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ABSTRACT: Estimation of small failure probabilities is one of the most important and challenging problems
in reliability engineering. In cases of practical interest, the failure probability is given by a high-dimensional
integral. Since multivariate integration suffers from the curse of dimensionality, the usual numerical methods
are inapplicable. Over the past decade, the civil engineering research community has increasingly realized the
potential of advanced simulation methods for treating reliability problems. The Subset Simulation method, in-
troduced by Au & Beck (2001a), is considered to be one of the most robust advanced simulation techniques for
solving high-dimensional nonlinear problems. The Modified Metropolis-Hastings (MMH) algorithm, a varia-
tion of the original Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970), is used in Subset
Simulation for sampling from conditional high-dimensional distributions. The efficiency and accuracy of Subset
Simulation directly depends on the ergodic properties of the Markov chain generated by MMH, in other words,
on how fast the chain explores the parameter space. The latter is determined by the choice of one-dimensional
proposal distributions, making this choice very important. It was noticed in Au & Beck (2001a) that the perfor-
mance of MMH is not sensitive to the type of the proposal PDFs, however, it strongly depends on the variance
of proposal PDFs. Nevertheless, in almost all real-life applications, the scaling of proposal PDFs is still largely
an art. The issue of optimal scaling was realized in the original paper by Metropolis (Metropolis et al. 1953).
Gelman, Roberts, and Gilks (Gelman et al. 1996) have been the first authors to publish theoretical results about
the optimal scaling of the original Metropolis-Hastings algorithm. They proved that for optimal sampling from
a high-dimensional Gaussian distribution, the Metropolis-Hastings algorithm should be tuned to accept approx-
imately 25% of the proposed moves only. This came as an unexpected and counter-intuitive result. Since then
a lot of papers has been published on the optimal scaling of the original Metropolis-Hastings algorithm. In
this paper, in the spirit of Gelman et al. (1996), we address the following question which is of high practical
importance: what are the optimal one-dimensional Gaussian proposal PDFs for simulating a high-dimensional
conditional Gaussian distribution using the MMH algorithm? We present a collection of observations on the
optimal scaling of the Modified Metropolis-Hastings algorithm for different numerical examples, and develop
an optimal scaling strategy for MMH when it is employed within Subset Simulation for estimating small failure
probabilities.

1 INTRODUCTION

One of the most important and challenging problems
in reliability engineering is to estimate the failure
probability pF , that is, the probability of unacceptable
system performance. This is usually expressed as an
integral over a high-dimensional uncertain parameter
space:

pF =

∫
IF (θ)π(θ)dθ = Eπ[IF (θ)], (1)

where θ ∈ Rd represents the uncertain parameters
needed to specify completely the excitation and dy-
namic model of the system; π(θ) is the joint probabil-
ity density function (PDF) for θ; F ⊂ Rd is the fail-
ure domain in the parameter space (i.e. the set of pa-
rameters that lead to performance of the system that
is considered to be unacceptable); and IF (θ) stands
for the indicator function, i.e. IF (θ) = 1 if θ ∈ F and
IF (θ) = 0 if θ /∈ F .

Over the past decade, the engineering research
community has realized the importance of advanced



stochastic simulation methods for solving reliability
problems. As a result, many different efficient al-
gorithms have been recently developed, e.g. Subset
Simulation (Au & Beck 2001a), Importance Sam-
pling using Elementary Events (Au & Beck 2001b),
Line Sampling (Koutsourelakis et al. 2004), Auxiliary
domain method (Katafygiotis et al. 2007), Spheri-
cal Subset Simulation (Katafygiotis & Cheung 2007),
Horseracing Simulation (Zuev & Katafygiotis, in
press), to name but a few.

This paper focuses on the analysis of the Modified
Metropolis-Hastings algorithm (MMH), a Markov
chain Monte Carlo technique used in Subset Simu-
lation (SS), which is presented in Section 2. The ef-
ficiency and accuracy of SS directly depends on the
ergodic properties of the Markov chains generated by
MMH. In Section 3, we examine the optimal scaling
of MMH to tune the parameters of the algorithm to
make the resulting Markov chain converge to station-
arity as fast as possible. We present a collection of ob-
servations on the optimal scaling of MMH for differ-
ent numerical examples, and develop an optimal scal-
ing strategy for MMH when it is employed within SS
for estimating small failure probabilities.

