ p E ) lie above the

 = 1 level. 

In the second of our simulation tests, we again assume that

he price S t of the underlying asset evolves according to the GBM

n Eq. (1) , but we consider different monitoring frequencies for

he price of the barrier option. Specifically, the upper panel of

able 2 shows numerical results for two monitoring frequencies

i.e., N = 25 or N = 125 ), and seven different volatility levels rang-

ng between 0.10 and 0.40, while the CV, standard errors and CPU

imes for SubSim and MCS are also reported. At first, we immedi-

tely observe the impact of the monitoring frequency on the price

f the barrier option; not surprisingly, as the number of monitoring

oints increases, the option becomes cheaper. This stems from the

ncreased probability of capturing the asset price trajectory in the

rea either above the upper or below the lower barrier, which sub-

equently drives the survival probability p E significantly lower. Evi-

ently, our main finding remains valid: as volatility increases the

fficiency benefit obtained by the SubSim against MCS becomes

arger. This result is insensitive to whether we consider the CV or

tandard errors (stated in parentheses below the option price es-

imates in Table 2 ) as again, both methods seem to produce unbi-
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ption price P 0 (solid line) and the CPU times (dashed line) for the two simulation 

ercentage of time required by the MCS for the same number of simulation runs, 

s efficiency of SubSim over MCS increases so does the CPU time of the former over 
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Table 4 

Barrier option prices. A comparison of the option prices derived by each of the 

three methods (MCS, MLMC and SubSim) for four barrier levels against volatility. 

Barriers 

[60,140] [70,130] [80,120] [90,110] 

Volatility ( σ ) Method 

0.05 Standard MCS 9.5559 9.5345 8.3761 1.9009 

MLMC 9.5549 9.5339 8.3008 1.7882 

SubSim 9.5573 9.5351 8.3728 1.8997 

0.10 Standard MCS 9.8679 8.2903 4.5155 0.6617 

MLMC 9.8271 8.1682 4.3242 0.5941 

SubSim 9.8656 8.2862 4.5137 0.6615 

0.15 Standard MCS 8.6454 5.7592 2.3743 0.1712 

MLMC 8.4688 5.5283 2.1859 0.1956 

SubSim 8.6413 5.7570 2.3734 0.1711 

0.20 Standard MCS 6.6578 3.8014 1.2839 0.0290 

MLMC 6.3772 3.5392 1.1595 0.0716 

SubSim 6.6477 3.7958 1.2839 0.0292 

0.25 Standard MCS 4.8993 2.5194 0.6712 0.0033 

MLMC 4.5896 2.2841 0.6406 0.0273 

SubSim 4.8970 2.5148 0.6707 0.0033 

0.30 Standard MCS 3.5877 1.6833 0.3226 0.0003 

MLMC 3.2844 1.5152 0.3668 0.0120 

SubSim 3.5840 1.6792 0.3223 0.0003 

0.35 Standard MCS 2.6423 1.1106 0.1406 1.33E-05 

MLMC 2.3811 1.0275 0.2233 5.70E-03 
In terms of computational times (CPU times), direct MCS ex-

hibits a relatively stable behaviour across all volatility values, while

the CPU time of SubSim increases with volatility as the estima-

tion problem converts to the rare event estimation case. In essence,

MCS does not come with any provision regarding whether we are

faced with a rare event estimation problem or not; a typical MCS

algorithm will follow the same simulation steps for any volatil-

ity level as in fact the only factor it can vary is the number of

samples it draws for every numerical experiment. On the contrary,

when SubSim is confronted with a rare event estimation scenario,

it attempts to sample more efficiently and moves to higher simu-

lation levels in order to derive a much more reliable estimate for

the survival probability, compared to that of MCS, simply because

the method is designed for this purpose. This technicality under-

lies SubSim’s higher computational cost compared to that of direct

MCS. A potential remedy to this could be a more efficient coding

of the simulation functions using a parallelized set of routines. 

