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a b s t r a c t

Over the past decade, the civil engineering community has ever more realized the importance and
perspective of reliability-based design optimization (RBDO). Since then several advanced stochastic
simulation algorithms for computing small failure probabilities encountered in reliability analysis of
engineering systems have been developed: Subset Simulation (Au and Beck (2001) [2]), Line Sampling
(Schuëller et al. (2004) [3]), TheAuxiliaryDomainMethod (Katafygiotis et al. (2007) [4]), ALIS (Katafygiotis
and Zuev (2007) [5]), etc. In this paper we propose a novel advanced stochastic simulation algorithm for
solving high-dimensional reliability problems, called Horseracing Simulation (HRS). The key idea behind
HS is as follows. Although the reliability problem itself is high-dimensional, the limit-state functionmaps
this high-dimensional parameter space into a one-dimensional real line. This mapping transforms a high-
dimensional random parameter vector, which may represent the stochastic input load as well as any
uncertain structural parameters, into a random variable with unknown distribution, which represents
the uncertain structural response. It turns out that the corresponding cumulative distribution function
(CDF) of this random variable of interest can be accurately approximated by empirical CDFs constructed
from specially designed samples. The generation of samples is governed by a process of ‘‘racing’’ towards
the failure domain, hence the name of the algorithm. The accuracy and efficiency of the new method are
demonstrated with a real-life wind engineering example.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In reliability engineering our task is to calculate the reliability,
or equivalently the probability of failure, of a given structure
under uncertain loading conditions. The mathematical models of
the uncertain input load x and the structural response g(x) are a
randomvector x ∈ RN with joint probability density function (PDF)
π0 and a function g : RN

→ R+, respectively. For example, if
the structure is a tall building, the stochastic input may represent
wind velocities along the building height and the response may
represent the roof displacement or the maximum interstory drift
(absolute value) under the given wind load.

Define the failure domain Ω ⊂ RN as the set of inputs that lead
to the exceedance of some prescribed critical threshold z∗

∈ R+:

Ω = {x ∈ RN
|g(x) > z∗

}. (1)

In the above example the critical threshold z∗ represents the
maximumpermissible roof displacement ormaximumpermissible
interstory drift and the failure domain Ω represents the set of all
wind loads that lead to the exceedance of this threshold.
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The structural reliability problem is to compute the probability
of failure, given by the following expression:

pF = P(x ∈ Ω) =

∫
Ω

π0(x)dx

=

∫
RN

IΩ(x)π0(x)dx = Eπ0 [IΩ ] (2)

where IΩ is the indicator function (= 1 if x ∈ Ω , = 0 otherwise)
and Eπ0 denotes expectation with respect to the distribution π0.

Throughout this work we assume that we are dealing with
probability integrals (2) in the following context:

1. The computation of probability integral (2) in realistic appli-
cations cannot be performed analytically and can be done
only approximately. A well established methodology (see, for
example, [1]) consists of introducing a one-to-one transforma-
tion Υ between the physical space of variables x and the stan-
dard Gaussian space of variables y and then computing the
probability of failure as pF =


Υ (Ω)

N (y)dy, where N denotes
the standard Gaussian joint PDF and Υ (Ω) is the image of the
failure domain in the standard Gaussian space. Therefore, with-
out loss of generality, we shall assume that the PDF π0 is the
N-dimensional standardGaussian distribution. Thus, it is assumed
that we can evaluate π0(x) for any given x and we can generate
random samples from π0 efficiently.
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2. The function IΩ(x) is not explicitly known. Although for any x
we can check whether it corresponds to a failure point or not,
i.e., we can calculate the value IΩ(x) for a given x, we cannot
obtain an explicit formula.

3. The computational effort for evaluating IΩ(x) for each value of x is
assumed to be significant, so it is essential to minimize the number
of such function evaluations. In the context of the tall building
example presented later in the paper the last two statements
mean that since the structure is too complex,we cannot directly
predict whether a given wind load will cause failure. The only
way to do so is by performing a dynamic analysis which is itself
computationally demanding.

4. The parameter space RN is assumed to be high-dimensional.
As already mentioned, for realistic applications the reliability
problem has no analytical solution and one has to rely on
a computer to obtain an approximate value of the failure
probability. Any continuous problemmust be discretized before
it can be treated computationally, and, thus, the stochastic input
load x is modeled as a random vector in RN . The larger N , the
more precisely this discrete model describes the continuous
random input. In our examples we shall consider N ∼ 103–104.

Among all procedures developed for estimation of pΩ , a
prominent position is held by stochastic simulationmethods [2–7].
In this paper we propose a novel advanced stochastic simulation
algorithm, called Horseracing Simulation, and demonstrate its
accuracy and efficiency with an example involving a tall building
subjected to wind excitation.

