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HIGHLIGHTS

The behavior in the S&P 500 price-index series is chaotic.

The index series for the whole-time interval is an irreversible process.

The behavior during a crisis occurs in the outer environment is a chaotic process.
The impact of an external crisis affects the US market considerably.

The US market never reaches equilibrium and remains in a disorder state constantly.
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Article history: The behavior of stock prices has been thoroughly studied throughout the last century, and
Received 4 September 2017 contradictory results have been reported in the corresponding literature. In this paper, a
Received in revised form 1 December 2017 network theoretical approach is provided to investigate how crises affected the behavior of
Available online 10 January 2018 US stock prices. We analyze high frequency data from S&P500 via the Horizontal Visibility
Graph method, and find that all major crises that took place worldwide in the last twenty

Iggavgggdfr;dex years, affected gigniﬁcantly the bghaviqr of the price-index. Nevertheless, we obgerve that
High frequency data each of those crises impacted the index in a different way and magnitude. Interestingly, our
Horizontal visibility graph results suggest that the predictability of the price-index series increases during the periods
Chaos theory of crises.

Irreversibility © 2018 Elsevier B.V. All rights reserved.

Financial crises

1. Introduction

For many decades now, there is an increasing interest both in academia and financial industry to what extent the stock’s
price history can assist to understand the behavior of its future prices. Particularly, throughout the previous century, various
chartist theories were proposed assuming that the past behavior of a stock’s price is rich of information concerning its
future predictability. Thus, many researchers repeat the conjecture that “patterns” of past price behavior will tend to happen
repeatedly in the future. On the other hand, the theory of random walks, developed by famous mathematicians, is used by
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some economists to show that the stock’s future price path is no more predictable than the path of a series of cumulated
random numbers. In simple words, the past cannot be used to predict the future in any meaningful way.

In the direction of random walk, in 1900, the French mathematician Louis Bachelier [1] initiated a new chapter in the
financial literature by proposing, however in a rather ambiguous way, that security prices appear to follow a stationary
Gaussian random walk, and therefore price changes are uncorrelated. Many decades later, Bachelier’s suggestion has been
supported in a more explicit way by Osborn’s work [2], where he show that the change of logarithm of prices has the same
properties as a particle in the Brownian motion.

The Gaussian hypothesis was seriously questioned by Mandelbrot [3,4] who observed that the implication of the
leptokurtosis (i.e., its “excessively peaked” character) was neglected by the previous researchers, contrarily on what someone
could observe in the empirical distribution of price changes. In another words, his findings suggest that the distribution of
the logarithm of price changes is not Gaussian, but rather stable Paretian since outliers are actually more common than there
would expect to be under the Gaussian distribution. Additionally, Mandelbrot [4] provided evidences that stock price series
are not stationary, and there is a weak (linear or nonlinear) dependence in their changes. Although Fama [5,6] concluded that
stock price changes do follow a stable Paretian distribution, he insisted that daily price increments are random, independent
and not correlated.

Many years later, Lo and MacKinlay [7] tested the random walk hypothesis for weekly price changes data on an equal- and
a value-weighted market indexes. For the entire period and for all subperiods, the rejection of the random walk hypothesis
did not support a mean-reverting model of asset prices. Thus, they alleged that the presence of heteroscedasticity was not
able to explain completely the rejection of the random walk hypothesis. What is more, they found a positive serial correlation
in contrast with Fama and French [5], who observed a weakly negative autocorrelation in weekly stock price changes. The
negative autocorrelation was appeared due to the slowly mean-reverting behavior of the stock price series while they also
reported that autocorrelation varied over time. Since then, a voluminous research has been conducted to confirm or reject
the validity of the random walk hypothesis based on the analysis of empirical data.

This paper is inspired by results obtained in Cutler et al. [8], who demonstrated that about one third of the stock price
changes in S&P500 can be attributed to the arrival of macroeconomic and political news. Furthermore, despite the passage of
time and the massive improvement in technology, Cutler’s et al. [8] conclusion remained unchanged even though the size of
unexplained market movements has grown incredibly, as Cornell [9] demonstrated recently. In this direction, we study how
selective events in the course of time have affected the behavior of S&P500 price-index using high frequency data for the
time period between May 1996 and March 2016. Instead of just using tests to reject or confirm the random walk hypothesis,
we take advantage of the recently introduced Horizontal Visibility Graph method [10,11] to identify the characteristics of
the generating process of the index prices.

