
Probabilistic Engineering Mechanics 26 (2011) 405–412
Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Modified Metropolis–Hastings algorithm with delayed rejection
K.M. Zuev ∗, L.S. Katafygiotis
Department of Civil Engineering, HKUST, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 17 March 2010
Received in revised form
30 September 2010
Accepted 30 November 2010
Available online 15 December 2010

Keywords:
Reliability
Metropolis–Hastings algorithm
Markov chains
Markov chain Monte Carlo
Variance reduction techniques
Subset simulation
Dynamic analysis

a b s t r a c t

The development of an efficientMCMC strategy for sampling from complex distributions is a difficult task
that needs to be solved for calculating the small failure probabilities encountered in the high-dimensional
reliability analysis of engineering systems. Usually different variations of the Metropolis–Hastings
algorithm (MH) are used. However, the standard MH algorithm does not generally work in high
dimensions, since it leads to very frequent repeated samples. In order to overcome this deficiency one
can use theModifiedMetropolis–Hastings algorithm (MMH) proposed in Au and Beck (2001) [1]. Another
variation of the MH algorithm, called the Metropolis–Hastings algorithm with delayed rejection (MHDR)
has been proposed by Tierney and Mira (1999) [7]. The key idea behind the MHDR algorithm is to reduce
the correlation between states of the Markov chain. In this paper we combine the ideas of MMH and
MHDR and propose a novel modification of the MH algorithm, called the Modified Metropolis–Hastings
algorithm with delayed rejection (MMHDR). The efficiency of the new algorithm is demonstrated with a
numerical example where MMHDR is used together with Subset simulation for computing small failure
probabilities in high dimensions.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One of themost important and challenging problems in reliabil-
ity engineering is to compute the failure probability given by the
following expression:

pF =

∫
RN

IF (x)π(x)dx. (1)

Here π(·) is the joint probability density function (PDF) of a ran-
dom vector x ∈ RN , which represents the uncertain parameters of
the problem; F ⊂ RN is the failure domain that is usually defined as
F = {x ∈ RN

|G(x) < 0}, where G is called the limit-state function;
IF is the indicator function of F , i.e. IF (x) = 1 if x ∈ F and IF (x) = 0
if x ∉ F . Throughout thisworkwe assume that the parameter space
RN is high-dimensional and the failure probability pF is very small.

Each advanced stochastic simulation algorithm for the compu-
tation of small failure probabilities (1) encountered in the relia-
bility analysis of engineering systems consists of two main steps.
First, we need to specify some artificial PDF(s) π̃ fromwhichwe are
going to sample during the run of the algorithm. For example, in
Importance Sampling, Subset Simulation [1] and Adaptive Linked
Importance Sampling [2] we sample from the important sampling
density πis, family of conditional distributions π(·|F) and family of

∗ Corresponding author.
E-mail addresses: zuev@ust.hk, konstantin.zuev@mail.ru (K.M. Zuev),

lambros@ust.hk (L.S. Katafygiotis).

0266-8920/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.probengmech.2010.11.008
intermediate distributions πα respectively. In many cases where
there is no explicit expression for π̃ , Markov chain Monte Carlo
(MCMC) is employed to generate the required samples. Usually dif-
ferent variations of the Metropolis–Hastings (MH) algorithm are
used.

The main objective of this paper is to develop a novel effective
MCMC algorithm for sampling from high-dimensional conditional
distributions.

Our starting point is the standard MH algorithm [3,4]. It has
been shown by Au and Beck [1] that the standard MH algorithm
generally does not work in high dimensions, since it leads to ex-
tremely frequent repeated samples. A geometric understanding of
why this is true is given in [5], see also [6]. In order to overcome this
deficiency of theMH algorithm one can use theModifiedMetropo-
lis–Hastings algorithm (MMH) proposed in [1] for sampling from
high-dimensional distributions. It should be emphasized that the
MMH algorithm is suitable only for sampling from very specific
distributions, namely, from the conditional distributions π(·|F),
where the unconditional PDF π can be factorized into a product
of easily sampled one-dimensional distributions. To the best of our
knowledge, at the moment there does not exist any efficient algo-
rithm for sampling from an arbitrary high-dimensional distribu-
tion.

Another variation of the MH algorithm, called the Metropolis–
Hastings algorithm with delayed rejection (MHDR) has been
proposed in [7]. The key idea behind the MHDR algorithm is that
when a Markov chain remains in the same state for some time,
the estimate obtained by averaging along the chain path becomes
less efficient. For theMH algorithm this happens when a candidate

http://dx.doi.org/10.1016/j.probengmech.2010.11.008
http://www.elsevier.com/locate/probengmech
http://www.elsevier.com/locate/probengmech
mailto:zuev@ust.hk
mailto:konstantin.zuev@mail.ru
mailto:lambros@ust.hk
http://dx.doi.org/10.1016/j.probengmech.2010.11.008

406 K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412
Fig. 1. Modifications of the standard Metropolis–Hastings algorithm.

generated from the proposal distribution is frequently rejected.
Therefore, we can improve the MH algorithm by reducing the
number of rejected candidates. A way to achieve this goal is the
following: whenever a candidate is rejected, instead of taking the
current state of aMarkov chain as its new state, as is the case in the
standard MH algorithm, we propose a new candidate. Of course,
the acceptance probability of the new candidate has to be adjusted
in order to keep the distribution invariant.