2. The basic idea of Horseracing Simulation

Let us start with the discussion of the following auxiliary
problem. Let z be a continuous randomvariablewith PDF f and CDF
F , whose explicit expressions are unknown. Suppose that we can
draw samples from the distribution f . Our goal is, trying to use as
few samples as possible, to approximate F in some neighbourhood
of a given point z∗

∈ R. If the point z∗ is not very far from the
median z̃, then we can just draw Monte Carlo samples from f
and use the empirical CDF F (0), constructed based on the drawn
samples, as an approximation of F . However, if the probability
p = 1 − F(z∗) is very small p ≪ 1, then the Monte Carlo method
will require a lot of samples in order to get some information about
F in the neighbourhood of z∗. Therefore, since it is essential to
minimize the number of samples, the direct Monte Carlo method
is not applicable in such a case.

Assume now that we can propagate our Monte Carlo samples
towards the important region (the neighbourhood of z∗). Namely,
for any sample z(0)

∼ f (z) we are able to draw samples from
the conditional distribution f (z|z ≥ z(0)), for any sample z(1)

∼

f (z|z ≥ z(0)) we are able to draw samples from the conditional
distribution f (z|z ≥ z(1)), etc. It can be proven (see Appendix) that
the kth random variable z(k), defined by this process, has PDF

fk(z) =
(−1)k

k!
f (z) [log(1 − F(z))]k . (3)

It is well-known from the importance sampling theory (e.g. see
[8]) that if x1, . . . , xn are independently drawn from a trial
distribution h and if weights wi/

∑n
i=1 wi, where wi = f (xi)/h(xi),

are assigned to x1, . . . , xn, then as n → ∞ this approach produces
a sample that is approximately distributed according to f ,
provided h(x) ≠ 0 whenever f (x) ≠ 0. In standard terminology,
the trial distribution h, the weight wi and the normalized
weight wi/

∑n
i=1 wi are called the ‘‘importance distribution’’, the

‘‘importance weight’’ and the ‘‘normalized importance weight’’,
respectively. Note that if samples x1, . . . , xn are not independent
(e.g., x1, . . . , xn areMCMC samples), they still can be used as if they
were i.i.d., although with some reduction in efficiency [9].
So, if z(k)
1 , . . . , z(k)

n are independently distributed according to
the distribution fk, then the weighted samples (z(k)

1 , w
(k)
1 ), . . . ,

(z(k)
n , w

(k)
n ), where

w
(k)
i ∝

f (z(k)
i )

fk(z
(k)
i )

∝
1

log(1 − F(z(k)
i ))

k , (4)

are approximately distributed according to f . Therefore, based on
{(z(k)

i , w
(k)
i )}ni=1, we can update the empirical CDF F (0) and use it

for the updating of the empirical CDF F (0) which was constructed
based on Monte Carlo samples {z(0)

i }
n
i=1. Note that the importance

weights in (4) depend explicitly only on the CDF F that we want to
approximate and do not depend on the unknown PDF f .

The above discussion suggests the following scheme of an
algorithm (which is a prototype of the Horseracing Simulation
algorithm) for the approximation of F .

Horseracing Simulation Scheme

I. Sample z(0)
1 , . . . , z(0)

n from f0 = f ,
Set k = 0.

II. Construct the empirical CDF F (0) based on {z(0)
i }

n
i=1.

While the stopping criterion C(z∗) is not fulfilled do:
III. Sample z(k+1)

i from f0(z | z ≥ z(k)
i ) for each i = 1, . . . , n.

IV. Construct the empirical CDF G(k+1) based on {(z(k+1)
i ,

w
(k+1)
i )}ni=1.

V. Update the CDF F (k) to F (k+1), (F (k),G(k+1))  F (k+1),
Set k = k + 1. Go to III.

Of course the steps of this algorithm should be specified and the
stopping criterion C(z∗) should be properly chosen. Then, we can
naturally expect that in some neighbourhood of z∗ we will have

F (k)
≈ F . (5)

Before we explain how this scheme can help us to solve the
reliability problem, let us strike some life into the notation and
explain the origin of the name for this algorithm. One can think of
z1, . . . , zn as horses participating in a race, where z(k)

i denotes the
position of the ith horse at time instant k. The race is over when the
finishing rule given by C(z∗) is fulfilled—for example, when one of
the horses (z(k)

i ) reaches the finish line (z(k)
i ≥ z∗).

Let us now relate the Horseracing Simulation scheme to the
reliability problem. Recall that the structural reliability problem
is to compute the probability of failure that is given by (2). The
limit-state function g : RN

→ R+ maps the high-dimensional
parameter space into a one-dimensional real line. This mapping
transforms the high-dimensional random parameter vector x into
a random variable z = g(x), which represents the structural
response. This is shown schematically in Fig. 1.