The main purpose of our study is to investigate whether crises have affected the behavior of the index, and if so, to
examine whether different types of crises had the same impact on the index. In this regard, using 5-min data and applying
the rolling window method with overlap, we find that all major crises that took place the last twenty years have affected
considerably the behavior of the index. Moreover, our results suggest that there exist certain patterns in the way that the
index reacts to specific crisis events.

The remainder of the paper is structured as follows. In Section 2, we provide the literature review of the Horizontal
Visibility Graph method which is the cornerstone of our study. In Section 3, the presentation of the data is provided. A
detailed analysis of the adapted methodology is given in Section 4. Empirical results and their analysis for the whole time
period, and the irreversibility of the S&P 500 price-index are presented in Section 5. Section 6 concludes the whole discussion.

2. Network theoretical approach: Horizontal visibility graph

Network modeling is a novel and rapidly developing area of research in social sciences, economics and finance. Mantegna
and his co-authors [ 12-17] were the first who used techniques and tools from network theory to uncover the true nature of
the underlying structure of financial markets. Many more researchers have followed, see [ 18-25] among numerous others.

In our paper, the Horizontal Visibility Graph (HVG) which was recently introduced by Luque et al. [10] is considered. The
HVG algorithm belongs to the family of visibility algorithms (VG) proposed by Lacasa et al. [26], and uses the concept of
visibility [27] to map time series into graphs according to a specific geometric criterion. In [26], it was shown that time
series structure is inherited in the associated graph, such as periodicity, randomness, etc. Thus equivalently, one can extract
useful information regarding the properties of the original series based on the analysis implemented in the associated graph.

The geometric criterion proposed for the HVG method is basically rather simple, see [10]. Let {X;};—1.2....n be a time series
with n observations. Each point in the series is transformed into a node in the associated graph, and two arbitrary nodes i
and j have “visibility” to each other, and hence they are adjacent in the associated graph, if:

Xi, Xj > X, for every nsuch thati <n <.

For illustrative purposes, a graphical representation of the HVG method is shown in Fig. 1. In the upper part, there is a
bar-chart of a periodic time series while in the lower part there is a depiction of the associated graph after the HVG method
was applied to the original data. Based on Gutin et al. [28], we can emphasize two of the most significant properties of HVG:

1. The associated graph is always connected, since all data points in the series have visibility to the nearest neighbors
(i.e., the previous and the following one).
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Fig. 1. Graphical illustration of the Horizontal Visibility Graph algorithm. On the top we plot a periodic time series while at the bottom there is a graphical
representation of the associated network.

2. The mapping process is invariant under any affine transformation of the original time series, i.e., we will end up with
the same graph regardless of any axis rescaling of the initial series.

In the next subsections, the importance of the properties mentioned above for the analysis of financial data is explained.
2.1. Description of randomness and chaos

In [10,29], it is shown that the associated graph of any uncorrelated stochastic (random) series, which is independent of
the shape of the probability density function f(x) (i.e., distribution-free), has the degree distribution of the form:

1/2\?
P(K)=§<§> s (1)

where xk > 2 for series of infinite length. Easily, Eq. (1) can be rewritten as

P(k) ~ exp™"*, (2)

where in the case of uncorrelated stochastic series, y = In(3/2). For correlated stochastic process, the exponent y > In(3/2);
higher values of y correspond to stronger autocorrelation in the series. On the other hand, for series that derives from chaotic
processes, the exponent y < In(3/2), and higher values of y correspond to higher dimensions of the attractor.

In Fig. 2, a graphical illustration of the degree distribution of the associated HVG for three different series, random,
correlated stochastic and chaotic, is provided. Based on [29], the exponent y can be calculated by fitting an exponential
function to the tail of degree distribution of the associated graph. In the present paper, the exponent y is calculated by
fitting a linear function to the tail of the degree distribution in a semi-log scale. Numerical experiments in [ 10,29] show that
the HVG method is a reliable tool to distinct both noisy and high dimensional chaos from randomness (stochasticity).