Focusing our attention on the case of jump diffusion,

Table 3 shows that the results obtained for the GBM case hold

for the former of our price dynamics equations too. Specifically,

in the third of our numerical experiments, we estimate barrier op-

tion prices for two jump intensities, λ = 1 or λ = 3 and the same

volatility levels as in the GBM. Not surprisingly, the barrier option
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

volatility 

0

10

20

30

40

50

C
V

M
C

S
/C

V
S

ub
S

im

Ratio of CVs:  (PMCS
0

) /  (PSubSim
0

)

[60,140]
[70,130]
[80,120]
[90,110]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

volatility 

0

1

2

3

4

5

6

7

C
V

M
LM

C
/C

V
S

ub
S

im

Ratio of CVs:  (PMLMC
0

) /  (PSubSim
0

)

[60,140]
[70,130]
[80,120]
[90,110]

Fig. 8. Ratios of CVs of the option price P 0 . The results are plotted with respect 

to asset volatility, for SubSim against MC (top) and SubSim against MLMC (bot- 

tom). Four different barrier levels are presented (to perform the simulations we use 

mainly the codes provided by Mike Giles at https://people.maths.ox.ac.uk/gilesm/ 

mlmc/ doing the necessary adjustments in file mcqmc06.m). 

SubSim 2.6414 1.1096 0.1403 1.61E-05 

0.40 Standard MCS 1.9638 0.7114 0.0554 1.84E-06 

MLMC 1.7620 0.7101 0.1306 3.00E-03 

SubSim 1.9604 0.7107 0.0554 7.19E-07 

0.45 Standard MCS 1.4525 0.4387 0.0199 5.79E-08 

MLMC 1.3312 0.4956 0.0776 1.70E-03 

SubSim 1.4501 0.4371 0.0198 2.49E-08 

Table 5 

Coefficient of variation (CV) . A comparison of the CVs of the barrier option price 

as derived by each of the three methods (MCS, MLMC, SubSim) for four barrier 

levels against asset’s volatility. 

Barriers 

[60,140] [70,130] [80,120] [90,110] 

Volatility ( σ ) Method 

0.05 Standard MCS 0.0018 0.0016 0.0019 0.0045 

MLMC 0.0004 0.0004 0.0005 0.0024 

SubSim 0.0011 0.0013 0.0013 0.0031 

0.10 Standard MCS 0.0027 0.0026 0.0038 0.0080 

MLMC 0.0004 0.0006 0.0010 0.0077 

SubSim 0.0018 0.0019 0.0025 0.0059 

0.15 Standard MCS 0.0037 0.0040 0.0054 0.0177 

MLMC 0.0005 0.0008 0.0017 0.0229 

SubSim 0.0027 0.0026 0.0037 0.0092 

0.20 Standard MCS 0.0041 0.0053 0.0084 0.0444 

MLMC 0.0007 0.0013 0.0044 0.0598 

SubSim 0.0032 0.0039 0.0055 0.0156 

0.25 Standard MCS 0.0054 0.0066 0.0095 0.1122 

MLMC 0.0009 0.0020 0.0063 0.1623 

SubSim 0.0042 0.0053 0.0068 0.0219 

0.30 Standard MCS 0.0069 0.0089 0.0180 0.4069 

MLMC 0.0014 0.0053 0.0104 0.1992 

SubSim 0.0043 0.0061 0.0093 0.0347 

0.35 Standard MCS 0.0075 0.0099 0.0301 1.9758 

MLMC 0.0020 0.0041 0.0310 0.2169 

SubSim 0.0061 0.0072 0.0129 0.0652 

0.40 Standard MCS 0.0098 0.0126 0.0373 5.6981 

MLMC 0.0025 0.0057 0.0288 0.2257 

SubSim 0.0067 0.0088 0.0166 0.1047 

0.45 Standard MCS 0.0087 0.0106 0.0254 8.2893 

MLMC 0.0059 0.0164 0.0538 0.2465 

SubSim 0.0077 0.0128 0.0217 0.1808 

u  

t  

n  

c  

r  
nder the double exponential jump diffusion in Eq. (3) is cheaper

han that in GBM case. When jumps are involved in the determi-

ation of the asset price trajectory, the probability of trajectory to

ross either of the two barriers increases and as a result the (al-

eady small) survival probability p decreases further. Nevertheless,
E 

https://people.maths.ox.ac.uk/gilesm/mlmc/
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Fig. 9. Probability density of option prices. Distribution of barrier option prices for both price dynamics. The solid line shows how option prices are distributed after 