To address high-dimensional reliability problems, in this paper
we combine the ideas of both the MMH and MHDR algorithms.
As a result we obtain an efficient algorithm, called the Modified
Metropolis–Hastings algorithm with delayed rejection (MMHDR),
for sampling from high-dimensional conditional distributions.

Different variations of the standardMH algorithm are schemat-
ically shown in Fig. 1.

2. Modifications of the Metropolis–Hastings algorithm

Throughout this work all the variations of the MH algorithm
are discussed in the context of high-dimensional conditional
distributions.

2.1. Standard Metropolis–Hastings algorithm

The MH algorithm is the most common MCMC method for
sampling from a probability distribution that is difficult to sample
from directly. The algorithm is named after Nicholas Metropolis,
who proposed it in 1953 for the specific case of the Boltzmann
distribution, and W. Keith Hastings, who generalized it in 1970.

In this method samples are simulated as the states of a Markov
chain, which has the target distribution, i.e., the distribution we
want to sample from, as its equilibrium distribution. Let the target
distribution be π(·|F) = π(·)IF (·)/Z , where Z = P(F) is a
normalizing constant; let x0 be the current state of the Markov
chain; and let S(·|x0), called proposal PDF, be an N-dimensional
PDF depended on x0. Then the MH update x0 → x1 of the Markov
chain works as follows:

(1) Simulate ξ according to S(·|x0),
(2) Compute the acceptance probability

a(x0, ξ) = min

1,

π(ξ)S(x0|ξ)

π(x0)S(ξ |x0)
IF (ξ)


. (2)

(3) Accept or reject ξ by setting

x1 =


ξ, with prob. a(x0, ξ);
x0, with prob. 1 − a(x0, ξ). (3)

One can show that such an update leaves π(·|F) invariant, i.e. if x0
is distributed according to π(·|F), then so is x1:
Fig. 2. Standard Metropolis–Hastings algorithm.

x0 ∼ π(·|F) ⇒ x1 ∼ π(·|F). (4)

Hence the chain will eventually converge to π(·|F) as its equilib-
rium distribution. Note that the MH algorithm does not require
information about the normalizing constant Z . Assuming a sym-
metric proposal distribution, i.e. S(x|y) = S(y|x), one obtains the
original Metropolis algorithm [3]. The MH update is schematically
shown in Fig. 2.

2.2. Metropolis–Hastings algorithm with delayed rejection

Rejecting the candidate state ξ with probability 1 − a(x0, ξ) in
(3) is necessary for keeping the target distribution π(·|F) invariant
under the MH update. However, remaining in the current state
x0 for some time affects the quality of the corresponding Markov
chain by increasing the autocorrelation between its states and,
therefore, it reduces the efficiency of any simulation method that
uses the standard MH algorithm. Thus, it is desirable to reduce
the number of rejected candidate states, in order to improve the
standard MH algorithm.

The Metropolis–Hastings algorithm with delayed rejection
(MHDR), proposed in [7], allows us to achieve this goal: when a
reject decision in (3) is taken, instead of getting a repeated sample,
we generate a second candidate state using a different proposal
distribution and accept or reject it based on a suitably computed
probability. So, the Markov chain update x0 → x1 in the MHDR
algorithm when dealing with a conditional distribution π(·|F)
works as follows:

(1) Simulate ξ1 according to S1(·|x0),
(2) Compute the acceptance probability

a1(x0, ξ1) = min

1,

π(ξ1)S1(x0|ξ1)
π(x0)S1(ξ1|x0)

IF (ξ1)


. (5)

(3) Accept or reject ξ1 by setting

x1 =


ξ1, go to step (7) with prob. a1(x0, ξ1);
go to step (4), with prob. 1 − a1(x0, ξ1).

(6)

(4) Simulate ξ2 according to S2(·|x0, ξ1).
(5) Compute the acceptance probability

a2(x0, ξ1, ξ2)

= min

1,

π(ξ2)S1(ξ1|ξ2)S2(x0|ξ2, ξ1)(1 − a1(ξ2, ξ1))
π(x0)S1(ξ1|x0)S2(ξ2|x0, ξ1)(1 − a1(x0, ξ1))

IF (ξ2)


. (7)

(6) Accept or reject ξ2 by setting

x1 =


ξ2, with prob. a2(x0, ξ1, ξ2);
x0, with prob. 1 − a2(x0, ξ1, ξ2).

(8)

(7) End.

One possible way in which this scheme can be used is described
in [7]: the first stage proposal PDF is set to be an independent
proposal, S1(ξ1|x0) = f (ξ1), where f (·) is thought to be a good
approximation of the target PDF, and the second stage proposal
PDF is defined as a random walk S2(ξ2|x0, ξ1) = g(ξ2 − x0). If f is
indeed a good approximation, then the first candidates will rarely

K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412 407
Fig. 3. Metropolis–Hastings algorithm with delayed rejection.

be rejected and the randomwalk will rarely be used. However, if f
is not a good approximation then the random walk defined by S2
provides protection against the potentially very poor behavior of
independence chains.