The rest of the paper is organized as follows. In
Section 2, the original Subset Simulation method
is described; the optimal scaling of the Modified
Metropolis-Hastings algorithm is discussed in Section
3; Concluding remarks are given in Section 4.

2 SUBSET SIMULATION

The best known stochastic simulation algorithm for
estimating high-dimensional integrals is Monte Carlo
Simulation (MCS). In this method the failure proba-
bility pF is estimated by approximating the mean of
IF (θ) in (1) by its sample mean:

pF ≈ p̂MC
F =

1

N

N∑
i=1

IF (θ
(i)), (2)

where samples θ(1), . . . , θ(N) are independent and
identically distributed (i.i.d.) samples from π(·), de-
noted θ(i)

i.i.d.∼ π(·). This estimate is just the fraction
of samples that produce system failure. Notice that
each evaluation of IF requires a deterministic system
analysis to be performed to check whether the sample
implies failure. The main advantage of MCS is that
its efficiency does not depend on the dimension d of
the parameter space. Indeed, straightforward calcula-
tion shows that the coefficient of variation (c.o.v) of
the Monte Carlo estimate (2), serving as a measure of
accuracy, is given by:

δ(p̂MC
F ) =

√
1− pF
NpF

. (3)

However, MCS has a serious drawback: it is ineffi-
cient in estimating small failure probabilities. If pF

is very small, pF ≪ 1, then, it follows from (3) that
the number of samples N (or, equivalently, number
of system analyses) needed to achieve an accept-
able level of accuracy is very large, N ∝ 1/pF ≫
1. This deficiency of MCS has motivated research
to develop more efficient stochastic simulation al-
gorithms for estimating small failure probabilities in
high-dimensions.

The basic idea of Subset Simulation (Au & Beck
2001a) is the following: represent a very small failure
probability pF as a product of larger probabilities so
pF =

∏m
j=1 pj , where the factors pj are estimated se-

quentially, pj ≈ p̂j , to obtain an estimate p̂SSF for pF
as p̂SSF =

∏m
j=1 p̂j . To reach this goal, let us consider a

decreasing sequence of nested subsets of the parame-
ter space, starting from the entire space and shrinking
to the failure domain F :

Rd = F0 ⊃ F1 ⊃ . . . ⊃ Fm−1 ⊃ Fm = F. (4)

Subsets F1, . . . , Fm−1 are called intermediate failure
domains. As a result, the failure probability pF =
P (F ) can be rewritten in terms of conditional prob-
abilities as follows:

pF =
m∏
j=1

P (Fj|Fj−1) =
m∏
j=1

pj, (5)

where pj = P (Fj|Fj−1) is the conditional probability
at the (j − 1)th conditional level. Clearly, by choos-
ing the intermediate failure domains appropriately,
all conditional probabilities pj can be made large.
Furthermore, they can be estimated, in principle, by
the fraction of independent conditional samples that
cause failure at the intermediate level:

pj ≈ p̂MC
j =

1

N

N∑
i=1

IFj
(θ

(i)
j−1), (6)

where θ
(i)
j−1

i.i.d.∼ π(·|Fj−1). Hence, the original prob-
lem (estimation of the small failure probability pF )
is replaced by a sequence of m intermediate prob-
lems (estimation of the larger failure probabilities pj ,
j = 1, . . . ,m).

The first probability p1 = P (F1|F0) = P (F1) is
straightforward to estimate by MCS, since (6) re-
quires sampling from π(·) that is assumed to be read-
ily sampled. However, if j ≥ 2, to estimate pj using
(6) one needs to generate independent samples from
conditional distribution π(·|Fj−1), which, in general,
is not a trivial task. It is not efficient to use MCS for
this purpose, especially at higher levels, but it can be
done by a specifically tailored Markov chain Monte
Carlo technique at the expense of generating depen-
dent samples.