100 runs of the SubSim while the dashed shows results for MCS. The benefits of using SubSim over MCS are tangible when volatility is high and consequently execution 

probability is low; in this case, the range of the distribution is significantly smaller and prices are concentrated around the mean option price. 
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his does not stop SubSim from providing us with a significantly

ore efficient pricing in terms of the observed CV(s) and standard

rrors, compared to that produced by MCS. Moreover, in line with

he findings for the GBM case, the impact of the monitoring fre-

uency on the price of the barrier option is again evident, while

PU times again follow a similar trend to that in the GBM case.

n Fig. 7 we plot the trade-off between efficiency and computa-

ional cost for the two methods to show that they move to the

ame direction; the more efficient the pricing becomes, the higher

he computational cost by SubSim as a result of its provision to

eal with small survival probabilities very efficiently. 

By the same token, in our final the simulation comparison tests

etween SubSim and MCS we increase the number of samples to

 = 20 0 , 0 0 0 using also different levels for the lower and the up-

er barrier, while the assumed underlying price dynamics is the

BM. The reason we consider more samples is to compare Sub-

im against not only MCS but also multilevel Monte–Carlo (see

ection 6.3 ), where m = 20 0 , 0 0 0 is considered in the original bar-

ier option numerical experiments. Here, our interest is on the im-

act of different barrier levels on the barrier option price. Inter-

stingly, the only barrier specification that leads to an actual rare

vent estimation problem is the one with barriers set at L = 90 and

 = 110 . In any other setup, the benefits obtained by SubSim are

ather negligible, except for the case where L = 80 , U = 120 and
 a  
he volatility of the underlying asset takes a very large value (i.e.,

≥ 0.30) (see Fig. 8 ). 

In general, as volatility increases, SubSim outperforms naive

CS at all barrier levels, but especially in the case of L = 90 and

 = 110 (barriers close to S 0 ) and σ ≥ 0.40 (a high–volatility asset),

ubSim is up to 50 times more efficient than standard MCS; for

ower levels of σ , SubSim still outperforms MCS. The benefit of

dopting SubSim is even more evident when observing Fig. 9 . This

lots the kernel-smoothed empirical density of the option prices

fter 100 runs of the MCS and the SubSim routines. Evidently, in

he high-volatility scenario ( σ = 0 . 35 ), the range of the distribu-

ion of the prices exported by SubSim is remarkably smaller than

hat of MCS, under both asset price dynamics, while prices derived

y SubSim are more concentrated around the mean value. 

.3. Simulation results for SubSim vs MLMC 

In this section, we compare the performance of SubSim against

he MLMC simulation method of Giles (2008a,b) , both for pric-

ng single and double barrier knock-out call options under a GBM

tochastic process. The parameters of this simulation exercise re-

ain the same as in Section 6.2 . The original MLMC simulation

ethod was developed to price single knock–out barrier options,

mongst other exotic derivatives, and thus we add a component
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Fig. 10. Barrier option prices. Results reported for the three methods with respect to volatility. The four graphs correspond to different levels of the upper and lower 

barrier. 
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for the second barrier in order to accommodate double barrier

options (see Appendices Appendix C and Appendix D ). Using el-

ements from large deviations theory ( Baldi et al., 1999 ), we first

derive the expression for the minimum of a Brownian bridge and

then assuming that the event of hitting the lower or upper bar-

rier are independent, we multiply the two corresponding execution

probabilities to derive the option’s execution probability at matu-

rity. 

The bottom panel of Table 2 reports results for the simulation

experiments conducted to compare the performance between Sub-

Sim and MLMC. First, in the pricing of a single down-and-out bar-

rier option with the barrier set at B = 95 , MLMC outperforms Sub-

Sim both in terms of the resulted CV(s) and the corresponding

standard errors. In essence, when we price a single barrier op-

tion, we are not faced with a rare even estimation problem, as

the absence of a second barrier does not force the option to ex-

pire worthless before maturity when the underlying asset moves

sharply upwards. This can be further corroborated by observing the

CPU time of SubSim, which remains constant across all volatility

levels. SubSim does not recognize a rare event simulation problem

in any of the cases, hence it does not attempt to sample more effi-

ciently at higher levels – which would result in larger CPU times–

and subsequently its computational times are far lower than those

required by MLMC for the same estimation. When it comes to pric-

ing a double down-and-out barrier option, the estimate for the

barrier option price derived by the SubSim exhibits smaller CV

compared to that exported by the MLMC, especially when the un-
erlying asset is highly volatile. MLMC appears to be a robust com-

utational method, even when volatility increases, as its CPU time

emains stable. However, SubSim’s CV, although increasing with

olatility, still remains lower than that of the option prices derived

y the MLMC. Again, efficiency comes at a higher computational

ost; in both experiments (single or double barrier) the more effi-

ient the pricing, the larger the CPU time required by the simula-

ion method. 