2.2. Quantifying the degree of irreversibility of time series

Atime series S = {1, X2, ..., X,} is called statistically time-reversible if S~ = {X(_1), X(—2), . . . , X(—n)} has the same joint
distribution with S [30]. This merely implies that both S and S~ series are statistically equally probable, and consequently, any
independent and identical distributed random variable is a reversible sequence. Using another definition, we can conclude
that “the probabilistic properties of reversible series are invariant with respect to time reversal” [31], and that “reversibility is
shown to imply stationarity” [32]. Based on the aforementioned definitions, nonstationary time series are always irreversible,
and thus it is only meaningful to study time reversibility in stationary series. Stationary processes, such as the linear
Gaussian random process, that exist at thermal equilibrium are reversible [33]. On contrary, stationary processes which
contain underlying nonlinearities such as dissipative chaos, and other processes that exist out of thermal equilibrium are
irreversible processes. In this regard, many researchers also claimed that time irreversibility is associated with the presence
of nonlinearity, and in particular, Cox [34] claimed that “irreversibility is the symptom of nonlinearity”. The HVG method
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Fig. 2. Degree distribution of (from left to right) (a) random process, (b) chaotic process, (c) correlated stochastic process. The length of each series is 2 - 10%.

can not only successfully discriminate between reversible and irreversible stationary time series, but it can also quantify the
degree of time irreversibility for nonstationary time series [33]. Since the definition of a reversible series requires stationarity,
by implementing the new concept of HVG reversibility here, we are also able to quantify the degree of time asymmetries in
the underlying dynamics of a nonstationary time series. Based on this concept, a process is characterized as time reversible
when both direction of time evolution seems “right” for a particular series.

Following [35], a dynamical process {X;} is said to be HVG stationary if and only if the topological properties of the HVG
associated to a sample time series of size n extracted from {X;} are asymptotically (for large n) invariant under time shift
(in the statistical sense). More specifically, let S = {x1,x2,...,x,} and ST = {X14¢, X247, ..., Xnt} De two sample series
extracted from {X;}. The degree distributions of HVG associated to the sample series, S and S*, are asymptotically (for large
n) identical for HVG stationary processes.

To be able to discriminate between reversible and irreversible time series, one has to separate the degree of each node
into «j, and Koy such that «(i) = k(i) 4+ koue(i), where ki, (i) is the number of nodes from the past which have visibility on
a node i, and k(i) is the number of future nodes where a node i has visibility based on the HVG criterion. Hence, a process
{Xt}t=1.2...n is assumed to be HVG reversible if and only if the in-degree and the out-degree distributions of the associated
HVG are asymptotically identical for large values of n. For series of finite size, we can quantify the degree of irreversibility of
a process by calculating the divergence between the in- and out-degree distributions of the associate HVG. The higher the
distance between the two distributions is, the more irreversible a process is.

In our study, instead of employing the Kullback-Leibler divergence for calculating the divergence between the in- and
out-degree distribution of the HVG as originally proposed in [33], we recruit the Hellinger distance [36], which does not
introduce any bias for time series of finite length [37]. The Hellinger distance between two discrete probability distributions,
P(p1,p2,---,Pa)and Q(g1, G1, - - -, Gn), s given by:

_
G

The value of Hellinger distance should be zero for HVG reversible process of infinite size. However, given the fact that
all real life time series are finite, it is possible to face the situation where a reversible series has H # 0 yet, as the size of
the series increases H — 0 asymptotically. If a series is an irreversible one, then, as the size of the series increases, H — h
asymptotically, where h > 0.In Fig. 3, we plot the in- and out-degree distribution of a reversible and an irreversible process.
In the first case, although the two distributions are very close to each other, they are not identical and this can be attributed
to the finite length of the series. For the irreversible process, the divergence between the distributions is obvious.