An interesting feature of the MHDR algorithm is that the
proposal distribution S2 at the second stage is allowed to depend
on the rejected candidate ξ1 as well as on the current state x0 of
the chain. Allowing the proposal PDF S2 to use information about
the previously rejected candidate does not destroy the Markovian
property of the sampler. Thus all the asymptotic Markov chain
theory used for the standard MH algorithm can be used for the
MHDR method as well. The MHDR update is schematically shown
in Fig. 3.

Whether the MHDR algorithm is useful depends on whether
the reduction in variance achieved compensates for the additional
computational cost.

2.3. Modified Metropolis–Hastings algorithm

The standard MH algorithm does not generally work in high
dimensions meaning that with extremely high probability the
update of the Markov chain leads to a repeated sample, x1 =

x0 [1,5]. Clearly, the MHDR update has the same problem. Thus,
a Markov chain of practically meaningful length constructed in
high dimensions having applied either theMH orMHDR algorithm
may consist of as few as a single sample. This renders simulation
methods, such as Subset simulation, practically inapplicable.

The Modified Metropolis–Hastings algorithm (MMH) was de-
veloped in [1] especially for sampling from high-dimensional
conditional distributions. The MMH algorithm differs from the
standard MH algorithm in the way the candidate state ξ is gener-
ated. Instead of using an N-dimensional proposal PDF S to directly
obtain the candidate state ξ , in the MMH algorithm a sequence of
one-dimensional proposals S j(·|xj0), j = 1, . . . ,N , is used. Namely,
each coordinate ξ j of the candidate state is generated separately
using a one-dimensional proposal distribution S j(·|xj0) depending
on the jth coordinate xj0 of the current state. Finally, we check
whether the generated candidate belongs to the failure domain or
not. Thus, the MMH update of the Markov chain works as follows:

(1) Generate candidate state ξ = (ξ 1, . . . , ξN):
For each j = 1, . . . ,N

(1a) Simulate ξ̂ j according to S j(·|xj0),
(1b) Compute the acceptance probability

aj(xj0, ξ̂
j) = min


1,

πj(ξ̂
j)S j(xj0|ξ̂

j)

πj(x
j
0)S j(ξ̂ j|xj0)


. (9)
Fig. 4. Modified Metropolis–Hastings algorithm.

(1c) Accept or reject ξ̂ j by setting

ξ j
=


ξ̂ j, with prob. aj(xj0, ξ̂

j);
xj0, with prob. 1 − aj(xj0, ξ̂

j).
(10)

(2) Accept or reject ξ by setting

x1 =


ξ, if ξ ∈ F ;
x0, if ξ ∉ F . (11)

It can be easily seen that the MMH algorithm overcomes the
deficiency of the standard MH algorithm by producing distinct
Markov chain states, rather than repeated samples [1,5]. TheMMH
update is schematically shown in Fig. 4.

2.4. Modified Metropolis–Hastings algorithm with delayed rejection

In this paper we propose a new MCMC method, called the
Modified Metropolis–Hastings algorithm with delayed rejection
(MMHDR), which combines the ideas of both MMH and MHDR
algorithms.

Let ξ1 = (ξ 1
1 , . . . , ξN

1) be a candidate state generated during
the MMH update. Divide the set of all indexes I = {1, . . . ,N} into
two disjoint subsets: I = T ∪ T , where T = {j ∈ I : ξ

j
1 = ξ̂

j
1}

and T = {j ∈ I : ξ
j
1 = xj0}. So, T is a set of all indexes such

that the corresponding coordinates of the current state x0 were
really transformed and T is a set of all the remaining indexes having
unchanged corresponding coordinates.

In the MMH algorithm once the candidate is generated we
need to check whether it belongs to the failure domain or not.
If it does, we accept the candidate as a new state of the Markov
chain, and if it does not, we reject the candidate and get a repeated
sample. In the proposedMMHDR algorithmwhen a reject decision
in (11) is taken, instead of getting a repeated sample, we generate
a second candidate state ξ2 using a different one-dimensional
proposal distribution S j2 for each j ∈ T and take ξ

j
2 = xj0 for all

j ∈ T . In other words, at the second stage we try to update only
those coordinates of the current state x0 that have already been
transformed at the first stage already. Schematically this is shown
in Fig. 5.

Finally, when the second candidate is generated, we check
whether it belongs to the failure domain, in which case we obtain
a truly new state of theMarkov chain; if not, we still get a repeated
sample.

So, the update x0 → x1 of the Markov chain in the proposed
MMHDR works as follows:

408 K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412
Fig. 5. MMHDR update at the second stage.

(1) Generate a candidate state ξ1 = (ξ 1
1 , . . . , ξN

1):
For each j = 1, . . . ,N

(1a) Simulate ξ̂
j
1 according to S j1(·|x

j
0),

(1b) Compute the acceptance probability

aj1(x
j
0, ξ̂

j
1) = min


1,

πj(ξ̂
j
1)S

j
1(x

j
0|ξ̂

j
1)

πj(x
j
0)S

j
1(ξ̂

j
1|x

j
0)


. (12)

(1c) Accept or reject ξ̂
j
1 by setting

ξ
j
1 =


ξ̂
j
1, j ∈ T with prob. aj1(x

j
0, ξ̂

j
1);

xj0, j ∈ T with prob. 1 − aj1(x
j
0, ξ̂

j
1).