In the final of the simulation experiments, we examine the im-

act of different barrier specifications on the barrier option prices

hen these are derived either by the SubSim or the MLMC. The

ottom graph of Fig. 8 plots the ratio of CV between SubSim and

LMC for four levels of barriers against asset’s volatility. For barri-

rs which lie far from the price of the asset at t = 0 (i.e., [60,140]

nd [70,130] represented by the solid and the dotted line respec-

ively), MLMC produces more accurate results than SubSim. Nev-

rtheless, we notice that as asset volatility increases the perfor-

ance of SubSim improves, approaching that of MLMC without

urpassing it. SubSim outperforms MLMC when L = 90 and U = 110

dashed/dotted line) and when L = 80 and U = 120 (dashed line)

nd the volatility of the underlying asset is higher than 25%. In

oth cases, the probability of a non–zero payoff at t = T is ex-

remely small ( Table 1 ), and hence the use of SubSim provides

ore accurate results compared either to standard MCS or MLMC.

he evidence we obtain here further supports the findings in

ection 6.2 that SubSim is an efficient technique to price barrier

ptions with small survival probabilities. 
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Fig. 11. Coefficient of variation (CV). Results reported for the three methods with respect to volatility for 100 runs of the pricing algorithm. The four graphs correspond to 

different levels of the upper and lower barrier. 
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Exact values for ˆ P 
{ MCS , MLMC , SubSim } 
0 

(option price at t = 0 for

ach of the three methods) and CV 
{ MCS , MLMC , SubSim } 
P 0 

can be found

n Tables 4 and 5 , respectively. For visualization purposes, we also

lot these results in Figs. 10 and 11 . 

. Conclusion 

In this paper, we develop a new stochastic simulation-based

ethod for pricing barrier options. The method is based on Subset

imulation (SubSim), a very efficient algorithm for estimating small

robabilities of rare events. The key observation allowing us to ex-

loit the efficiency of SubSim is that the barrier option price can be

ritten as a function of the probability of option execution and a

ertain conditional expectation, which can both be estimated effi-

iently by SubSim. In the case of barrier options on high–volatility

ssets and barriers set close to the spot price of the underlying as-

et, SubSim is especially advantageous because of the very small

robability of the contract remaining valid until maturity. We first

ompare the proposed SubSim method against the standard Monte

arlo simulation (MCS), under either a classical geometric Brow-

ian motion or Kou (2002) ’s double exponential jump diffusion to

how that SubSim always outperforms MCS, confirming this with a

eries of numerical examples. Moreover, we show that the higher

he volatility of the underlying asset (i.e., the smaller the probabil-

ty of option execution), the larger the advantage of SubSim over
CS. Next, we compare our proposed method with the multilevel

onte–Carlo (MLMC) simulation introduced in Giles (2008a,b) . Al-

hough MLMC outperforms SubSim in general, we find that SubSim

an still be more efficient than MLMC in cases where the volatil-

ty of the underlying asset is high and the barriers are set close

o the starting price of the asset, since this combination leads to a

are event estimation problem. As a result, the method we propose

ere complements MLMC, handling special cases of barrier option

ettings more efficiently. 

In the present work, we offer a model-free framework for the

ricing of double barrier options. The strengths of our methodol-

gy are its satisfactory efficiency, especially when it comes to pric-

ng options with very small execution probability and its ability to

eal with almost any underlying process. On the other side, given

he focus of the method on this type of options, the computational

imes observed in SubSim are usually higher than those of alterna-

ive simulation-based methods. 