Markov chain Monte Carlo (MCMC) (Liu 2001,
Neal 1993, Robert & Casella 2004) is a class of al-
gorithms for sampling from multi-dimensional target



probability distributions that cannot be directly sam-
pled, at least not efficiently. These methods are based
on constructing a Markov chain that has the distribu-
tion of interest as its stationary distribution. By sim-
ulating samples from the Markov chain, these sam-
ples will eventually be draws from the target probabil-
ity distribution but they will not be independent sam-
ples. In Subset Simulation, the Modified Metropolis-
Hastings algorithm (MMH) (Au & Beck 2001a), an
MCMC technique based on the original Metropolis-
Hastings algorithm (Metropolis et al. 1953, Hastings
1970), is used for sampling from the conditional dis-
tributions π(·|Fj−1).

Suppose we want to generate a Markov chain with
stationary distribution

π(θ|F) = π(θ)IF(θ)

P (F)
=

∏d
k=1 πk(θk)IF(θ)

P (F)
, (7)

where F ⊂ Rd is a subset of the parameter space.
Without significant loss of generality, we assume here
that π(θ) =

∏d
k=1 πk(θk), i.e. components of θ are in-

dependent (but are not so when conditioned on F ).
MMH differs from the original Metropolis-Hastings
algorithm algorithm in the way the candidate state
ξ = (ξ1, . . . , ξd) is generated. Instead of using a d-
variate proposal PDF on Rd to directly obtain the can-
didate state, in MMH a sequence of univariate pro-
posal PDFs is used. Namely, each coordinate ξk of the
candidate state is generated separately using a univari-
ate proposal distribution dependent on the coordinate
θk of the current state. Then a check is made if the d-
variate candidate generated in such a way belongs to
the subset F in which case it is accepted as the next
Markov chain state; otherwise it is rejected and the
current MCMC sample is repeated. To summarize, the
Modified Metropolis-Hastings algorithm proceeds as
follows:

Modified Metropolis-Hastings algorithm
Input:

◃ θ(1) ∈ F, initial state of a Markov chain;
◃ N , total number of states, i.e. samples;
◃ π1(·), . . . , πd(·), marginal PDFs of θ1, . . . , θd;
◃ S1(·|α), . . . , Sd(·|α), univariate proposal

PDFs depending on a parameter α ∈ R and
satisfying the symmetry property
Sk(β|α) = Sk(α|β), k = 1, . . . , d.

Algorithm:
for i = 1, . . . ,N − 1 do

% Generate a candidate state ξ:
for k = 1, . . . , d do

Sample ξ̃k ∼ Sk(·|θ(i)k )
Compute the acceptance ratio

r =
πk(ξ̃k)

πk(θ
(i)
k )

(8)

Accept or reject ξ̃k by setting

ξk =

{
ξ̃k, with probability min{1, r};
θ
(i)
k with probability 1−min{1, r}.

(9)

end for
Check whether ξ ∈ F by system analysis
and accept or reject ξ by setting

θ(i+1) =

{
ξ, if ξ ∈ F;
θ(i), if ξ /∈ F. (10)

end for
Output:

I θ(1), . . . , θ(N), N states of a Markov chain
with stationary distribution π(·|F).

Thus, if we run the Markov chain for sufficiently
long (the burn-in period), starting from essentially
any “seed” θ(1) ∈ F, then for large N the distribution
of θ(N) will be approximately π(·|F). Note, however,
that in any practical application it is very difficult to
check whether the Markov chain has reached its sta-
tionary distribution. If the seed θ(1) ∼ π(·|F), all states
θ(i) will be automatically distributed according to the
target distribution, θ(i) ∼ π(·|F), since it is the station-
ary distribution for the Markov chain. This is called
perfect sampling (Robert & Casella 2004) and Subset
Simulation has this property because of the way the
seeds are chosen.