(13)

(2) Accept or reject ξ1 by setting

x1 =


ξ1, go to step (5) if ξ ∈ F ;
go to step (3) if ξ ∉ F . (14)

(3) Generate a new candidate state ξ2 = (ξ 1
2 , . . . , ξN

2):
For each j = 1 . . .N
if j ∈ T , set ξ

j
2 = xj0,

if j ∈ T
(3a) Simulate ξ̂

j
2 according to S j2(·|x

j
0, ξ

j
1),

(3b) Compute the acceptance probability
aj2(x

j
0, ξ

j
1, ξ̂

j
2)

= min


1,

πj(ξ̂
j
2)S

j
1(ξ

j
1|ξ̂

j
2)S

j
2(x

j
0|ξ̂

j
2, ξ

j
1)a

j
1(ξ̂

j
2, ξ

j
1)

πj(x
j
0)S

j
1(ξ

j
1|x

j
0)S

j
2(ξ̂

j
2|x

j
0, ξ

j
1)a

j
1(x

j
0, ξ

j
1)


. (15)

(3c) Accept or reject ξ̂
j
2 by setting

ξ
j
2 =


ξ̂
j
2, with prob. aj2(x

j
0, ξ

j
1, ξ̂

j
2);

xj0, with prob. 1 − aj2(x
j
0, ξ

j
1, ξ̂

j
2).

(16)

(4) Accept or reject ξ2 by setting

x1 =


ξ2, if ξ2 ∈ F ;
x0, if ξ2 ∉ F . (17)

(5) End.

The MMHDR update is schematically shown in the Fig. 6. It can
be shown that if x0 is distributed according to π(·|F), then so is
x1, i.e. the MMHDR update leaves the distribution π(·|F) invariant.
The reader is referred to the Appendix for the proof.

The MMHDR algorithm preserves an interesting feature of the
MHDR algorithm. Namely, the one-dimensional proposal distribu-
tions at the second stage are allowed to depend on the correspond-
ing coordinates of the previously rejected candidate. The usage of
information from the previously rejected candidate can potentially
help us to generate a better candidate in the second stage that
hopefully can be accepted as the new state of the Markov chain.
However, to utilize the information about the rejected candidate
and construct a more efficient proposal PDF is not a trivial task and
it is left for future research. Nevertheless, MMHDRwith any choice
Fig. 6. Modified Metropolis–Hastings algorithms with delayed rejection.

of S j1 and S j2 certainly reduces the overall probability of remaining in
the current state if compared with the MMH algorithm and, there-
fore, leads to an improved sampler. This improvement is achieved
at the expense of an additional computational cost. Thus, whether
theMMHDR algorithm is useful for solving reliability problems de-
pends on whether the gained reduction in variance compensates
for the additional required computational effort.

3. Examples

To demonstrate the advantage of the MMHDR algorithm over
the MMH algorithmwe apply Subset simulation (SS) [1] with both
MMHDR and MMH algorithms for evaluating the small failure
probabilities of high-dimensional failure domains of different
geometry.

3.1. Linear failure domain

At first, we consider a linear failure domain. Let N = 1000 be
the dimension of the linear problem and pF = 10−5 be the failure
probability. The failure domain F is defined as

F = {x ∈ RN
: ⟨x, e⟩ ≥ β}, (18)

where e ∈ SN is a random unit vector, uniformly distributed on
the unit sphere SN , and β = Φ−1(1−pF) = 4.265 is the reliability
index. HereΦ denotes the CDF of the standard normal distribution.
Note that x∗

= eβ is the design point of the failure domain F .

K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412 409
Fig. 7. The CV of the estimates obtained by Subset simulation with MMH and
MMHDR algorithms.

All one-dimensional proposal distributions in both MMH and
MMHDR algorithms are set to be normal distributions with unit
variance and centered at the corresponding coordinates of the
current state:

S j(·|xj0) = S j1(·|x
j
0) = S j2(·|x

j
0, ξ

j
1) = Nxj0,1

(·). (19)

Here, when the MMHDR algorithm is used, we do not change the
second stage proposal distributions to include information from
the rejected candidate ξ1. How to generate a better candidate ξ2 at
the second stage including such information is in need of additional
research. In this example we just want to check which one of the
following two strategies is more effective: to have more Markov
chainswithmore correlated states (MMH) or to have fewerMarkov
chains with less correlated states (MMHDR).