In practice, more complicated structures and products than a

ingle or double barrier option need to be priced and re-priced

aily by practitioners in the finance industry. Options with mov-

ng barriers, basket options and option portfolios with underly-

ng assets that evolve according to different stochastic processes or

ven Bermudan or American (see for example a recently proposed

ethod in Phelan, Marazzina, & Germano, 2020 ) barrier options

ould be accommodated by the proposed method in this paper,

resumably not after extensive modifications. An additional aspect
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Table 6 

Variability of option prices with respect to β. Barrier option prices for 

difference values of the level probability β . 

σ = 0 . 10 σ = 0 . 40 

β Price Samples Levels Price Samples Levels 

0.005 0.9672 50,000 1 0.0024 99,750 2 

0.01 0.9623 50,000 1 0.0024 99,500 2 

0.05 0.9659 50,000 1 0.0023 145,000 3 

0.10 0.9650 50,000 1 0.0023 185,000 4 

0.15 0.9640 50,000 1 0.0022 220,000 5 

0.20 0.9650 50,000 1 0.0023 210,000 5 
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of the current study can also appear with respect to using barrier

options to hedge portfolio exposures, especially in the foreign ex-

change and commodity markets. Given that the primary goal of a

hedging exercise is to restrict the variability of a future payoff, the

reduced CVs for the option price estimate that result from SubSim,

incentivize deeper research around this question. Finally, an inter-

esting extension of the present research could arise in the direction

of considering an underlying process with time-varying (stochas-

tic) volatility which is also very frequently met in practice ( Cui,

del Baño Rollin, & Germano, 2017 ), especially in an exotic option

pricing problem with foreign exchange instruments used as under-

lying assets. The latter, as well as the study of Greeks (i.e., option

price sensitivities with respect to different market factors) in the

same context are currently under investigation by the authors. 

Appendix A. MMA sampling from the target distribution f z 

To sample from the target distribution f z (z| E i −1 ) , the MMA

generates a Markov chain with stationary distribution f z (z| E i −1 ) .

Namely, if we let Z ( j) ∈ E i −1 be the current state, then the next

state Z ( j+1) is generated as follows: 

1. Generate a candidate state ϒ = (ϒ1 , . . . , ϒN ) : 

(a) For each k = 1 , . . . , N, generate �k ∼ q (ψ | U 

( j) 
k 

) , where q is

a symmetric, q (ψ | u ) = q (u | ψ) , univariate proposal distribu-

tion, e.g. Gaussian distribution centered at U 

( j) 
k 

, the k th com-

ponent of U 

( j ) . 

(b) Compute the acceptance probability: 

a k = min 

{ 

1 , 
f k (�k ) 

f k (U 

( j) 
k 

) 

} 

, (51)

where f k is the marginal PDF of U k , f U (u ) = 

∏ N 
k =1 f k (u k ) ,

and U 1 , . . . , U N are assumed to be independent. 

(c) Set 

ϒk = 

{
�k , with probability a k , 

U 

( j) 
k 

with probability 1 − a k . 
(52)

2. Accept or reject the candidate state: 

U 

( j+1) = 

{
ϒ, if ϒ ∈ E i −1 , 

U 

( j) , if ϒ / ∈ E i −1 . 
(53)

Appendix B. Choice of β

In our context, β represents the level probability as introduced

in Au and Beck (2001) , which controls for the intermediate target

events. The way we choose β is not a systematic, but an adaptive

one. In essence, we define β via the choice of the intermediate

target thresholds αi , in such a way that all the intermediate condi-

tional probabilities are equal to β (i.e., to have exactly m β samples

in the target event). In practice, we choose the value of β = 0 . 10 ,

which seems to work sufficiently well for most of the cases. For a

sensitivity analysis on the choice of β see the table below. 

Table 6 shows how the barrier option prices change with re-

spect to the value of β for two scenarios: A low volatility one

( σ = 0 . 10 ) and a high volatility one ( σ = 0 . 40 ). The results are in-

sensitive to the choice of the level probability β . As expected, in-

creasing β results in drawing a larger number of samples from the

target distribution, as we request more samples to belong to the

target event. Instabilities might arise for values of β even larger

than 0.20. However, such values are not reasonable choices since

they result in an excessively large number of samples without tan-

gible computational benefits. At the same time, when requiring

such a large number of samples to belong to the target event, the

problem becomes a degenerate rare-event estimation one, which

exhibits attributes similar to that of a MCS setup. 
ppendix C. Probability of execution of a barrier option 