Let us assume now that we are given a seed θ
(1)
j−1 ∼

π(·|Fj−1), where j = 2, . . . ,m. Then, using MMH, we
can generate a Markov chain with N states starting
from this seed and construct an estimate for pj similar
to (6), where MCS samples are replaced by MCMC
samples:

pj ≈ p̂MCMC
j =

1

N

N∑
i=1

IFj
(θ

(i)
j−1), (11)

where θ
(i)
j−1 ∼ π(·|Fj−1). Note that all samples

θ
(1)
j−1, . . . , θ

(N)
j−1 in (11) are identically distributed, but

are not independent. Nevertheless, these MCMC sam-
ples can be used for statistical averaging as if they
were i.i.d., although with some reduction in effi-
ciency (Doob 1953). Namely, the more correlated
θ
(1)
j−1, . . . , θ

(N)
j−1 are, the less efficient is the estimate

(11). The correlation between successive samples is
due to proposal PDFs Sk, which govern the genera-
tion of the next state of the Markov chain from the
current one in MMH. Hence, the choice of the pro-
posal PDFs Sk controls the efficiency of estimate (11),
making this choice very important. It was observed in
Au & Beck (2001a) that the efficiency of MMH de-
pends on the spread of proposal distributions, rather
than on their type. Both small and large spreads tend
to increase the dependence between successive sam-
ples, slowing the convergence of the estimator. Large



spreads may reduce the acceptance rate in (10), in-
creasing the number of repeated MCMC samples.
Small spreads, on the contrary, may lead to a reason-
ably high acceptance rate, but still produce very cor-
related samples due to their close proximity. Finding
the optimal spread of proposal distributions for MMH
is a non-trivial task which is discussed in Section 3.

Finally, combining estimates (6) for p1 and (11) for
pj , j ≥ 2, we obtain the estimate for the failure prob-
ability:

pF ≈ p̂SSF = p̂MC
1

m∏
j=2

p̂MCMC
j (12)

The last ingredient of Subset Simulation we have to
specify is the choice of intermediate failure domains
F1, . . . , Fm−1. Usually, performance of a dynamical
system is described by a certain positive-valued per-
formance function g : Rd → R+, for instance, g(θ)
may represent some peak (maximum) response quan-
tity when the system model is subjected to the uncer-
tain excitation θ. Then the failure region, i.e. unac-
ceptable performance region, can be defined as a set
of excitations that lead to the exceedance of some pre-
scribed critical threshold b:

F = {θ ∈ Rd : g(θ) > b}. (13)

The sequence of intermediate failure domains can
then be defined as

Fj = {θ ∈ Rd : g(θ) > bj}, (14)

where 0 < b1 < . . . < bm−1 < bm = b. Intermediate
threshold values bj define the values of the conditional
probabilities pj = P (Fj|Fj−1) and, therefore, affect
the efficiency of Subset Simulation. In practical cases
it is difficult to make a rational choice of the bj-values
in advance, so the bj are chosen adaptively so that the
estimated conditional probabilities are equal to a fixed
value p0 ∈ (0,1). For a more detailed description of
the Subset Simulation method and its implementation,
see the original paper Au & Beck (2001a).

3 TUNING OF THE MODIFIED
METROPOLIS-HASTINGS ALGORITHM

The efficiency and accuracy of Subset Simulation
directly depends on the ergodic properties of the
Markov chain generated by the Modified Metropolis-
Hastings algorithm; in other words, on how fast the
chain explores the parameter space and converges to
its stationary distribution. The latter is determined by
the choice of one-dimensional proposal distributions
Sk, which makes this choice very important. In spite
of this, the choice of proposal PDFs is still largely an
art. It was observed in Au & Beck (2001a) that the
efficiency of MMH is not sensitive to the type of the

proposal PDFs; however, it strongly depends on their
variance.

