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The hidden nature of causality is a puzzling, yet critical notion for
effective decision-making. Financial markets are characterized by
fluctuating interdependencies which seldom give rise to emergent
phenomena such as bubbles or crashes. In this paper, we propose
a method based on symbolic dynamics, which probes beneath the
surface of abstract causality and unveils the nature of causal in-
teractions. Our method allows distinction between positive and
negative interdependencies as well as a hybrid form that we refer
to as “dark causality.” We propose an algorithm which is validated
by models of a priori defined causal interaction. Then, we test our
method on asset pairs and on a network of sovereign credit de-
fault swaps (CDS). Our findings suggest that dark causality domi-
nates the sovereign CDS network, indicating interdependencies
which require caution from an investor’s perspective.

financial markets | pattern causality | complex systems | sovereign CDS
networks | pairs trading

The study of complex systems is hard-wired with the un-
derstanding of time series interdependencies. Specifically,

financial markets have long been analyzed as complex systems
with the asset pricing being the foundation upon which structures
such as financial networks are studied (1–5). Knowing the type of
asset price interactions is vital to planning effective investment
strategies or microtrading tactics (6). Such knowledge is even
more crucial if one considers the possibilities of switching re-
gimes in financial markets (2).
A straightforward tool to gauge asset interactions is correlation,

but is known to be misleading in nonlinear systems such as stock
markets (7, 8). The robust notion is that of causality (9), which has
been approached via methods such as Granger causality (10),
cointegration (11), transfer entropy (12), convergent cross mapping
(13), and S maps (14). Nevertheless, none of the aforementioned
methods provide insight regarding more complex interactions,
namely dark causality.
Our framework distinguishes between types of interactions (pos-

itive, negative, and dark) with the full details disclosed in SI Appendix
and in Movie S1. In the case of positive causality, X consistently
causes the same patterns in Y; inversely, in the case of negative
causality, X consistently causes the opposite patterns in Y. However,
this is a small subset of the cases of causal interaction, as seen at the
end of Movie S1 and in SI Appendix, Tables S1 and S2. In many
cases X consistently causes patterns in Y which are neither the same
nor opposite. It is this third case where we observe complex causal
interactions of temporal patterns that give rise to what we call dark
causality, an obscure, yet substantial form of influence which is
completely unapproachable through the lens of previous methods
that gauge the nature of interactions (SI Appendix, Figs. S1–S4).
Positive causality (and positive correlation) is anticipated in cases

of financial assets that are well-suited for asset pair trading (15).
Intuitively such assets cause the same direction changes to one
another. On the other hand, negative causality is expected in cases
of competing financial entities such as equities and bonds (16). The
hidden nature of financial market interdependencies may be the
missing link leading to a deeper understanding of market crashes
and other emergent phenomena. This is why the emergence of dark
causality is important, to uncover types of asset interactions which
cannot be classified as purely positive or negative.

To analyze the spectrum of causal interactions, both transparent
(positive, negative) and opaque (dark) in complex systems, we in-
troduce in this article a method that is based on interactions of
symbolic dynamics (patterns) (17) in reconstructed attractors (18).
Using basic models, we demonstrate that our method distinguishes
between positive, negative, and dark causality. Then, we apply our
approach to pairs of financial assets and expose the positive nature
of causality between Microsoft and Apple stocks, and a competitive
interaction between S&P 500 (as proxy of stock market perfor-
mance) and US government 10-y bond yield. Lastly, we illustrate
the prominence of a dark causality in the global network of sov-
ereign credit default swaps (CDS).

