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Abstract
Prediction and control of network dynamics are grand-challenge problems in
network science. The lack of understanding of fundamental laws driving the
dynamics of networks is among the reasons why many practical problems of
great significance remain unsolved for decades. Here we study the dynamics of
networks evolving according to preferential attachment (PA), known to
approximate well the large-scale growth dynamics of a variety of real net-
works. We show that this dynamics is Hamiltonian, thus casting the study of
complex networks dynamics to the powerful canonical formalism, in which
the time evolution of a dynamical system is described by Hamilton’s
equations. We derive the explicit form of the Hamiltonian that governs net-
work growth in PA. This Hamiltonian turns out to be nearly identical
to graph energy in the configuration model, which shows that the ensemble
of random graphs generated by PA is nearly identical to the ensemble of
random graphs with scale-free degree distributions. In other words, PA gen-
erates nothing but random graphs with power-law degree distribution. The
extension of the developed canonical formalism for network analysis to richer
geometric network models with non-degenerate groups of symmetries may
eventually lead to a system of equations describing network dynamics at small
scales.
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1. Introduction

Large real networks—social, biological, or technological—are complex dynamical systems
[1–3]. Understanding the dynamics of these systems is a key to better prediction and control
of their behavior, and the behavior of the processes running on them, such as epidemic
spreading [4, 5] and cascading failure propagation [6, 7]. Network dynamics can be roughly
split into two categories: large-scale and small-scale. Large-scale dynamics usually means
network growth, for example the growth of the Internet over years. Small-scale dynamics
refers to the dynamics of links in a given network at small time scales, for example real-time
interactions among mobile phone users or genes in a cell. It is quite unlikely that the small-
scale dynamics of different networks can be in any way similar, so it seems that natural
options to study and predict this dynamics can only be purely phenomenological, including
data mining, model building, and parameter fitting [8, 9], with all their caveats [10, 11].
However if two dynamical systems behave differently, it does not mean that the laws that
govern their dynamics are different—the simplest example would be the quite different
dynamics of two and three gravitating bodies of similar masses in empty space. And indeed if
considering network dynamics we move from the small to large scale, we observe that
preferential attachment (PA) [12–14] accurately describes the growth of many very different
real networks [15–18]. This observation raises two questions: (1)canPA be formulated within
the canonical approach in physics, and if so, then (2)does the same approach apply to
network dynamics at small scales?

Here we answer positively the first question by showing thatPA can be fully described
within the canonical formalism. That is, we show that the growth dynamics of networks
evolving according toPA is Hamiltonian, and derive the explicit form of the Hamiltonian in
the corresponding Hamilton’s equations. This Hamiltonian turns out to be nearly identical to
the Hamiltonian in the soft configuration model (SCM).

In the canonical formalism the dynamics of a system with canonical coordinates (q, p)
and Hamiltonian q p t, ,( ) , which is usually the total energy of the system, is described by
Hamilton’s equations

q
p

p
q

, . 1˙ ˙ ( ) 
=

¶
¶

= -
¶
¶

The canonical approach has a long history of success in physics. All the fundamental
interactions in nature are described by Euler–Lagrange or Hamilton’s equations with different
symmetry groups [19]. The Einstein field equations in general relativity are Euler–Lagrange
equations for the gravitational Einstein–Hilbert action, while the ADM formalism is the
corresponding Hamiltonian formulation [20]. Here we extend the canonical formalism to
complex networks, and find the Hamiltonian describing the dynamics of growing networks
in PA.

Most network models can be classified as either equilibrium models, which are the
ensembles of graphs of fixed size, e.g. the Erdős–Rényi random graphs [22–24], or non-
equilibrium models, in which networks grow with time, e.g. the PA model [12–14]. Equili-
brium models are usually more amendable for analytical treatment, while non-equilibrium
models better mimic the growth dynamics of real networks. In the special case of uncorrelated
random graphs, there exist growing network models that produce equilibrium ensembles of
graphs with an arbitrary degree distribution [25]. In general however, the two types of
models, growing and equilibrium, are very different, and so are the ensembles of random
graphs that they define. A great number of works have studied equilibrium ensembles. A
statistical theory of equilibrium correlated random graphs was developed in [26]. Review
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article [27] surveys important advances in the field of equilibrium network models. In part-
icular, it discusses the structural properties of the graphs and topological phase transitions in
equilibrium graph ensembles. An interesting ‘symbiotic’ model, an equilibrium network
model with fixed number of nodes and links which evolves using a local rewiring move, was
studied in [28]. It was shown that if the graph Hamiltonian is chosen appropriately, then the
networks generated by the model are scale-free. In all the prior works however, the
graph Hamiltonians appear only in the equilibrium sense, i.e. as the graph energy proportional
to the logarithm of the graph probability in the equilibrium ensemble. To the best of our
knowledge no prior work has studied Hamiltonian dynamics of growing networks, where the
graph Hamiltonian is the graph energy which defines the dynamics of growing graphs via
Hamilton’s equations (1).