H(P, Q) Y (Vi — Vair. (3)
i=1

3. Data

Our base dataset consists of tick data from Thompson Reuters Tick History (TRTH) for the S&P500 price-index that starts
on the 3rd May 1996 to 3rd March 2016. Since higher frequency inevitably leads to a larger microstructure noise, as it has
been suggested by Hansen and Lunde [38], we initially aggregate the data and construct a dataset that contains 440,000
observations of 5-min data points, see also arguments in [39]. In Fig. 4, we plot the daily closing prices of the index for
the corresponding time interval. It is very common in economics and finance to exploit the properties of logarithms, and
instead of analyzing the original dataset, to work with the logarithm of the data. As it is already mentioned in Section 2, HVG
method is invariant under axis transformation, and as a direct consequence, both time series, i.e., with original prices and
with log-prices, generate the same HVG graph.
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Fig. 3. The in- and out-degree distributions of an irreversible process (left) and a reversible process (right). The reversible series is a sequence of a random
numbers drawn from the uniform distribution on [0, 1] while the irreversible series is a sequence of numbers generated by the logistic equation with u = 4.
The length of both series is N = 2 - 10,
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Fig. 4. S& P 500 price-index series from 3rd May 1996 to 3rd March 2016. The red shadowed areas denote periods of sovereign crisis in USA while the gray
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4. Methodology

In the present paper, the question on how particular crises occurred during the last 20 years affected the behavior of the
S&P500 is considered. In this regard, we split our initial dataset into shorter periods of study to identify possible changes in
the US market behavior. Moreover, in order to achieve continuity in our results, the method of rolling window with overlap
is applied. Particularly, the length of each window is 5800 observations (or 71 trading days), and the overlap between two
consecutive windows is 3900 observations (or 48 trading days). In total, we create 229 subperiods of interest, and each
and every subperiod is transformed into a graph by using the HVG method. For every window, the exponent y of the degree
distribution, Eq. (2) is calculated as well as the Hellinger distance between the in- and out-degree distribution of the associate
network, Eq. (3). Throughout this process, the properties of the series can be identified, i.e., if the series is correlated (or
uncorrelated) stochastic or chaotic, and the degree of irreversibility of each sub-period can be quantified as well. Finally,
whether the behavior of the sub-series has changed during the periods of crisis is examined, and whether the reaction of
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Table 1

Subperiods with the six major crises considered.
Subperiods Time periods
Subperiod 1 (Asian & Russian crisis): July 1997-December 1998
Subperiod 2 (Dot.com bubble collapse): March 2000-November 2002
Subperiod 3 (USA subprime crisis): September 2007-January 2009
Subperiod 4 (European debt crisis): October 2009-February 2014

Subperiod 5 (Chinese stock market crash, Face I) June 2015-September 2015
Subperiod 6 (Chinese stock market crash, Face II)  January 2016-March 2016
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Fig. 5. Semi-log plot of the degree distribution of the HVG of the S&P500 price-index from 1996 to 2016.

the market is the same for all crisis events is tested. For the better understanding of the empirical part, in Table 1, six major
crises occurred throughout the time-period of observations are reported.’

5. Empirical analysis

In this section, the empirical analysis for S&P500 case implementing the HVG method is conducted. The section is divided
into two subsections. In the first part, the market behavior is analyzed for the whole depicted period as well for sub-periods
1 to 6 paying attention particularly on how crises affected the S&P 500 price-index. In the second part, whether S&P 500
price-index is a time reversible series, and how crises affected the degree of its irreversibility in the course of time are
investigated.

5.1. S&P 500 index series all over the period 1996-2016

After using the HVG method, i.e., mapping the observations of S&P 500 price-index time series in a graph, we are in a
position to extract the degree distribution of the associated graph. Then, the value of the exponent y, see Eq. (2), is calculated,
which is 0.026 for the whole time interval starting from 3rd May 1996 to 3rd March 2016. In Fig. 5, the degree distribution
of the associate graph of the index series is plotted.?> The exponent y equals the slope of the tail of the degree distribution
in a semi-log plot.

The fact that the value of exponent y is less than In(3/2) explains that the S&P500 price-index series appears to exhibit
a chaotic behavior, and more specifically, it has similar properties with a low dimensional chaotic process. Voluminous
literature exists providing some evidence that stock price series behave similar to a chaotic process, and the existence of
long term dependences can be confirmed within stock price series [40-43]. However, the existing statistical tests cannot
accurately infer whether a series is indeed chaotic or random. Our finding does not contradict, but rather verifies and
reasonably explains what other researchers have proposed using other methods.