Let f and F be the PDF and CDF of z respectively. Then the
probability of failure in (2) can be rewritten as follows:

pF =

∫
∞

z∗
f (z)dz = 1 − F(z∗). (6)

If the limit-state function g is continuously differentiable, then

f (z) =

∫
{x:z=g(x)}

π0(x)
‖∇g(x)‖

dV , (7)

where ∇g(x) = (∂g/∂x1, . . . , ∂g/∂xn) is the gradient of the limit-
state function, and integration is carried over the (N − 1)-
dimensional surface {x : z = g(x)}. Although for any given xwecan
calculate the value g(x), we cannot obtain any other information
such as an explicit formula for it or its gradient. As a consequence,
neither f nor F is known explicitly. Hence, the limit-state function
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Fig. 1. Dimension reduction induced by the limit-state function.
allows us to shift the difficulty of the reliability problem from
geometry (in (2) we have to calculate the high-dimensional
integral over a complex domain that is only known implicitly)
to probability ((6) is just a one-dimensional integral, but of an
unknown function); see Fig. 1.

Thus, in order to use (6) for failure probability estimation one
should find an approximation of the CDF F of the random variable
z. In the rest of this paper we shall show how the Horseracing
Simulation scheme can be successfully used for this purpose.

3. Implementation issues

In this section we discuss the details of the proposed
Horseracing Simulation scheme in the context of the reliability
problem.

3.1. Sampling

According to step I of the scheme, we have to sample from
the distribution f0 = f . In other words, we have to define the
initial positions of the horses participating in a race. Although
the distribution f0 is unknown, it is very simple to get a sample
from it. Namely, Monte Carlo samples x(0)

1 , . . . , x(0)
n ∼ π0, being

transformed by the limit-state function, will automatically provide
independent samples from f0:

z(0)
1 = g(x(0)

1 ), . . . , z(0)
n = g(x(0)

n ) ∼ f0. (8)

Based on these samples F (0) is constructed, according to step II.
Next, according to step III of the Horseracing Simulation

scheme, we have to sample from f0(z|z ≥ z(k)
i ), where z(k)

i ∼ fk,
i.e., we need to find the position of the ith horse at time k + 1.
The main idea is the same as in step 1: to sample in the high-
dimensional parameter space and then apply a transformation,
generated by the limit-state function.

Let x(k)
i be one of the previously generated samples, that

corresponds to z(k)
i , i.e., g(x(k)

i ) = z(k)
i . Define the subsetΩz(k)i

⊂ RN

as follows:

Ωz(k)i
= {x ∈ RN

| g(x) ≥ z(k)
i }. (9)

Note that x(k)
i belongs to the boundary of Ωz(k)i

, i.e., x(k)
i ∈ ∂Ωz(k)i

.
It is clear that if x is sampled from the conditional distribution
π0(x|x ∈ Ωz(k)i

), then z = g(x) is automatically distributed

according to f0(z|z ≥ z(k)
i ). So, the problem of sampling from

f0(z|z ≥ z(k)
i ) reduces to that of sampling fromπ0(x|x ∈ Ωz(k)i

). The
latter task can be done by using the modified Metropolis–Hastings
(MMH) algorithm [2].

Let Rz(k)i
denote the half-line in front of z(k)

i ,

Rz(k)i
= g(Ωz(k)i

) = {z ∈ R | z ≥ z(k)
i }, (10)
Fig. 2. Conditionally distributed samples.

and Z (t)

z(k)i
denote the set of all horse positions at a given time t ,

where t = 0, 1, . . . , k, which are in front of z(k)
i :

Z (t)

z(k)i
= {z(t)

j }
n
j=1 ∩ Rz(k)i

= {z(t)
j | z(t)

j ≥ z(k)
i , j = 1, . . . , n}, t = 0, . . . , k. (11)

All samples from Z (t)

z(k)i
are distributed according to the conditional

distribution ft(z|z ≥ z(k)
i ). Therefore, the weighted samples

{(z(t)
j , w

(t)
j ) | z(t)

j ∈ Z (t)

z(k)i
}, where

w
(t)
j ∝

f0(z
(t)
j )

ft(z
(t)
j )

∝
1

log(1 − F(z(t)
j ))

t , (12)

are approximately distributed according to the conditional distri-
bution f0(z|z ≥ z(k)

i ). Note that instead of the unknown CDF F in
(12) we can use its approximation F (k), obtained in step V (or in
step II when k = 0) of the scheme. So, at time kwe have k+ 1 sets
of weighted samples approximately drawn from the conditional
distribution f0(z|z ≥ z(k)

i ). These sets are schematically shown in
Fig. 2. Note that the size of these sets is a non-decreasing function
of t . Also note that some of the earlier sets, i.e., sets corresponding
to lower values of t , may be empty.