Optimal scaling refers to the need to tune the
parameters of the algorithm to make the resulting
Markov chain converge to stationarity as fast as
possible. The issue of optimal scaling was recog-
nized in the original paper by Metropolis (Metropo-
lis et al. 1953). Gelman, Roberts, and Gilks (Gel-
man et al. 1996) were the first authors to obtain the-
oretical results on the optimal scaling of the origi-
nal Metropolis-Hastings algorithm. They proved that
for optimal sampling from a high-dimensional Gaus-
sian distribution, the Metropolis-Hastings algorithm
should be tuned to accept approximately 25% of the
proposed moves only. This result gives rise to the
useful heuristic strategy, which is easy to implement:
tune the proposal variance so that the average accep-
tance rate is roughly 25%. In spite of the i.i.d. as-
sumption for the target components, this result is be-
lieved to be robust and to hold under various per-
turbations of the target distribution. Being aware of
practical difficulties of choosing the optimal σ2, Gel-
man et al. (1996) provided a very useful observa-
tion: “Interestingly, if one cannot be optimal, it seems
better to use too high a value of σ than too low.”
Since then many papers have been published on op-
timal scaling of the original Metropolis-Hastings al-
gorithm. In this section, in the spirit of Gelman et al.
(1996), we address the following question which is of
high practical importance: what is the optimal vari-
ance σ2 of the univariate Gaussian proposal PDFs
Sk(·|µ) = N (·|µ,σ2), k = 1, . . . , d, for simulating
a high-dimensional conditional Gaussian distribution
π(·|F ) = N (·|0, Id)IF (·)/P (F ) using the Modified
Metropolis-Hastings algorithm and what is the opti-
mal scaling strategy for MMH when it is employed
within Subset Simulation for estimating small failure
probabilities?

Let us first define what we mean by “optimal” vari-
ance. Let θ(i),kj−1 be the the ith sample in the kth Markov
chain at simulation level j − 1. The conditional prob-
ability pj = P (Fj|Fj−1) is then estimated as follows:

pj ≈ p̂j =
1

N

Nc∑
k=1

Ns∑
i=1

IFj
(θ

(i),k
j−1 ), (15)

where θ(i),kj−1 ∼ π(·|Fj−1), Nc is the number of Markov
chains, and Ns is the total number of samples simu-
lated from each of these chains, Ns = N/Nc, so that
the total number of Markov chain samples is N . An
expression for the coefficient of variation (c.o.v.) of
p̂j , derived in Au & Beck (2001a), is given by:

δj =

√
1− pj
Npj

(1 + γj), (16)



where

γj = 2
Ns−1∑
i=1

(
1− i

Ns

)
R

(i)
j

R
(0)
j

, (17)

and

R
(i)
j = E[IFj

(θ
(1),k
j−1 )IFj

(θ
(1+i),k
j−1 )]− p2j (18)

is the autocovariance of the stationary stochas-
tic process X(i) = IFj

(θ
(i),k
j−1 ) at lag i. The factor√

(1− pj)/Npj in (16) is the c.o.v. of the MCS es-
timator with N independent samples. The c.o.v. of
p̂j can thus be considered as the one in MCS with
an effective number of independent samples N/(1 +
γj). The efficiency of the estimator using dependent
MCMC samples (γj > 0) is therefore reduced com-
pared to the case when the samples are independent
(γj = 0). Hence, γj given by (17) can be considered
as a measure of correlation between the states of a
Markov chain and smaller values of γj imply higher
efficiency.

Formula (16) was derived assuming that the
Markov chain generated according to MMH is er-
godic and that the samples generated by different
chains are uncorrelated through the indicator func-
tion, i.e. E[IFj

(θ)IFj
(θ′)]− p2j = 0 if θ and θ′ are from

different chains. The latter, however, may not be al-
ways true, since the seeds for each chain may be de-
pendent. Nevertheless, the expression in (16) provides
a useful theoretical description of the c.o.v. of p̂j .

The autocovariance sequence R
(i)
j , i = 0, . . . ,Ns −

1, needed for calculation of γj , can be estimated using
the Markov chain samples at the (j − 1)th level by:

R
(i)
j ≈

∑Nc,Ns−i
k=1,i′=1 IFj

(θ
(i′),k
j−1 )IFj

(θ
(i′+i),k
j−1 )

N − iNc

− p̂2j (19)