Our results reveal that a deterministic nonlinear structure underlies the S&P500 high-frequency data. This outcome
explains why many researchers traced a nonlinear dependence in stock price series, yet they were uncertain for the source
of this nonlinear structure [44]. The existence of chaos might convincingly explain the nonlinear dependencies derived in
financial time series. However, there are contradicting studies as well, see [45-47].

1 Since by the end of February 2014 four out of five European countries that had asked for a bailout programme accessed again the private debt market,
we assume that the European debt crisis (see Subperiod 4) is over.

2 As a minor remark we should mention here that there is a node with extreme degree of 1750, which has not been included in Fig. 5 for visualization
arguments. However, the analysis conducted for the exponent y considers also that extreme value.
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Table 2
Number (ratio) of windows where exponent y lies in the corresponding band.
Chaos Uncorrelated stochastic ~ Correlated stochastic
No of windows  75(32.75%) 2(0.87%) 152 (66.38%)

The most important implication of the chaotic behavior is that stock prices appear to be predictable to some extent.
However, the horizon where we can successfully predict the future trajectories can be better determined by calculating the
Lyapunov exponents. Even though a chaotic process is indistinguishable from the unpredictability, due to the sensitivity
issues in the initial conditions, a chaotic system is predictable for a limited time span and then its behavior is seemingly
random. Despite its phenomenal randomness, any chaotic system does contain a deterministic structure. In addition, in
classical thermodynamics chaos exists in dynamical systems that operate out of equilibrium and are characterized by entropy
production. Pro rata, as the equity market behaves similar to chaos, it is a dynamic system that continuously operates out
of equilibrium. Thus, S&P 500 price-index can be seen as a non-isolated system where the outer environment interrupts its
way to equilibrium by introducing external turbulence in the system and causing entropy production.

In Fig. 6, we observe the values of exponent y for all distinct time-windows. At this point, we should mention that each
dot represents a different window, and dots are located on the x-axis based on the date of the first observation in each
window.? The red line denotes the point where y exponent equals In(3/2), which corresponds to an uncorrelated stochastic
process. Red shadowed areas indicate periods of crises which have been endogenously created by the market forces, i.e., large
drop in stock prices following a price bubble. On the other side, gray shadowed areas represent periods of crises when the
crisis occurred either in the US economic/political reality or abroad. Consequently, Dot.com bubble collapse (2000) and US
subprime crisis (2007) are denoted in the graph with red color while all the other crisis events are denoted by gray color.

With a glance on Fig. 6, it is easily discernible that in the gray shadowed areas there are valleys of the y exponent in the
chaotic band, a fact which is not true in the red shadowed areas. In Table 2, a summary of the market behavior is reported
during the periods considered. However, since our major endeavor is to study the behavior of the market during periods of
crisis, in Table 3, we also report the ratio of windows that exhibit a particular behavior and coincide with a crisis event.

What we can infer from Table 3 is that mainly chaotic behavior emerges when a crisis is ongoing, while correlated
stochastic behavior is more common when there is no an ongoing crisis. About 83.18% (or 94 out of 113) of windows that
coincide with tranquil periods appear to behave similar to a correlated stochastic process.* When a crisis is ongoing, almost

3 For example, the first window covers the period from 3rd May to 8th August 1996 and the corresponding dot is located on the X-axis at the point 3rd
May 1996.

4 We do not make any comment regarding the uncorrelated stochastic behavior since it does not seem to be a repeated behavior that deserves a particular
analysis.
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Table 3
Number (ratio) of windows where exponent y lies in the corresponding band during periods
of crisis and during tranquil periods.

Chaos Uncorrelated stochastic ~ Correlated stochastic ~ Total
Crisis Event 57 (76%)  1(50%) 58 (38.15%) 116
Tranquil period 18 (24%) 1(50%) 94 (61.85%) 113
Total 75 2 152 229

Table 4

Number (ratio) of windows where exponent y lies in a particular band and coincide with
a particular type of crisis event, i.e., crises endogenously created by the market or crises in
the outer environment of the market.

Chaos Uncorrelated stochastic ~ Correlated stochastic
Endogenous crises 5 (8.8%) 1(100%) 40 (68.96%)
Exogenous crises 52(91.2%) 0(0%) 18 (31.04%)

50% of the periods (windows) appear to behave similar to chaos and another 50% similar to a correlated stochastic process.
An important aspect would be to investigate if there is any pattern in the behavior of the market during different types of
crisis.