The following algorithm can be used for sampling from
f0(z|z ≥ z(k)

i ):

Sampling Algorithm

1. Select Z (t0)

z(k)i
from Z (t)

z(k)i
, t = 0, . . . , k with probabilities propor-

tional to the sample sizes, i.e. set Z (t0)

z(k)i
= Z (τ )

z(k)i
with probability

pτ = χ
(τ )

z(k)i
/
∑k

τ=0 χ
(τ )

z(k)i
, where χ

(τ )

z(k)i
= |Z (τ )

z(k)i
| and τ = 0, . . . , k.

2. Select z(t0)
j0

from Z (t0)

z(k)i
= {z(t0)

j1
, . . . , z(t0)

js }, s = χ
(t0)

z(k)i
with proba-

bilities proportional to the weights given by (12), i.e. set z(t0)
j0

=

z(t0)
jm with probability pm = w

(t0)
jm /

∑s
m=1 w

(t0)
jm , m = 1, . . . , s.

3. Take the previously generated sample x(t0)
j0

, which corresponds

to z(t0)
j0

, i.e. g(x(t0)
j0

) = z(t0)
j0

, and perform the MMH update

x(t0)
j0

→ x̂with invariant distribution π0(x|x ∈ Ωz(k)i
).

4. Set z(k+1)
i = g(x̂).
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Fig. 3. Sampling algorithm.

Fig. 4. The zeroth approximation.

The way in which we select z(t0)
j0

guarantees that it is distributed

according to f0(z|z > z(k)
i ). Therefore, the corresponding sam-

ple x(t0)
j0

has conditional distribution π0(x|x ∈ Ωz(k)i
). Since the

MMH update preserves the invariant distribution, x̂ has distribu-
tion π0(x|x ∈ Ωz(k)i

) as well. From the latter, in turn, it follows that

z(k+1)
i = g(x̂) is distributed according to f0(z|z ≥ z(k)

i ). The pro-
posed sampling algorithm is shown schematically in Fig. 3.

Recall that in Subset Simulation [2],we generate aMarkov chain
x(1)
i , x(2)

i , . . . with stationary distribution π0(x|x ∈ Ωz∗i
), where

Ωz∗i
is the so-called ‘‘intermediate’’ failure domain, Ωz∗i

= {x ∈

RN
|g(x) ≥ z∗

i }, z
∗

i < z∗. The corresponding sequence of z-samples,
z(k)
i = g(x(k)

i ), is, in general, not monotonically increasing, i.e. it
may not be true that z(k+1)

i ≥ z(k)
i for all k. The latter, in fact,

is a desirable property, since we want to reach the target failure
domain Ω ⊂ Ωz∗i

as fast as possible. In Horseracing Simulation,

the sampling algorithmguarantees that z(k+1)
i ≥ z(k)

i , i.e., it ensures
that the corresponding generated x-samples propagate forward,
towards the failure domain. This comprises the main feature of
Horseracing Simulation. This makes it potentially advantageous
over Subset Simulation where at a given step samples are allowed
to move backwards, away from the failure domain.

3.2. Construction of the empirical CDF and its updating

In step II of the Horseracing Simulation scheme, we have to
construct a zeroth approximation F (0) of the CDF of interest F ,
based on the Monte Carlo samples z(0)

1 , . . . , z(0)
n ∼ f0. For this

purpose we use the following piecewise linear approximation:

F (0)(z) =
i − 1/2

n
+

1
n

·
z − z(0)

i

z(0)
i+1 − z(0)

i

, for z ∈ [z(0)
i , z(0)

i+1], (13)

where i = 1, . . . , n − 1. The samples z(0)
1 , . . . , z(0)

n are assumed
to be ordered in (13), such that z(0)

1 < z(0)
2 , . . . , < z(0)

n . The zeroth
approximation F (0) is shown in Fig. 4. Note that F (0) is not defined
for z ∈ (−∞, z(0)

1 ) ∪ (z(0)
n , ∞).

Next, in step IV we construct the empirical CDF G(k+1) solely
based on the weighted samples {(z(k+1)

i , w
(k+1)
i )}ni=1. If the weights

{w
(k+1)
i }

n
i=1 are given, then we can define the empirical CDF G(k+1)
Fig. 5. Extrapolation of F (k) .

in a similar way to the zeroth approximation:

G(k+1)(z) =

i−1−
j=1

w
(k+1)
j +

1
2
w

(k+1)
i

+
w

(k+1)
i + w

(k+1)
i+1

2
·

z − z(k+1)
i

z(k+1)
i+1 − z(k+1)

i

, (14)

for z ∈ [z(k+1)
i , z(k+1)

i+1 ] and i = 1, . . . , n − 1. The samples z(k+1)
1 ,

. . . , z(k+1)
n are assumed to be ordered in (14), such that z(k+1)

1 <

z(k+1)
2 , . . . , < z(k+1)

n . Note that if all weights are equal, i.e.,w(k+1)
i =

1/n, then (14) reduces to (13).
Also, note that G(k+1) is defined only over the interval

[mini z
(k+1)
i ,maxi z

(k+1)
i ], while F (k) is defined over the interval

[mini z
(0)
i ,maxi z

(k)
i ] where mini z

(0)
i < mini z

(k+1)
i and maxi z

(k)
i <

maxi z
(k+1)
i . The objective here is to combine the information con-

tained in G(k+1) with that contained in F (k) to produce an updated
empirical CDF F (k+1), which is defined over the extended interval
[mini z

(0)
i ,maxi z

(k+1)
i ].