Nature of Causality Through Contemporaneous Patterns
In complex systems comprising deterministic or stochastic com-
ponents, spatiotemporal dynamics are sculpted into a distinct
attractor. According to dynamical systems theory, when two time
series X and Y are causally linked they coexist in a common
attractor, which is an embedded manifestation of their joint
dynamic system. Consequently, each variable is imbued with in-
formation of the other’s state (18, 19).
Nevertheless, the sharing of a common attractor is not sufficient

to assess the nature of causality. Such intricate information is
imprinted in the interplay of local spatiotemporal dynamics be-
tween the X’s and Y’s attractors, MX and MY, respectively, which is
the focal point of our approach, Pattern Causality (PC). Therefore,
positive (or negative) causality from X to Y is manifested when the
patterns in MY can accurately recall patterns of MX and are of
the same (or opposite) nature. When dark causality emerges, the
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patterns of MX are imprinted and therefore recallable from MY, yet
they are of neither the same nor opposite nature. This coupling of
patterns is of complex nature, hence the naming convention “dark”.
Fundamentally, the idea is to see whether spatiotemporal

neighborhoods of MY can consistently predict the patterns of
counterpart neighbors of MX. If the recalled patterns of MX are
correctly predicted, then X is causing Y to the extent of MY’s pre-
dictive accuracy. Whether the nature of causality is positive, nega-
tive, or dark depends on the correspondence of patterns between
MX andMY. Our approach is visually explained in Fig. 1 below, with
the full methodology recorded in SI Appendix and Movie S1.
PC is a method for detecting and quantifying the nature of

causality which is based on two essential properties. Firstly, PC is
characterized by consistency in its inference of causality’s nature. In
order for a causal relationship to be found as positive, negative, or
dark, the neighborhoods of MY have to systematically estimate
correctly and in a consistent way the average patterns (signatures)
in MX. Thus, ephemeral correlations or evanescent causalities do
not survive the PC trial. The notion of signature is defined in Eqs.
1–5 below. Let Y ðtjÞ,Y ðtj − τÞ, ...,Y ðtj − ðE− 1ÞτÞ be neighboring
values of a stock price according to some metric (e.g., Manhattan
distance) with E and τ being the embedding parameters. The sig-
nature of a given neighborhood in state space is defined as the
average pattern of the nearest-neighbors’ (NN) pattern:

PyðtÞ = signature
�
SyðtÞ

�
, SyðtÞ ∈RE, [1]
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[5]

Consistency is what bestows PC with the ability to go beyond the
abstract quantification of causality. Secondly, the use of symbolic
dynamics aids in the suppression of noise, thus making up for any
expected and knowable noise in the system.

Positive Causality (Mutualism) Model
Positive causality suggests that two variables interact in such a
way that changes in X cause consistently the same changes in Y.
We use a mutualism model (SI Appendix, Eq. S19) which de-
scribes two dynamically coupled variables with variable X
exerting more influence on Y than vice versa (Fig. 2A). As we can
see in Fig. 2D, PC detects the positive nature of causality and is
much higher from X to Y, attesting to the asymmetric influence.
Positive feedback loops can be described by such a system. These
loops are very crucial to the understanding of many fields, in-
cluding the dynamics of ecosystems (20), physiology for cardio-
excitation–contraction coupling of the heart (21), and also fi-
nance as indications of systemic risk (22), to name a few.

Negative Causality (Competition) Model
When negative causality is dominant this translates as X causing
the opposite change in Y. For theoretical validation, we use a
competition model (SI Appendix, Eq. S20) of two dynamically
coupled variables with X’s impact being more intense than Y’s
(Fig. 2B). It is obvious from Fig. 2E that our approach correctly
identifies the conflicting interaction and also reveals the asym-
metry between X and Y. This case is also relevant to negative
feedback loops, which are present in complex food webs (23) and
biological oxygen-dependent functions (24). Such loops are also

Fig. 1. PC (say from X to Y) is based on the accuracy of the “memories” (patterns up to time t) about MX’s patterns which are embedded inMY’s counterpart
spatiotemporal neighbors. If X causes Y, the NNs of point y(t) (NNy(t)) will correspond temporally to the NNs of x(t) (NNx(t)). This enables us to “predict”
patterns in the neighborhoods of MX using patterns from MY. As a next step we calculate the average pattern or signature of the predicted patterns of MX

and validate it with the actual signature. The more accurate our predictions are, the higher the PC from X to Y is. To put it simply, if X causes Y, then patterns
from MX leave their “footprints” on MY; thus, we can use patterns from MY to estimate the driving patterns from MX.
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encountered in the trading activity during financial crises and
market crashes when investors are more pessimistic (25).