In Table 4, the set “crisis event” is partitioned into two non-overlapping sets; one group which contains crisis events
that are created endogenously by the market forces, and another group with all the other crises that took place in the outer
environment of the US equity market, i.e., crisis that raised either in the US economic and political reality or abroad.

Results in Table 4 indicate that chaotic behavior rises when a crisis occurs in the outer environment of the market, while
the properties of the S&P 500 price-index are similar to a correlated stochastic process, when the crisis has been created
endogenously by the market dynamics. In total, 86.95% (or 40 out of 46) of the windows that coincide with an internally
created crisis by the market forces behave similar to a correlated stochastic process, while 91.2% (or 52 out of 57) of windows
that coincide with crises happened in the US economic and political reality or abroad behave similar to a chaotic process.

Those findings reveal some very interesting aspects of the US market behavior. Bearing in mind that almost 83% of the
windows that coincide with tranquil periods behave similar to a correlated stochastic process, and that around 87% of the
windows that coincide with crisis events created internally by markets’ dynamics, then we have some evidence to infer that
these types of events do not alternate the behavior of the market at all. Additionally, it appears the behavior of the market
does not alternate when a bubble in stock price does inflate and deflate. Consequently, US market reacts in most cases, when
an event happens in its outer environment, and exhibits a chaotic behavior. Consequently, as long as the existence of chaos
is related to entropy production, and entropy is a measure of disorder, we can infer that events that take place in the outer
environment of the market drive the system out of equilibrium causing an increasing disorder in the system. For instance, let
us have a close look in an event that happened at the end of 2003 and beginning of 2004. As we can observe in Fig. 6, there is
arapid change in the behavior of the market similar to that of the Asian crisis in 1997, yet these windows are not shadowed
by any color. At that time the Federal Reserve rose the interest rates, and at the same time oil reached its maximum price
for the last 20 years. Although, there is no assurance for which of these events caused an alternation in market behavior
or affected the most, there is a strong indication to conclude that chaotic behavior appears when an important event takes
place in the outer market environment.

Before proceeding to the second part of this section, the analysis conducted so far reveals that the US market reacts only
in the case that a crisis is ongoing either in the US political and economic reality or abroad, while equity market crises that
follow a rapid stock price expansion do not alter the behavior of the market.

5.2. Irreversibility of S&P 500 price-index

In the previous subsection, the behavior of S&P500 price-index is studied over the sample period, and how particular
events affect the index is considered by calculating the y exponent of Eq. (2). In this section, another property of the index
series will be explored, and thus, how the time irreversibility of the price-index series varies over the course of time is
examined. As discussed in Section 2, this can be accomplished by calculating the Hellinger distance, H, between the in- and
out-degree of the associate graph.

In Fig. 7, the in- and out-degree distributions of the directed HVG are plotted. What it is observed is that the two
distributions do not coincide, and thus, we cannot allege that the series is a time reversible one. The calculated Hellinger
distance between the two distributions is 0.0136, which is larger than zero verifying that the series is irreversible. We
emphasize that given the large size of this series, the expected value of the Hellinger distance for a reversible series should
be approximately zero. This result verifies what we derived in Section 5.1, i.e., that the market behaves as a chaotic process,
and it is true that any chaotic process is an irreversible one.

However, for reversible series of finite size, Hellinger distance is not exactly zero yet the value of H approaches
asymptotically zero as the length of a series tends to infinity. The challenge occurred at this point is that, to the best of
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Fig. 7. The in-degree and out-degree distributions of the associated directed HVG of the S&P price-index from 1996 to 2016. Blue cycles represent the
in-degree distribution and black cycles the out-degree distribution.
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Fig. 8. Values of Hellinger distance for all windows of the S&P 500 price-index. In the vertical axis, the Hellinger distance values are plotted, and on the
horizontal line we plot the first date of each window. Red shadowed regions represent periods of market crashes following a market bubble in USA and
gray shadowed regions represents periods of crisis that took place in the economic/political reality of USA or abroad. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

our knowledge, there is no benchmark value available for H that separates reversible and irreversible series of finite size.
Nevertheless, after having performed the Augmented Dickey-Fuller root tests [48], we found that only 18 out of 229 subseries
are stationary with confidence 99%. This implies that we do not actually examine whether subseries is time reversible, but
rather, how irreversible it is and how crisis affects time asymmetries. For clarity, we mention that a nonstationary process
is always time irreversible.