In order to use (14), the weights w
(k+1)
1 , . . . , w

(k+1)
n should be

calculated. Since the samples z(k+1)
1 , . . . , z(k+1)

n are approximately
distributed according to fk+1, theirweights are given by (12),where
t = k + 1 and F is replaced by its approximation F (k), obtained
in step V (or in step II if k = 0). However, the approximation
F (k), which was constructed using samples {(z(t)

1 , . . . , z(t)
n )}kt=1, is

defined only for z ∈ [mini z
(0)
i ,maxi z

(k)
i ]. So, in order to calculate

the weights of the ‘‘fastest’’ horses, i.e. of z(k+1)
i such that z(k+1)

i >

maxi z
(k)
i , we have to extrapolate F (k) on the interval [maxi z

(k)
i ,

maxi z
(k+1)
i ]. Thus, the weights w

(k+1)
1 , . . . , w

(k+1)
n are defined as

follows:

w
(k+1)
i ∝



1
log(1 − F (k)(z(k+1)

i ))
k+1 , if z(k+1)

i ≤ max
i

z(k)
i ;

1
log(1 − F (k)

ext (z
(k+1)
i ))

k+1 , if z(k+1)
i > max

i
z(k)
i ,

(15)

where F (k)
ext is the extrapolation of the CDF F (k). According to the

notation introduced in the sampling algorithm, χ
(k+1)

maxi z
(k)
i

is the

number of samples {z(k+1)
i }

n
i=1 that are larger than maxi z

(k)
i . Let

z(k+1)
j0

be the smallest of such samples, z(k+1)
j0

= mini{z ∈ Z (k+1)

maxi z
(k)
i

}.

Then, the extrapolation of the CDF F (k) is defined as the piecewise
linear function shown in Fig. 5. Note that χ

(k+1)

maxi z
(k)
i

= n − j0 + 1.

Finally, in step Vwe update the CDF F (k), using new information
provided by G(k+1), and construct a new approximation F (k+1) of
the CDF F . Suppose, for convenience, that the samples z(t)

1 , . . . , z(t)
n

are ordered for each t = 1, . . . , k + 1 as follows:

z(t)
1 < z(t)

2 < · · · < z(t)
n . (16)
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The CDF G(k+1) is not defined on the interval [z(0)
1 , z(k+1)

1 ). This
means that at time t = k + 1 we do not get any new information
about the CDF F on this interval relative to the information
available at time t = k. Therefore, F (k+1)(z) = F (k)(z) for z ∈

[z(0)
1 , z(k+1)

1 ). On the interval [z(k+1)
1 , z(0)

n ], the approximation F (k)

is constructed using k + 1 sets of samples {z(0)
i }

n
i=1, . . . , {z

(k)
i }

n
i=1,

while the approximation G(k+1) is based on only one set {z(k+1)
i }

n
i=1.

Therefore, it is natural to define a new approximation F (k+1)(z) =

((k + 1)F (k)(z) + G(k+1)(z))/(k + 2), for z ∈ [z(k+1)
1 , z(0)

n ]. Using
this line of reasoning, we define the new approximation F (k+1) as
follows:

F (k+1)(z)

=



F (k)(z), for z ∈ [z(0)
1 , z(k+1)

1 );

(k + 1)F (k)(z) + G(k+1)(z)
k + 2

, for z ∈ [z(k+1)
1 , z(0)

n ];

kF (k)(z) + G(k+1)(z)
k + 1

, for z ∈ (z(0)
n , z(1)

n ];

. . . , . . .

F (k)(z) + G(k+1)(z)
2

, for z ∈ (z(k−1)
n , z(k)

n ];

G(k+1)(z), for z ∈ (z(k)
n , z(k+1)

n ].