The pricing of barrier options is a first passage time problem in

hich we are interested in the first time that the price trajectory of

he underlying asset crosses a prespecified barrier. Now, assuming

hat U > S 0 and L < S 0 are the upper and lower barriers respectively,

he execution indicator function of the barrier option in Eq. (7) can

e approximated via its discrete form 

 −1 ∏ 

i =0 

I { ̂  M i ≤U ∧ ˆ m i ≥L } , (54)

here ˆ M i and ˆ m i are the maximum and minimum, respectively, of

q. (2) in [0, nh ] and T = nh or h = T /n is the size of the timestep

n a discrete grid. Eq. (54) takes the value one if and only if the

onditions for ˆ M i and ˆ m i are met at every time–step of the dis-

retized problem, otherwise the product (54) becomes zero and

he option expires worthless. Following Glasserman (2013) (see

articularly Section 6.4 and example 2.2.3), we sample the mini-

um and the maximum of S by formulating the following prob-

em: 

(t) = max 
0 ≤u ≤t 

S(u ) (55)

ith 

ˆ 
 

h (n ) = max { S(0) , S(h ) , S(2 h ) , . . . , S(nh ) } , (56)

he maximum of the approximation of S on [0, nh ], and 

 (t) = min 

0 ≤u ≤t 
S(u ) (57)

ith 

ˆ 
 

h (n ) = min { S(0) , S(h ) , S(2 h ) , . . . , S(nh ) } , (58)

he minimum of a discrete time approximation of S on [0, nh ]. 

In the sampling of the maximum, conditioning on the end-

oints S (0) and S ( T ), the process { S ( t ), 0 ≤ t ≤ T } becomes a Brow-

ian bridge, and thus we sample from the distribution of the max-

mum of a Brownian bridge, a Rayleigh distribution, which results

n 

(T ) = 

S(T ) + 

√ 

S(T ) 2 − 2 T log X 

2 

, (59)

here X is a uniformly distributed random variable in [0,1]. Now,

et ˆ S ih be a discrete time approximation of the solution of S in

q. (1) , where i = 0 , 1 , . . . , n, h = T /n . To obtain a good estimation

or ˆ M 

h (i.e., the maximum of the interpolating Brownian bridge)

nd decrease the error induced by the discretization (i.e., the case

here S u crosses U or L between two grid points), we interpolate

ver [ ih, (i + 1) h ] , which given the end points S i and S i +1 results in

 i = 

S(i ) + S(i + 1) + 

√ 

[ S(i + 1) − S(i )] 2 − 2 b 2 h log X 

2 

(60)

ith X ∼ Unif[0, 1]. 
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Given a barrier U , the probability of survival for the option (the

aximum price of the underlying asset to remain below U ) in the

ne–path estimation is given by 

ˆ p i,U = P ( ˆ M i ≤ U| ̂  S i , ̂  S i +1 ) = 1 − exp 

(
− 2(U − ˆ S i )(U − ˆ S i +1 ) 

b 2 h 

)
, 

(61) 

here b is the fixed standard deviation of the underlying asset

rice and h is the time–step in the discretization process. The cor-

esponding estimation for a coarse–path is equal to 

ˆ p i,U = P ( ˆ M i ≤ U| ̂  S i , ̂  S i +1 ) = 

{ 

1 − exp 

(
− 2(U − ˆ S i )(U − ˆ S i +1 / 2 ) 

b 2 h 

)} 

×
{ 

1 − exp 

(
− 2(U − ˆ S i +1 / 2 )(U − ˆ S i +1 ) 

b 2 h 

)} 

. (62) 

ppendix D. Minimum of Brownian bridge 

We now derive analytically the probability of survival for a dou-

le barrier option in a fine path estimation, by calculating also

he probability of the minimum of ˆ S to cross the lower barrier

 . Conditioning on endpoints ˆ S i and 

ˆ S i +1 , the distribution of the

inimum of the Brownian bridge (interpolated over [ i, (i + 1) h ] ) is

iven by 

 i = 

S(i ) + S(i + 1) −
√ 

[ S(i + 1) − S(i )] 2 − 2 b 2 h log X 

2 

, (63) 

here X ∼ Unif[0, 1]. Subsequently, the probability of the minimum

 i of ˆ S to cross the lower barrier L is equal to 

 ( ̂  m i ≤ L | ̂  S i , ̂  S i +1 ) 