Note that in general, γj depends on the number
of samples Ns in the Markov chain, the conditional
probability pj , the intermediate failure domains Fj−1

and Fj , and the standard deviation σj of the proposal
PDFs Sk(·|µ) = N (·|µ,σ2

j ). According to the “ba-
sic” description of the Subset Simulation algorithm,
pj = p0 for all j and Ns = 1/p0. The latter is not
strictly necessary, yet convenient. In this subsection,
the value p0 is chosen to be 0.1, as in the original pa-
per (Au & Beck 2001a). In this settings, γj depends
only on the standard deviation σj and geometry of
Fj−1 and Fj . For a given reliability problem (i.e. for a
given performance function g that defines domains Fj

for all j), σopt
j is said to be the optimal spread of the

proposal PDFs at level j, if it minimizes the value of
γj:

σopt
j = argmin

σj>0
γj(σj) (20)
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Figure 1: γ-efficiency of the Modified Metropolis-Hastings algo-
rithm as a function of spread σ, for simulation levels j = 1, . . . ,6

We will refer to γj = γj(σj) as γ-efficiency of the
Modified Metropolis-Hastings algorithm with pro-
posal PDFs N (·|µ,σ2

j ) at level j.
Consider two examples of the sequence of interme-

diate failure domains.
Example 1 (Exterior of a ball). Let θ = re ∈ Rd,
where e is a unit vector and r = ∥θ∥. For many rea-
sonable performance functions g, if r is large enough,
then θ ∈ F = {θ ∈ Rd : g(θ) > b}, i.e. θ is a failure
point, regardless of e. Therefore, an exterior of a ball,
B̄r = {θ ∈ Rd : ∥θ∥ ≥ r}, can serve as an idealized
model of many failure domains. Define the interme-
diate failure domains as follows:

Fj = B̄rj , (21)

where the radii rj are chosen such that P (Fj|Fj−1) =

p0, i.e r2j = F−1
χ2
d
(1 − pj0), where Fχ2

d
denotes the

cumulative distribution function (CDF) of the chi-
square distribution with d degrees of freedom. The
dimension d is chosen to be 103.
Example 2 (Linear case). Consider a linear reliability
problem with performance function g(θ) = aT θ + b,
where a ∈ Rd and b ∈ R are fixed coefficients. The
corresponding intermediate failure domains Fj are
half-spaces defined as follows:

Fj = {θ ∈ Rd : ⟨θ, ea⟩ ≥ βj}, (22)

where ea = a
∥a∥ is the unit normal to the hyperplane

specified by g, and the values of βj are chosen such
that P (Fj|Fj−1) = p0, i.e βj = Φ−1(1− pj0), where Φ
denotes the CDF of the standard normal distribution.
The dimension d is chosen to be 103.

For both examples, γj as a function of σj is plotted
in Fig. 1 and the approximate values of the optimal



Table 1: Approximate values of the optimal spread for different
simulation levels

Simulation Level j 1 2 3 4 5 6
Example 1, σopt

j 0.9 0.7 0.4 0.3 0.3 0.3
Example 2, σopt

j 1.1 0.8 0.6 0.4 0.4 0.4

spread σopt
j are given in Table 1, for simulation levels

j = 1, . . . ,6. As expected, the optimal spread σopt
j de-

creases, when j increases, and, as it follows from the
numerical values in Table 1, σopt

j seems to converge
to approximately 0.3 and 0.4 in Example 1 and 2, re-
spectively. The following properties of the function
γj = γj(σj) are worth mentioning:

(i) γj increases very rapidly, when σj goes to zero;

(ii) γj has a deep trough around the optimal value
σopt
j , when j is large (e.g., j ≥ 4).

Interestingly, these observations are consistent with
the statement given in Gelman et al. (1996) and cited
above: if one cannot be optimal (due to (ii), it is in-
deed difficult to achieve optimality), it is better to use
too high a value of σj than too low.