(17)

Since some of the weights in (15) are calculated using the
interpolation function F (k)

ext , the CDF G(k+1) does not approximate
F sufficiently well. More precisely, G(k+1) can be decomposed as
follows:

G(k+1)
= G(k+1)

F + G(k+1)
ext , (18)

where G(k+1)
F is an approximation of F and G(k+1)

ext is a perturbation
due to the slightly incorrect weights. Therefore, F (k+1), given by
(17), approximates not exactly F , due to the perturbation term
G(k+1)
ext . Note that the norm ‖G(k+1)

ext ‖ is a decreasing function of
χ

(k+1)

maxi z
(k)
i
: the less the number of samples with weights calculated

with F (k)
ext in (15), the smaller the norm ‖G(k+1)

ext ‖. So, if the number of
such samples is relatively small, which is the case in applications,
we can assume that the norm ‖G(k+1)

ext ‖ is sufficiently small. In order
to completely eliminate the influence of G(k+1)

ext , we propose the
following iterative updating algorithm:

Updating Algorithm

1. Set s = 1, ε = 1,
Set Hs to be equal to the right-hand side of (17).

While the error ε > ε0 do the following:
2. Recalculate the weights {w

(k+1)
i }

n
i=1 using (18) with Hs instead

of F (k) and F (k)
ext .

3. Recalculate G(k+1) using (14) with new weights.
4. Set Hs+1 to be equal to the right-hand side of (17).
5. Calculate the error:

ε = max
z∈{z(t)i }

n,k+1
i=1,t=1

Hs+1(z) − Hs(z)
1 − Hs(z)

 . (19)

Set s = s + 1.
End while

6. Set F (k+1)
= Hs.

The error ε, defined in (19), describes the relative change in two
successive iterations Hs and Hs+1. Note that ε is more sensitive
to the changes in the important region, where Hs is close to 1.
When this error is smaller than some prescribed threshold ε0 (in
the latter example the value ε0 = 0.01 is used), we take the last
Hs as the new approximation F (k+1) of the CDF F . As follows from
the updating algorithm, the CDF F (k+1)(z) is a linear combination of
two previously obtained CDFs, F (k+1)(z) = α1(z)F (k)

+α2(z)G(k+1),
where α1(z) + α2(z) = 1 for all z. By the strong law of large
numbers, the empirical CDFs F (k)(z) and G(k+1)(z) converge to F(z)
as n → ∞ almost surely, for every value of z [10], and, therefore,
so does F (k+1)(z).

3.3. The stopping criterion

The stopping criterion C(z∗) plays a very important role in the
Horseracing Simulation algorithm. As was already mentioned, one
of the possible choices for C(z∗) is the following rule: the race is
over when at least one of the horses (z(k)

i ) reaches the finish line
(z(k)

i ≥ z∗). The main advantage of this rule is that it allows one to
obtain the estimate of the failure probability pΩ = 1 − F(z∗) with
the minimum possible computation effort (as soon as we reach
the threshold z∗ we stop the algorithm). However, this rule has a
serious drawback: the estimate may be very inaccurate. Indeed, if,
for instance, pF = 0.01 and we use n = 100 samples, then on
average 1 out of 100 Monte Carlo samples z(0)

1 , . . . , z(0)
n will be a

failure sample. In this case, the estimate for the failure probability
will have coefficient of variation δ =

√
(1 − pF )/npF ≈ 1.

Another natural candidate stopping criterion is the following
rule: the race is over when r% of horses reach z∗. For a target
probability level of 10−2–10−5, choosing r = 10% is found to yield
good efficiency.

The Horseracing Simulation algorithm is summarized in Fig. 6.

4. An example

In this section we demonstrate the efficiency and accuracy of
the Horseracing Simulation algorithm with a real-life example
which is taken from [7].

4.1. The CAARC standard tall building model

We consider an along-wind excited steel building as shown in
Fig. 7, which has the same geometric shape as the Commonwealth
Advisory Aeronautical Research Council (CAARC) standard tall
building model [11]. A 45-story, 10-bay by 15-bay rectangular
tubular framework is used to model this building. With story
height of 4 m and bay width of 3 m, the building has a total height
of 180 m and a rectangular floor with dimension 30 m by 45 m.
Each floor is assumed to be rigid and has a lumped swayingmass of
6.75 × 105 kg and a rotational mass moment of inertia of 1.645 ×

108 kg m2 at the geometric center of the floor. The members of
beams and columns have standard AISC steel sections, and the
details of the design are presented in Table 1. With the above
configurations, the established building model has the following
first three modal frequencies: 0.197, 0.251 and 0.422 Hz.

4.2. Wind excitation

The along-wind excitation in the Y -direction of the building is
considered. In our example the excitation field is discretized using
Nu = 6 excitation forces U1(t), . . . ,UNu(t). The acting heights and
acting areas for this discretization scheme are shown in Table 2,
and the discretized excitation field is shown schematically in Fig. 8.

Table 1
Design of column members and beam members.

Floor zone Column members Beam members

1–9F W14X550 W30X357
10–18F W14X500 W30X326
19–27F W14X370 W30X292
28–36F W14X257 W30X261
37–45F W14X159 W30X221
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Fig. 6. Horseracing Simulation algorithm.
Fig. 7. CAARC standard tall building model.