Dark Causality (Scapegoat) Model
For the case of dark causality, we employ a model (SI Appendix,
Eq. S21) which describes a scapegoat relationship (Fig. 2C).
More specifically we simulate the interaction between two dif-
ferent prey populations (e.g., lambs and rabbits) under the
presence of a common predator (e.g., wolves). The design of our
model allows the predator to hunt, at any given time unit, one
type of prey exclusively. Each type of prey population may re-
produce only when the other type is hunted in its place (e.g.,
when the wolves hunt lambs then the rabbits do reproduce). By
calculating PC, we expose the hidden interaction between the
two prey types (Fig. 2F), a relationship whose meaning is neither

positive nor negative and falls into the category of dark causality.
In finance, such relationships cannot be defined as beneficial or
detrimental (as they can in ecology), but in the CDS example
they are abundant and need to be further scrutinized.
Models exhibit almost ideal circumstances. This is when con-

sistency is unhindered by observational error and system noise,
which is not the case for shadow attractors reconstructed by real
data. Nevertheless, even though noise and errors constrains the
level of consistency, neighbors in shadow attractors can still re-
call significant amounts of spatiotemporal dynamics.

Pairs Trading Candidate Assets
Our first financial application of PC is on daily time series data
of Apple (AAPL) and Microsoft (MSFT) retrieved from Data-
stream. The time span is from March 13, 1986 to August 6, 2018.
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Fig. 2. Nature of causality in theoretical models. L is the time series (library) length. (A) Positive case: variables beneficial to each other; (B) negative case:
variables competitive to each other; (C) dark case: variables involved in a persistent yet neither beneficial nor harmful relationship. (D) PC between mutualistic
variables. (E) PC between competitive variables. (F) PC in a scapegoat relationship. Color scheme: Blue and green are used for positive causality. Red and
yellow are used for negative causality. Purple and gray are used for dark causality.
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The specific equities are chosen on the one hand for their popu-
larity and on the other hand because they are usually studied in
tandem (26).
Causal interactions among these two assets (Fig. 3A) are dis-

tinctly positive (Fig. 3B) which renders them ideal candidates for
pairs trading, but an ill-advised combination for a diversified
portfolio strategy. Furthermore, the higher causative force from
MSFT to AAPL suggests that the trading activity of MSFT is
more influential on AAPL than vice versa, a fact that can aid in
modeling forecasting.

Conflicting Financial Forces
Next, we apply PC in a classic example of opposing forces in
finance (27), that of S&P 500 (as proxy of stock market perfor-
mance) and US government 10-y bond yield (Fig. 3C below).
S&P 500 and bond yield data are available from Datastream.
The time span is from January 2, 1985 to August 6, 2018.
The results in Fig. 3D validate the clasp between S&P 500 and

US 10-y bond, as negative causality, the previously assumed
norm for decades, however, with a diminishing intensity since
the year 2000. Contrary to the common view that government
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bond policy drives the stock market, our method supports the
opposite. Policymakers may need to reconsider whether gov-
ernment bond yield leveraging affects the stock market or the
assumption that they cause a negative feedback loop.

Dark Causality in Global Sovereign CDS Networks
As a final and more complex system we analyze a dataset con-
sisting of 69 sovereign CDS. The daily time series data were
downloaded from Datastream and the time period spans from
May 4, 2010 to August 6, 2018. CDS are relatively new derivates
and academic research is still characterizing their mathematics
and trying to understand their relation to financial crises (28)
and determinants to the market (29).
Using PC as link weight we build the three emergent aspects of

the CDS network (positive, negative, and dark) (see Fig. 4 be-
low). To get a broad view of the dominant nature of causality in
this network we sequentially eliminate the weakest links from 0.2
link strength up to 0.6 by step of 0.2. Negative causality produces
the most fragile network and when we eliminate links of up to 0.4
and 0.6 weight, the network is decimated down to three assets.
The positive causality aspect of the network is slightly stronger
with 15 assets remaining after the final elimination process. On
the contrary, the dark aspect of the causality network seems to be
quite robust, since even after our final elimination step it remains
with 65 assets and the connections remain rather dense.
The asymmetrical domination of dark causality means that the

CDS market is strongly interconnected yet the correspondences
in the shadow attractors are not clear about similar or opposite
temporal patterns. This rise of complex interactions imprinted in
the CDS attractors indicates nontrivial dynamics. Without a pure
(positive or negative) form of causality the practice of few major
dealers concentrating portfolios of large volumes of CDS (29) is
not advisable to minimize systemic risk and credit risk exposure.
In other words, the preeminence of dark causality can be seen as
a sign of “terra incognita” (in Latin for unexplored land) in the
already notorious CDS market (30).