The coefficient of variation (CV) of the failure probability
estimates obtained by the SS method against the number of runs
is given in Fig. 7. The curve denoted as MMH(1) corresponds to
the SS with MMH algorithm where for each intermediate subset
n = 1000 samples are used. We refer to the total computational
cost of this method, i.e., the mean of the total number of samples
used, as 1. The curve denoted asMMHDR(1.4) corresponds to the SS
with MMHDR algorithm where n = 1000 of MMHDR updates are
performed per each intermediate subset. It turns out that the total
computational cost of MMHDR(1.4) is 40% higher than MMH(1)
and the reduction in CV achieved is about 25% (based on 100 runs).
Finally, the curve MMH(1.4) corresponds to the SS with MMH
algorithm where for each intermediate subset n = 1400 samples
are used. The total computational cost of MMH(1.4) is the same as
for MMHDR(1.4), i.e. 40% higher than for MMH(1). However, the
reduction in CV achieved with MMH(1.4) compared to MMH(1)
is about 11% only. Simulation shows that to achieve the same CV
as MMHDR(1.4), the total computational effort of MMH should be
approximately 1.7. Thus, by employing MMHDR rather than MMH
in linear problem, we save about 17% of the total computational
effort.

3.2. Nonlinear failure domain of parabolic shape

Next, we consider a paraboloid in N-dimensional space defined
as follows:

P : x1 = a
N−
i=2

x2i − b. (20)

Define the failure domain as the interior of this paraboloid:
Fig. 8. The CV of the estimates obtained by Subset simulation with MMH and
MMHDR algorithms.

F =


x ∈ RN

: x1 > a
N−
i=2

x2i − b


, (21)

where a = 0.025, b = 20.27 and N = 1000. The probability
of this parabolic failure domain calculated using standard Monte
Carlo simulation (105 samples) is equal to pF = 7.8 × 10−4 with
CV δ = 0.11.

The CVs of the failure probability estimates obtained by the SS
method, using MMH and MMHDR, against the number of runs are
given in Fig. 8. Here, similar to the previous example, we use the
following notation:

• MMH(λ)[σ 2
] denotes SS with the MMH algorithm, where λ is

the total computational cost of this method (λ = 1 corresponds
to the total cost when n = 1000 samples are used for each
intermediate subset), and σ 2 is the variance of the proposal
distribution, S j(·|xj0) = Nxj0,σ

2(·);

• MMHDR(λ)[σ 2
1 , σ 2

2] denotes SS with the MMHDR algorithm,
where λ is the total computational cost of this method, and σ 2

1
andσ 2

2 are the variances of the proposal distributions in the first
and in the second stage, respectively, i.e., S j1(·|x

j
0) = Nxj0,σ

2
1
(·),

S j2(·|x
j
0) = Nxj0,σ

2
2
(·).

The total computational cost of MMHDR(1.45)[1, σ 2
2] is 45%

higher than MMH(1)[1] and the maximum reduction in CV
achieved (when σ 2

2 = 2) is about 20% (based on 61 runs).
The total computational cost of MMH(1.45)(1) is the same as for
MMHDR(1.45)[1, σ 2

2], however, the reduction in CV achieved is
about 6% only. To achieve the same CV as MMHDR(1.4)[1, 2], the
total computational effort of MMH should be approximately 1.61.
Thus, by employing MMHDR rather than MMH in this parabolic
problem, we save about 10% of the total computational effort.
It is important to mention that the parabolic failure domain
(21) provides an example of when the change of the second
stage proposal distribution by increasing its variance is useful.
Interestingly, this numerical result is consistent with a general
observation about optimal scaling of the proposal PDFsmade in [8].
Namely, it was proved that the optimal standard deviation of the
N-variate Gaussian proposal PDF is approximately σ ≈ 2.4/

√
N

and observed that ‘‘if one cannot be optimal, it seems better to use
too high a value of σ than too low’’. In the considered numerical
example an increased variance of the second stage proposal PDFs
improves the performance of the MMHDR algorithm.

410 K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412
So, in the considered numerical examples, SS with the MMHDR
algorithm outperforms SS with the MMH algorithm. In other
words, ‘‘quality’’ (fewer Markov chains with less correlated states)
defeats ‘‘quantity’’ (more Markov chains with more correlated
states).

4. Conclusions

In this paper a novel modification of the MH algorithm, called
the Modified Metropolis–Hastings algorithm with delayed rejec-
tion (MMHDR), is proposed. Based on two well-known sampling
techniques: the Modified Metropolis–Hastings algorithm [1] and
the Metropolis–Hastings algorithm with delayed rejection [7], the
new algorithm is designed specially for sampling fromhigh dimen-
sional conditional distributions. The efficiency of theMMHDRalgo-
rithm is demonstratedwith a numerical examplewhereMMHDR is
used together with Subset simulation for computing small failure
probabilities in high dimensions.

Acknowledgements

This research has been supported by the Hong Kong Research
Grants Council under grant 614008. This support is gratefully
acknowledged. We are also grateful to the referees whose
comments were very helpful in the revision of this paper.

Appendix

In this Appendix we prove that the conditional distribution
π(·|F) is an equilibrium distribution for any Markov chain
generated by the MMHDR algorithm, described in Section 2.4. In
other words, if we generate a Markov chain X0, X1, . . . using the
updating process prescribed in the MMHDR algorithm, starting
from essentially any X0 ∈ F , then for large n the distribution of Xn
will be approximately π(·|F). We start with recalling some of the
necessary definitions and facts from the theory of Markov chains.