At a given point located at height hj from the ground, the wind
velocity is

Vj(t) = V̄j + vj(t), (20)

where V̄j is the mean wind speed and vj(t) is the fluctuating
component of the wind velocity.

According to the Hong Kong wind code, the mean wind speed
V̄j (m/s) is given by the power law [12]

V̄j = 41


hj

180

0.25

, j = 1, . . . ,Nu. (21)

The generation of the fluctuating components is carried out by
simulation of anNu-variate zero-mean stationary stochastic vector
Table 2
Acting heights and acting areas of six excitation forces in the discretization scheme.

Excitation Acting height (m) Acting area (m2)

U1(t) 24 45 × 45
U2(t) 68 45 × 45
U3(t) 112 33.75 × 45
U4(t) 136 22.5 × 45
U5(t) 156 22.5 × 45
U6(t) 176 11.25 × 45

Fig. 8. Discretized excitation field.

process v(t) = [v1(t), . . . , vNu ]
T using the spectral representation

method [13–16]. In this method, the stochastic vector process is
simulated using its cross-power spectral density matrix

S0(ω) =

 S011(ω) . . . S01Nu
(ω)

...
...

S0Nu1(ω) . . . S0NuNu
(ω)

 . (22)

The cross-power spectral density matrix S0(ω) is modeled by
formulas proposed by Davenport in [17,18]. Namely, the power
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Fig. 9. Simulation scheme.
spectral density function S0jj(ω) of vj(t), j = 1, . . . ,Nu, is given by

S0jj(ω) =
V̄ 2
j K

2
ln hj

h0

2

8πa(ω)2

ω(1 + a(ω)2)4/3
, (23)

a(ω) =
600ω
π V̄10

, (24)

where ω (rad/s) is the frequency, K = 0.4 is Von Karman’s
constant, h0 = 0.05m is the roughness length, and V̄10 = 19.9m/s
is the mean wind velocity at the height of 10 m. The cross-power
spectral density function S0jk(ω) of vj(t) and vk(t) is given by

S0jk(ω) =


S0jj(ω)S0kk(ω)γjk(ω), j, k = 1, . . . ,Nu, j ≠ k, (25)

γjk(ω) = exp


−
ω

2π
Ch|hj − hk|

0.5(V̄j + V̄k)


, (26)

where γjk(ω) is the coherence function between vj(t) and vk(t),
and Ch is a constant that can be set equal to 10 for structural design
purposes [12].

To perform the generation of the wind velocity fluctuations the
cutoff frequency is taken as ωc = 0.8π rad/s, so that the ratio rc
of the neglected power spectrum content over the total content
is less than 10% for all components S0jk(ω), j, k = 1, . . . ,Nu. The
frequency step is set equal to △ω = π/900; therefore, the period
Tv = 4π/△ω of the fluctuating wind velocity components v(t) is
3600 s.

The wind excitation forces Uj(t), j = 1, . . . ,Nu, can be
expressed as follows:

Uj(t) =
1
2
ρAjVj(t)2 =

1
2
ρAj(V̄j + vj(t))2, (27)

where ρ is the air density, taken to be 1.2 kg/m3, and Aj is the
area upon which the discretized force Uj(t) is assumed to act (see
Table 2).

4.3. Geometric description of the failure domain

From the above chosen parameters, it follows that the number
of standard Gaussian random variables involved in the simulation
of the wind excitation is

N = 2 × Nu × Nω = 2 × Nu × ωc/△ω = 8640. (28)

In other words, the failure domain Ω is a subset of a high-
dimensional parameter space Ω ⊂ RN , where N = 8640.

In this example we assume that the displacement response
Y (t) at the top floor of the building is of interest. The relationship
between the response Y (t) and the excitation forces Uj, j = 1,
. . . ,Nu, is given by

Y (t) =

Nu−
j=1

∫
∞

0
qj(t, τ )Uj(τ )dτ , (29)

where qj(t, τ ) is the response function for Y (t) at time t due to a
unit impulse excitation forUj at time τ .We assume that the system
starts with zero initial conditions, is time invariant, i.e., qj(t, τ ) =

qj(t − τ), and is causal, i.e., qj(t, τ ) ≡ 0 for t < τ , so that (29) can
be rewritten as follows:

Y (t) =

Nu−
j=1

∫ t

0
qj(t − τ)Uj(τ )dτ . (30)

The required impulse response functions q1(t), . . . , qNu(t) are
obtained through Nu dynamic analyses of the established finite
element model of the building using the software SAP 2000.

Summarizing the above discussion, the simulation scheme is
shown in Fig. 9.