Concluding Remarks
Greek philosophers such as Plato and Aristotle cerebrated the
concept of causality (31, 32). Through this study, we quantify the
nature of causality among time series by gauging the corre-
spondence of patterns in contemporaneously embedded neigh-
borhoods and particularly the detection and quantification of
dark causality. The more accurate the recalling ability of MX’s
patterns aboutMY’s patterns, the higher the causality from X to Y
is. Whether the nature of causality is positive, negative, or dark
depends on the coupling of patterns between MX and MY.
Causal networks are abundant in natural ecosystems, bi-

ological processes, and financial markets. More often than not,
the mere quantification of causality is not enough. Species in-
teract in complex and varied ways (e.g., symbiosis, competition,
or scapegoat relationship). Physiological functions are subject to

underlying synergies which are not straightforward. The spec-
trum of causalities among financial assets is bountiful and their
insights would be a great boon for economists and policymakers
alike. By unveiling the innermost mechanics of dynamical sys-
tems, PC offers an insight into the variety of causal interactions.

Method
We propose an algorithm to analyze the nature of causality by using the
theories of symbolic dynamics and attractor reconstruction, both of which
refer to time series. According to symbolic dynamics theory, we can represent
each time series through patterns that account for one step ahead per-
centage changes. Symbolic dynamics allow the patterns to expose the nature
of causality but first we need to identify a valid causal relationship. To that
end we use attractor reconstruction theory. Time series X, Y, and Z that
belong to the same dynamical system, e.g., ecosystems, stock markets, or
human body, are considered to be parts of the common attractor M, which
corresponds to the states of that system. Thus,M evolves in three dimensions
where each dimension corresponds to the X,Y, and Z, values of the time
series on the right.

From a dynamical systems perspective, the time series X,Y, and Z, are 1D
manifestations of the 3D attractor M. Takens’ theorem allows us to use
lagged values of those 1D manifestations to reconstruct a shadow version of
the original attractor by using lagged values of a single time series.MX being
the shadow attractor reconstructed from time series X, is also a library of the
past symbolic dynamics of X. The shadow attractor MX maintains the to-
pology of the original attractor M and is essentially a one-to-one mapping
from M to MX. If we also use time series Y, to reconstruct another shadow
version of the original attractor, we know that MY maps also one-to-one to
M. Therefore, MX and MY map one-to-one between themselves (SI Appen-
dix, Eqs. S6–S9). The same can hold also with MZ.

If a causal relationship exists, then the NNs of each point on MY must
correspond to NNs of each contemporaneous point on MX. Revealing the
patterns of each NN, we can then calculate the “average pattern” or sig-
nature of each neighborhood (SI Appendix, Eq. S7). Signature is the
weighted average pattern, of a current point’s NNs; where the weight for
each NN’s pattern is higher, the closer it is to the current point. When sig-
natures in MY , accurately predict signatures in MX, then we can say that X
left its markings on Y and thus causality is analogous to the prediction ac-
curacy. However, the very correspondence of signatures is what eventually
allows us to assess the nature of causality. SI Appendix, Tables S1 and S2
describe the three types of causality that encompass all possible causal
relationships. Positive causality corresponds to same pattern changes (SI
Appendix, Eq. S16). Negative causality corresponds to opposite pattern
changes (SI Appendix, Eq. S17). However, as shown in the matrix there is a
third case which cannot be classified as positive or negative. Thus, we use
the term dark causality to refer to signature couplings that are complex to
interpret (SI Appendix, Eq. S18). For the visualization of our method, see
Movie S1.
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