AMarkov chain on a state space F ⊂ RN is a sequence of random
vectors {Xn, n ≥ 0} such that

P(Xn+1 ∈ A|Xn = x, Xj, j < n) = P(Xn+1 ∈ A|Xn = x)

≡ Kn(x, A), (22)

for all A ⊂ F and x ∈ F . The probability measure Kn(x, ·) is called
the transition kernel. Typically, we assume that the transition
kernel does not depend on the time n, Kn = K . In this case the
corresponding Markov chain is called time-homogeneous.

Usually the transition kernel in Markov chain simulations has
both continuous and discrete components and can be expressed as
follows:

K(x, dy) = k(x, y)dy + r(x)δx(dy). (23)

Here k : F × F → R+ with k(x, x) = 0 describes the continuous
part of the transition kernel, r(x) = 1−


F k(x, y)dy, and δx denotes

the point mass at x (Dirac measure):

δx(A) =


1, if x ∈ A;
0, if x ∉ A. (24)

Thus, the transition kernel (23) specifies that transitions of the
Markov chain from x to y occur according to k(x, y) and theMarkov
chain remains at xwith probability r(x). The transition kernel (23)
is schematically shown in Fig. 9.

Let π be a probability distribution on F . Assume that π has a
density with respect to the Lebesgue measure:

π(dx) = π(x)dx. (25)

For simplicity, π will be used to denote both distribution and den-
sity. The probability distribution π is called invariant distribution
Fig. 9. Transition kernel with both continuous and discrete components.

for a transition kernel K if

π(dy) =

∫
x∈F

π(x)K(x, dy)dx. (26)

It is easy to check that a sufficient condition for π to be the
invariant distribution for K is to satisfy the so-called reversibility
condition:
π(dx)K(x, dy) = π(dy)K(y, dx). (27)

The central result of the Markov chain theory is the following.
Let K be a transition kernel with invariant distribution π . In
addition, assume that the transition kernel K satisfies certain
ergodic conditions (it is irreducible and aperiodic). Then, the
invariant distribution π is the equilibrium distribution of the
correspondingMarkov chain: if we run theMarkov chain for a long
time (burn-in period), starting from anywhere in the state space,
then for large n the distribution of Xn will be approximately π .
The required burn-in period heavily depends on the choice of the
transition kernel K and on π itself. It also should be mentioned
that in practical application it is very difficult to check whether the
Markov chain has reached its invariant distribution. Even if it has,
it is hard to tell for sure.

Now let K denote the transition kernel of the Markov chain
generated by the MMHDR algorithm.

Theorem 1. The transition kernel K of the MMHDR update satisfies
the reversibility condition with respect to the conditional distribution
π(·|F):

π(dx0|F)K(x0, dx1) = π(dx1|F)K(x1, dx0). (28)

Proof. By definition of theMMHDR algorithm all theMarkov chain
samples lie in F , therefore, it is sufficient to consider the transition
only between states in F . So, without loss of generality, we assume
that both x0 and x1 belong to F , x0, x1 ∈ F . In addition, we assume
that x0 ≠ x1, since otherwise (28) is trivial.

The MMHDR update is naturally divided into two stages. At
the first stage (Steps 1 and 2), being in the current state x0 ∈ F ,
we generate a candidate state ξ1, which can either belong to the
failure domain F or not. At the second stage (Steps 3 and 4), still
being in the current state x0 and having rejected the candidate
ξ1 ∈ F̄ = RN

\ F , we generate the second candidate state ξ2, and
take ξ2 or x0 as the next state x1 of the Markov chain depending on
whether ξ2 belongs to the failure domain or not:

1st stage: F → RN , x0 → ξ1,

2nd stage: F × F̄ → F , (x0, ξ1) → x1.
(29)

Denote the transition kernels of the first and second stages by K1
and K2 correspondingly. Then the transition kernel of the MMHDR
update can be written as follows:

K(x0, dx1) = K1(x0, dx1) +

∫
ξ∈F̄

K1(x0, dξ)K2(x0, ξ , dx1). (30)

K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412 411
Lemma 1. If x0, x1 ∈ F , then

π(dx0)K1(x0, dx1) = π(dx1)K1(x1, dx0). (31)

Proof. According to Step 1, the transition of individual coordinates
of x0, when the first candidate state is generated, are independent.
So the transition kernel K1 can be expressed as a product of the
coordinate transition kernels:

K1(x0, dx1) =

N∏
j=1

K j
1(x

j
0, dx

j
1), (32)

where K j
1 is the transition kernel for the jth coordinate of x0 at

the first stage. Therefore, (31) can be equivalently rewritten in the
coordinates as follows:

N∏
j=1

πj(dx
j
0)K

j
1(x

j
0, dx

j
1) =

N∏
j=1

πj(dx
j
1)K

j
1(x

j
1, dx

j
0). (33)

To prove (33) it is sufficient to show that for any j = 1, . . . ,N

πj(dx
j
0)K

j
1(x

j
0, dx

j
1) = πj(dx

j
1)K

j
1(x

j
1, dx

j
0). (34)

According to Step 1, the transition kernel K j
1 for x

j
0 at the first stage

can be written as follows:

K j
1(x

j
0, dx

j
1) = kj1(x

j
0, x

j
1)dx

j
1 + r j1(x

j
0)δxj0

(dxj1), (35)

where

kj1(x
j
0, x

j
1) = S j1(x

j
1|x

j
0)a

j
1(x

j
0, x

j
1), (36)

and aj1 is given by (12), namely

aj1(x
j
0, x

j
1) = min


1,

πj(x
j
1)S

j
1(x

j
0|x

j
1)

πj(x
j
0)S

j
1(x

j
1|x

j
0)


. (37)

Assume that xj0 ≠ xj1, since otherwise (34) is trivial. Then, using the
identity bmin{1, a/b} = amin{1, b/a}, which is valid for any two
positive numbers a and b, we have:

πj(dx
j
0)K

j
1(x

j
0, dx

j
1) = πj(x

j
0)k

j
1(x

j
0, x

j
1)dx

j
0dx

j
1

= πj(x
j
0)S

j
1(x

j
1|x

j
0)min


1,

πj(x
j
1)S

j
1(x

j
0|x

j
1)

πj(x
j
0)S

j
1(x

j
1|x

j
0)


dxj0dx

j
1

= πj(x
j
1)S

j
1(x

j
0|x

j
1)min


1,

πj(x
j
0)S

j
1(x

j
1|x

j
0)

πj(x
j
1)S

j
1(x

j
0|x

j
1)


dxj0dx

j
1

= πj(x
j
1)k

j
1(x

j
1, x

j
0)dx

j
0dx

j
1 = πj(dx

j
1)K

j
1(x

j
1, dx

j
0). (38)

So, Lemma 1 is proved. �

Remark 1. In essence, the proof of Lemma 1 repeats the one given
in [1] for the Modified Metropolis–Hastings algorithm.

Thus, keeping in mind (30) and Lemma 1, it remains to show
that for any x0, x1 ∈ F and x0 ≠ x1

π(dx0)
∫

ξ∈F̄
K1(x0, dξ)K2(x0, ξ , dx1)

= π(dx1)
∫

ξ∈F̄
K1(x1, dξ)K2(x1, ξ , dx0). (39)

According to Step 3, the transition of individual coordinates of x0,
when the second candidate state is generated, are independent. So
the transition kernelK2, aswell asK1, can be expressed as a product
of the coordinate transition kernels:
K2(x0, ξ , x1) =

N∏
j=1

K j
2(x

j
0, ξ

j, dxj1), (40)

where K j
2 is the transition kernel for the jth coordinate of x0 at

the second stage. Therefore, (39) can be equivalently rewritten in
terms of coordinates as follows:∫

ξ∈F̄

N∏
j=1

πj(dx
j
0)K

j
1(x

j
0, dξ

j)K j
2(x

j
0, ξ

j, dxj1)

=

∫
ξ∈F̄

N∏
j=1

πj(dx
j
1)K

j
1(x

j
1, dξ

j)K j
2(x

j
1, ξ

j, dxj0). (41)

To satisfy the condition (41) it is sufficient to show that for any
j = 1, . . . ,N the following holds:

πj(dx
j
0)K

j
1(x

j
0, dξ

j)K j
2(x

j
0, ξ

j, dxj1)

= πj(dx
j
1)K

j
1(x

j
1, dξ

j)K j
2(x

j
1, ξ

j, dxj0). (42)

According to Step 3, the transition kernel K j
2 for xj0 at the second

stage can be written as follows:

K j
2(x

j
0, ξ

j, dxj1) =


δxj0

(dxj1), if ξ j
= xj0;

kj2(x
j
0, ξ

j, xj1)dx
j
1 + r j2(x

j
0, ξ

j)δxj0
(dxj1),

if ξ j
≠ xj0,

(43)

where

kj2(x
j
0, ξ

j, xj1) = S j2(x
j
1|x

j
0, ξ

j)aj2(x
j
0, ξ

j, xj1), (44)

and aj2 is given by (15), namely

aj2(x
j
0, ξ

j, xj1)

= min


1,

πj(x
j
1)S

j
1(ξ

j
|xj1)S

j
2(x

j
0|x

j
1, ξ

j)aj1(x
j
1, ξ

j)

πj(x
j
0)S

j
1(ξ

j|xj0)S
j
2(x

j
1|x

j
0, ξ

j)aj1(x
j
0, ξ

j)


. (45)

Assume that xj0 ≠ xj1, since otherwise condition (42) is trivial.
Consider the following three cases separately: ξ j

≠ xj0 and ξ j
≠ xj1

(1st case), ξ j
= xj0 (2nd case) and ξ j

= xj1 (3d case).

1. ξ j
≠ xj0, ξ

j
≠ xj1.