The failure event is defined as the response Y (t) exceeding
in magnitude a specified threshold z∗ within one hour, i.e., the
assumed duration time is T = 3600 s. This duration time is
conventionally used in wind engineering, and is consistent with
the duration of actual strong winds. Thus, in the discrete time
formulation, where the sampling time interval is chosen to be
△t = 0.01 s and the number of time instants is Nt = T/△t =

3.6 · 105, the failure domain Ω ⊂ RN is defined as follows:

Ω =

Nt
i=1


x ∈ RN

: |Y (i)| > z∗

. (31)

Thus, in the space of standard normal random variables, the failure
domain Ω is a union of 2Nt elementary failure domains: {x ∈ RN

:

Y (i) > z∗
} and {x ∈ RN

: Y (i) < −z∗
}, for i = 1, . . . ,Nt . The

limit-state function is given by

g(x) = max{|Y (i)|, i = 1, . . . ,Nt}. (32)

For each sample x ∈ RN a dynamic analysis is required in
order to evaluate the corresponding value g(x) of the limit-state
function. We refer to the total number of such dynamic analyses
(or, equivalently, to the total number of limit-state function
evaluations) used in a run of an algorithm as the total computation
effort of the algorithm.

4.4. Simulation results

The failure events with thresholds z∗

1 = 1.25 m, z∗

2 = 1.35 m,
and z∗

3 = 1.45 mare considered in the simulation. The correspond-
ing Monte Carlo (MC) estimates of the failure probabilities are



164 K.M. Zuev, L.S. Katafygiotis / Probabilistic Engineering Mechanics 26 (2011) 157–164
Fig. 10. TheCVof estimates obtained byHorseracing Simulation, Subset Simulation
and the Monte Carlo method.

found to be pF1 = 3.3×10−2 (with CV δ1 = 5.4%), pF2 = 6.8×10−3

(with CV δ2 = 12.1%), and pF3 = 1.5× 10−3 (with CV δ3 = 25.8%),
when using nMC = 104 samples.

The Horseracing Simulation algorithm (HRS) is applied with
n = 500 initial samples. The total computational efforts (CE)
required by the algorithm are CE1 = 1000, CE2 = 1500, and
CE3 = 2000 for pF1 , pF2 , and pF3 respectively. In order to get
approximately the same CE, Subset Simulation is applied with
n = 530, n = 540, and n = 710 initial samples respectively. The
mean values obtained for the failure probability estimates and
their CVs based on 25 runs of these algorithms are shown in
Fig. 10 along with the CVs of the Monte Carlo estimates (with
the same CE) for comparison purposes. In the first case, when
z∗

1 = 1.25 m, all three methods show approximately the same
accuracy and efficiency. In the second case (z∗

2 = 1.35) as well as
in the third case (z∗

3 = 1.45), HRS outperforms SS. The reductions
in CV achieved are (δSS

2 − δHRS
2 )/δSS

2 = 9.3% and (δSS
3 − δHRS

3 )/δSS
3 =

14.4% respectively.
Thus, the Horseracing Simulation algorithm clearly outper-

forms the standard Monte Carlo simulation as well as Subset
Simulation for the example considered.

5. Conclusions

A new advanced stochastic simulation algorithm, called
Horseracing Simulation, is proposed for solving high-dimensional
reliability problems. The key idea behind HS is to approximate the
cumulative distribution function (CDF) of the response random
variable of interest by empirical CDFs constructed from specially
designed samples. The accuracy and efficiency of the new method
are demonstrated with a wind engineering example.
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Appendix

Let z0 be a random variable with PDF f0 and CDF F0, and let
ξ ∼ f0 be its realization. Define z1 to be a new random variable
with conditional distribution f0(z|z ≥ ξ). In general, if ξ ∼ fk is
a realization of the random variable zk, define zk+1 to be a new
random variable with conditional distribution f0(z|z ≥ ξ). This
procedure defines a Markov chain z0, z1, . . . , which, as a matter
of fact, is completely defined by the distribution of the random
variable z0.

Theorem 1. The PDF fk of the random variable zk is

fk(z) =
(−1)k

k!
f0(z) [log(1 − F0(z))]k . (33)

Proof. We prove this theorem by induction on k. For k = 0 the
statement of the theorem is obvious. Suppose that (33) holds for k.
Then for k + 1 we have

fk+1(z) =

∫
∞

−∞

f0(z|z ≥ ξ)fk(ξ)dξ

=
(−1)k

k!

∫
∞

−∞

f0(z)IF {z ≥ ξ}

1 − F0(ξ)
f0(ξ) [log(1 − F0(ξ))]k dξ

=
(−1)k

k!
f0(z)

∫ z

−∞

[log(1 − F0(ξ))]k dF0(ξ)

1 − F0(ξ)

=
(−1)k+1

k!
f0(z)

∫ z

−∞

[log(1 − F0(ξ))]k d(1 − F0(ξ))

1 − F0(ξ)

=
(−1)k+1

(k + 1)!
f0(z) [log(1 − F0(z))]k+1 , (34)

which proves the theorem. �
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