= P 

( ˆ S (i ) + 

ˆ S (i + 1) −
√ 

[ ̂  S (i + 1) − ˆ S (i )] 2 − 2 b 2 h log X 

2 
≤ L | ̂  S i , ̂  S i +1 

)
= P 

(√ 

[ ̂  S (i + 1) − ˆ S (i )] 2 − 2 b 2 h log X ≥ ( ̂  S (i ) + 

ˆ S (i + 1)) − 2 L | ̂  S i , ̂  S i +1 

)
= P 

(
ˆ S (i + 1) 2 − 2 ̂  S (i ) ̂  S (i + 1) + 

ˆ S (i ) 2 − 2 b 2 h log X 

≥ ( ̂  S (i ) + 

ˆ S (i + 1)) 2 − 4 L ( ̂  S (i ) + 

ˆ S (i + 1)) + 4 L 2 | ̂  S i , ̂  S i +1 

)
= P 

(
ˆ S (i + 1) 2 − 2 ̂  S (i ) ̂  S (i + 1) + 

ˆ S (i ) 2 − 2 b 2 h log X 

≥ ˆ S (i ) 2 + 

ˆ S (i + 1) 2 + 2 ̂  S (i ) ̂  S (i + 1) − 4 L ( ̂  S (i ) + 

ˆ S (i + 1)) + 4 L 2 | ̂  S i , ̂  S i +1 

)
= P 

(
− b 2 h log U ≥ 2 ̂  S (i ) ̂  S (i + 1) − 2 L ̂  S (i ) + 2 L ̂  S (i + 1) + 2 L 2 | ̂  S i , ̂  S i +1 

)
= P 

(
log U ≤ − 2 ̂  S i ( ̂  S i +1 − L ) − 2 L ( ̂  S i +1 − L ) 

b 2 h 
| ̂  S i , ̂  S i +1 

)
= P 

(
log U ≤ − 2( ̂  S i − L )( ̂  S i +1 − L ) 

b 2 h 
| ̂  S i , ̂  S i +1 

)
= P 

(
U ≤ exp 

(
− 2( ̂  S i − L )( ̂  S i +1 − L ) 

b 2 h 

)
| ̂  S i , ̂  S i +1 

)
= exp 

(
− 2( ̂  S i − L )( ̂  S i +1 − L ) 

b 2 h 

)
. (64) 

he probability in Eq. (64) refers to the case of the running min-

mum crossing the lower barrier. The probability to remain above

he lower barrier is thus equal to its complement 

ˆ p i,L = 1 − exp 

(
− 2( ̂  S i − L )( ̂  S i +1 − L ) 

b 2 h 

)
, (65) 

nd the probability of the asset price to remain within the barriers

n [0, T ] is equal to 
ˆ p i = 

ˆ p i,U ˆ p i,L = 

{ 

1 − exp 

(
− 2(U − ˆ S i )(U − ˆ S i +1 ) 

b 2 h 

)} 

×
{ 

1 − exp 

(
− 2( ̂  S i − L )( ̂  S i +1 − L ) 

b 2 h 

)} 

. (66) 

he calculation of the probability of survival for the coarse path

stimation follows trivially from Eq. (66) by adjusting it using

q. (62) . Then, the option remains alive until time t = T = nh,

hen the asset price is bounded between L and U , which in the

ase of a coarse path estimation, using a midpoint equal to i + 1 / 2 ,

quals 

ˆ p i = 

{ 

1 − exp 

(
− 2(U − ˆ S i )(U − ˆ S i +1 / 2 ) 

b 2 h 

)} 

×
{ 

1 − exp 

(
− 2(U − ˆ S i +1 / 2 )(U − ˆ S i +1 ) 

b 2 h 

)} 

(67) 

×
{ 

1 − exp 

(
− 2( ̂  S i − L )( ̂  S i +1 / 2 − L ) 

b 2 h 

)} 

×
{ 

1 − exp 

(
− 2( ̂  S i +1 / 2 − L )( ̂  S i +1 − L ) 

b 2 h 

)} 

. (68) 
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