In this case we have:

πj(dx
j
0)K

j
1(x

j
0, dξ

j)K j
2(x

j
0, ξ

j, dxj1)

= πj(x
j
0)k

j
1(x

j
0, ξ

j)kj2(x
j
0, ξ

j, xj1)dx
j
0dξ

jdxj1
= πj(x

j
0)S

j
1(ξ

j
|xj0)a

j
1(x

j
0, ξ

j)S j2(x
j
1|x

j
0, ξ

j)

×min


1,

πj(x
j
1)S

j
1(ξ

j
|xj1)S

j
2(x

j
0|x

j
1, ξ

j)aj1(x
j
1, ξ

j)

πj(x
j
0)S

j
1(ξ

j|xj0)S
j
2(x

j
1|x

j
0, ξ

j)aj1(x
j
0, ξ

j)


× dxj0dξ

jdxj1
= πj(x

j
1)S

j
1(ξ

j
|xj1)a

j
1(x

j
1, ξ

j)S j2(x
j
0|x

j
1, ξ

j)

×min


1,

πj(x
j
0)S

j
1(ξ

j
|xj0)S

j
2(x

j
1|x

j
0, ξ

j)aj1(x
j
0, ξ

j)

πj(x
j
1)S

j
1(ξ

j|xj1)S
j
2(x

j
0|x

j
1, ξ

j)aj1(x
j
1, ξ

j)


× dxj0dξ

jdxj1
= πj(x

j
1)k

j
1(x

j
1, ξ

j)kj2(x
j
1, ξ

j, xj0)dx
j
0dξ

jdxj1

= πj(dx
j
1)K

j
1(x

j
1, dξ

j)K j
2(x

j
1, ξ

j, dxj0). (46)

So, in this case (42) is fulfilled.
2. ξ j

= xj0.
In this case the left-hand side of (42) is zero, since

K j
2(x

j
0, x

j
0, dx

j
1) = δxj0

(dxj1) = 0. The last equality holds because

412 K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 405–412
we have assumed that xj0 ≠ xj1. Let us now analyze the right-
hand side of (42) when ξ j

= xj0:

πj(dx
j
1)K

j
1(x

j
1, dx

j
0)K

j
2(x

j
1, x

j
0, dx

j
0) = πj(dx

j
1)k

j
1(x

j
1, x

j
0)

×


kj2(x

j
1, x

j
0, x

j
0)dx

j
0 + r j2(x

j
1, x

j
0)δxj1

(dxj0)

dxj0

= πj(dx
j
1)k

j
1(x

j
1, x

j
0)k

j
2(x

j
1, x

j
0, x

j
0)dx

j
0dx

j
0 = 0, (47)

since dxj0dx
j
0 = 0, which is a standard result of the measure

theory. So, the right-hand side of (42) is also zero. Basically,
when ξ j

= xj0 the left-hand side of (42) is zero by definition
of the MMHDR algorithm: the 2nd stage MMHDR update
transforms only those coordinates of the current state which
have been already transformedduring the 1st stage. At the same
time, the right-hand side is zero, because the ‘‘probability’’ to
transform any coordinate of the current state to the same value
twice (during both 1st and 2nd stages) is infinitesimally small.

3. ξ j
= xj1.
This case can be considered in exactly the same way as the

2nd one where xj0 and xj1 are replaced by each other.

Thus, Theorem 1 is proved. �

Corollary 1. The conditional distribution π(·|F) is invariant for the
kernel K and, therefore, any Markov chain generated by the MMHDR
algorithm will eventually converge to π(·|F) as its equilibrium
distribution.
Remark 2. When the MMHDR algorithm is used together with
Subset simulation the starting state of the Markov chain is already
distributed according toπ(·|F). Thismeans that there is no burn-in
period in this case.

Remark 3. Following the proof of Theorem 1, it can be shown
that keeping fixed those coordinates of the current state that have
not been transformed at the first stage of the MMHDR update is
essential for satisfying the reversibility condition (28).

References

[1] Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by
subset simulation. Probabilistic Engineering Mechanics 2001;16(4):263–77.

[2] Katafygiotis LS, Zuev KM. Estimation of small failure probabilities in high
dimensions by Adaptive Linked Importance Sampling, COMPDYN 2007,
Rethymno Crete Greece; 13–16 June 2007.

[3] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation
of state calculations by fast computing machines. Journal of Chemical Physics
1953;21:1087–92.

[4] Hastings WK. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 1970;57:97–109.

[5] Katafygiotis LS, Zuev KM. Geometric insight into the challenges of solving high-
dimensional reliability problems. Probabilistic Engineering Mechanics 2008;
23:208–18.

[6] Schuëller GI, Pradlwarter HJ, Koutsourelakis PS. A critical appraisal of
reliability estimation procedures for high dimensions. Probabilistic Engineering
Mechanics 2004;19:463–74.

[7] Tierney L, Mira A. Some adaptive Monte Carlo methods for Bayesian inference.
Statistics in Medicine 1999;18:2507–15.

[8] Gelman A, Roberts GO, Gilks WR. Efficient metropolis jumping rules. Bayesian
Statistics 1996;5:599–607.

	Modified Metropolis--Hastings algorithm with delayed rejection
	Introduction
	Modifications of the Metropolis--Hastings algorithm
	Standard Metropolis--Hastings algorithm
	Metropolis--Hastings algorithm with delayed rejection
	Modified Metropolis--Hastings algorithm
	Modified Metropolis--Hastings algorithm with delayed rejection

	Examples
	Linear failure domain
	Nonlinear failure domain of parabolic shape

	Conclusions
	Acknowledgements
	Appendix
	References