The question of interest now is what gain in ef-
ficiency can we achieve for a proper scaling of the
Modified Metropolis-Hastings algorithm when cal-
culating small failure probabilities? We consider the
following values of failure probability: pF = 10−k,
k = 2, . . . ,6. The c.o.v. of the failure probability es-
timates obtained by Subset Simulation are given in
Fig. 2 and Fig. 3 for Examples 1 and 2, respec-
tively. The dashed (solid) curves correspond to the
case when N = 300 (N = 1000) samples are used
per each intermediate failure region. For estimation
of each value of the failure probability, two differ-
ent MMH algorithms are used within SS: the opti-
mal algorithm with σj = σopt

j (marked with stars);
and the reference algorithm with σj = 1 (marked with
squares). The corresponding c.o.v’s are denoted by
δopt and δ1, respectively. From Fig. 2 and Fig. 3 it fol-
lows that the smaller pF , the more important to scale
MMH optimally. When pF = 10−6, the optimal c.o.v
δopt is approximately 1.2 times smaller than the ref-
erence c.o.v. δ1 for both examples, when N = 1000.
Another important, yet expected, observation is that
the significance of the optimal scaling of MMH di-
minishes when the number of samples per subset N
grows. Indeed, when N →∞, the Markov chain con-
verges to its stationarity regardless of the spread of
the proposal PDF.

Despite its obvious usefulness, the optimal scaling
of the Modified Metropolis-Hastings algorithm is dif-
ficult to achieve in practice. First, as it follows from
Table 1, the values of the optimal spread σopt

j are dif-
ferent for different reliability problems. Second, even
for a given reliability problem to find σopt

j is computa-
tionally expensive because of (ii); and our simulation
results show that the qualitative properties (i) and (ii)
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Figure 2: The c.o.v. of pF estimates obtained by Subset Simula-
tion for Example 1
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Figure 3: The c.o.v. of pF estimates obtained by Subset Simula-
tion for Example 2

generally hold for different reliability problems, not
only for Examples 1 and 2.

It has been recognized for a long time that, when
using an MCMC algorithm, it is useful to monitor its
acceptance rate. Both γ-efficiency γj and the accep-
tance rate ρj at level j depend on σj . For Examples
1 and 2, γj as a function of ρj is plotted in Fig. 4,
for simulation levels j = 1, . . .6. A key observation is
that, contrary to (ii), γj is very flat around the optimal
acceptance rate ρopt

j , which is defined as the accep-
tance rate that corresponds to the optimal spread, i.e.
ρopt
j = ρj(σ

opt
j ). Furthermore, according to our sim-

ulation results this behavior is typical, and not spe-
cific just for the considered examples. This observa-
tion gives rise to the following heuristic scaling strat-
egy:

At simulation level j select σj such that
the corresponding acceptance rate ρj is be-
tween 40% and 60% if j = 1 and between
30% and 50% if j ≥ 2.
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Figure 4: γ-efficiency of the Modified Metropolis-Hastings algo-
rithm as a function of the acceptance rate, for simulation levels
j = 1, . . . ,6

This strategy is easy to implement in the context
of Subset Simulation. At each simulation level j, Nc

Markov chains are generated. Suppose, we do not
know the optimal spread σopt

j for our problem. We
start with a reference value, say σ1:n

j = 1, for the first
n chains. Based only on these n chains, we calculate
the corresponding acceptance rate ρ1:nj . If ρ1:nj is too
low (i.e. it is smaller than 40% and 30% for j = 1
and j ≥ 2, respectively) we decrease the spread and
use σn+1:2n

j < σ1:n
j for the next n chains. If ρ1:nj is too

large (i.e. it is larger than 60% and 50% for j = 1
and j ≥ 2, respectively) we increase the spread and
use σn+1:2n

j > σ1:n
j for the next n chains. We proceed

like this until all Nc Markov chains have been gener-
ated. Note that according to this procedure, σj is kept
constant within a single chain and it is changed only
between chains. Hence the Markovian property is not
destroyed. The described strategy guarantees that the
corresponding scaling on the Modified Metropolis-
Hastings algorithm is nearly optimal.

4 CONCLUSIONS

This paper explores the optimal scaling of the Modi-
fied Metropolis-Hastings algorithm, an MCMC tech-
nique employed within the Subset Simulation method
proposed by Au & Beck (2001a). This exploration
leads to the following nearly optimal scaling strat-
egy for MMH: at the first simulation level select the
spread (variance) of the proposal PDFs such that the
corresponding acceptance rate is between 40% and
60%, while at higher levels so it is between 30% and
50%.
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