In Fig. 8, we plot the values of the Hellinger distance for all windows. We observe that none of the values is close to zero
which verifies that all subseries are irreversible. This finding is in line with [26,28] where it is stated that financial series are
in principal irreversible. After all, it would be unreasonable to find reversibility in our results given that “time irreversibility
is the rule rather the exception when it comes to nonlinearity” [29], and we just show that S&P 500 index behaves similar to a
chaotic process. Interestingly, the irreversibility of the index varies considerably over time. Within the red shadowed areas,
we observe that H fluctuates at a lower level in comparison with the white and gray regions. Exceptions are two windows
at the end of 2001 where H peaks. These windows coincide with the 9/11 terrorist attacks, a major event in the recent US
history that affected considerably the properties of the S&P 500 index series. On the other hand, within the gray shadowed
areas, H fluctuates at higher level in comparison with the red shadowed. This is especially visibly during the European debt
crisis and Chinese equity market crash. Tumminello et al. [14] found a link between the degree of time irreversibility of a
process, and its amount of entropy production. The more irreversible a process is, the higher the production of entropy of
the system is. Thus, we can infer that gray shadowed regions are periods when the market is more disordered in comparison
to tranquil periods and periods of endogenously created by the markets’ dynamics crisis.

What is more, increasing irreversibility denotes also increasing time asymmetry. Two of the most important asymmetries
that underlie financial transactions are asymmetry in investors believes and information. Even though we cannot claim
which kind of asymmetry is affected more by the existence of a crisis, we can allege that these types of crises increase
asymmetries within the market.
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Finally, the fact that red shadowed areas have a lower degree of time irreversibility denote less disorder in the market
throughout the corresponding time interval. This might be as a contradiction with what we proposed in Section 5.1 observing
that the behavior of the index remains the same during tranquil periods and periods where an endogenously created by the
markets’ dynamics crisis takes place. However, economists characterize these types of crises as a correction movement on
behalf of markets’ participants after a prolonged inefficiency of the market. Thus, this behavior is not unexpected.

6. Conclusions

In this paper, we recruit the recently introduced HVG method to analyze high frequency (5-min) US stock market data,
and examine the behavior of the S&P 500 price-index series from May 1996 to March 2016, and investigate how different
kinds of crises affect the behavior of the market.

Our findings provide strong evidence that behavior in the S&P 500 price-index series is chaotic, which means that the
stock series has an underlying deterministic structure, yet a nonlinear one, and thus it is unpredictable. The fact that the
index series for the whole time interval is an irreversible process provides even more support to our argument.

Since the main goal of our approach is to analyze the behavior of the index series throughout periods of crises, we
decompose the initial series into six subperiods, and the behavior of each particular subperiod is examined. For the sake
of continuity, in our results, the rolling window with overlap method is implemented where the length of each window is
71 trading days, and the overlap between two consecutive windows is 48 trading days.

We found that the behavior of the market during tranquil periods as well as during periods of endogenously created by the
market dynamics crises, i.e., large drop in stock price following a bubble in the stock prices, is similar to a correlated stochastic
process with strong autocorrelation among prices. On the other hand, when a crisis happens in the outer environment of
the market i.e., either in the US economic and political reality or abroad, then, the stock price series behaves similar to a
chaotic process. In other words, when a bubble in the stock prices burst it does not affect particularly the behavior of the
index, while changes in the state of the economy or politics of the country or abroad drive the market out of equilibrium and
increases the disorder in the system.

Similar conclusions can be derived after examining how irreversibility of series evolve over the course of time. The impact
of an external crisis affects the market considerably, and the degree of irreversibility reaches its maximum values which
means that the disorder in the market is high since a link between irreversibility and entropy production exists. On contrary,
when a market experiencing a stock price bubble burst, the irreversibility fluctuates at low levels indicating the disorder in
the system is generally much less than any other period.

Finally, the most important conclusion is that since none of the subseries seems to be reversible, and consequently the
market increases its entropy, the market never reaches equilibrium and remain in a disorder state constantly.
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