Our starting point relies on recent results [21] establishing the special conditions under
which there exists strong equivalence or duality between equilibrium and non-equilibrium
(growing) graph ensembles ,N( )  , where N is a set of graphs of sizeN, and  is a
probability distribution on N . Two network models or graph ensembles ,N 1( )  and ,N 2( ) 
are equivalent if they generate any graph G NÎ with the same probability,
i.e. G G1 2( ) ( ) = for anyG. We say that two ensembles are strongly equivalent, if they are
equivalent for anyN. Using these special conditions, we obtain an intermediate result, which
is important in its own right. It gives an equilibrium formulation of PA. This formulation is
useful because it allows, for the first time to the best of our knowledge, to explicitly calculate
for any given graph G, e.g., a given real network, the probability G H Gexp( ) [ ( )] µ - with
which PA generates this graph, where H(G) is the graph Hamiltonian (graph energy). This
Hamiltonian turns out to be very similar to the Hamiltonian in the soft configuration model
[29–31]. Based on this intermediate result, we then derive the dynamic Hamiltonian  that
governs the network evolution in PA.

Remarkably, the static Hamiltonian H and its dynamic counterpart  turn out to be
nearly identical. The only difference between the two is that exact node degrees in H are
replaced by their expected values in. We thus prove that PA and configuration model are in
fact the same ensemble, or in other words, that PA generates nothing but random graphs with
a given power-law degree distribution. One could in principle expect that to be true in view of
several equilibrium(-like) approaches to PA [32–34]. In [32] it is shown how the hidden
variable formalism introduced for equilibrium graph ensembles can be applied to the PA
networks to derive their degree distribution and the correlation structure. In a similar spirit,
[33] applies methods of statistical mechanics to compare equilibrium and non-equilibrium
graph ensembles and, in particular, demonstrates that the degree distribution in PA is identical
to that in the equilibrium ensemble of random trees. Recent work [34], among other results,
proves that a minor modification of the PA model, called sequential PA, is identical to the
equilibrium graph ensemble constructed using several Pólya urn processes. In this work we
prove that the expectation that PA and configuration model are nearly equivalent is indeed
correct.

The flow of logic in the paper, and a more detailed summary of the results are as follows.
We begin with a recollection of basic facts concerning exponential random graph mod-
els(ERGMs) [8, 29, 35, 36] (section 2) and models of random graphs with hidden variables
[32, 37] (section 3) that we will need in subsequent sections. In particular, in latter models, an
equilibrium random graph ensemble is fully defined by a distribution r( )r of hidden varia-
blesr attached to nodes, and connection probabilityp r r,( )¢ between nodes, and two such
ensembles are equivalent ( G G1 2( ) ( ) = ), as soon their hidden variable distributions and
connection probabilities are the same, r r1 2( ) ( )r r= and p r r p r r, ,1 2( ) ( )¢ = ¢ . Random
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graphs with hidden variables are not ERGs per se, but they are collections of ERGMs with
fixed values of hidden variables playing the role of Lagrange multipliers.

We then briefly discuss soft preferential attachment (SPA, section 4). SPA is different
from standard PA in only that in PA new links attach to existing node i with probability
proportional to its degree ki, while in SPA new links attach to existing node i with probability
proportional to its expected degree ik . The idea behind the SPA definition is to assign to each
new node j a hidden variable r jlogj ~ , and then connect j to existing node i with certain
probability that depends only on the current values of jʼs and iʼs hidden variables rj and ri.
The words current values appear here because the values of these hidden variablesr need to
be updated as the network grows, and the combination of this update rule and connection
probability are such that new nodes do indeed connect to existing nodes with probability
proportional to their current expected degrees, so that we do have SPA. The key point behind
SPA is that it has a coupled dynamics of hidden variables ri and expected degrees ik , both
growing functions of the network size N 1, 2,= ¼ or ‘cosmological time’ t Nlog~ .

Next, in section 5, we show that SPA is an ERGM, which is asymptotically (N 1 )
identical to the (SCM) for sparse graphs with average degree k N¯  . We do this in steps. We
first recall, in section 5.1, that the SCM is an ERGM with Hamiltonian H G k r C

i i i( ) å= + ,
where ki is the degree of node i in graph G, ri is the Lagrange multiplier fixing the expected
values of ki in this ERG ensemble to some value ki , and C are some additional terms This
ensemble is an equilibrium ensemble of random graphs with a given sequence of expected
degrees ki . If this sequence is power-law-distributed, then the sequence of ris is exponen-
tially distributed. If this r-sequence is not fixed but sampled, for each graph, from a fixed
exponential distribution r( )r , then the resulting SCM, is an ERGM with hidden variablesr of
random graphs with a given expected power-law degree distribution. The next two most
technical sections deal with certain cosmetic adjustments to SCM (SCM+, section 5.2) and
SPA (SPA
~

, section 5.3), and in section 5.4 we show that after these adjustments, the two
models (SCM+ and SPA

~
) are asymptotically equivalent, and derive their equilibrium ERG

HamiltoniansH in section 5.5.
Finally, in section 6, we turn back to the dynamics of SPA, and pose the question: is there

a dynamic Hamiltonian r t, ,i i( ) k such that the dynamics of expected degrees ti ( )k and
hidden variables ri(t) in SPA is the solution of Hamilton’s equation with this Hamiltonian?
We answer this question positively by first deriving the exact dynamics of sik in SPA and
SPA
~

(sections 6.1 and 6.2), and then finding a whole family of Hamiltonians that provide a
solution to the question above (section 6.3). This family is parameterized by arbitrary
functions ti ( )x , and we show in the same section that ti ( )x can be selected such that the

resulting dynamic Hamiltonian  in SPA
~

, evaluated on the solution of Hamilton’s equation,
is equal, for any value of graph size N, to the equilibrium SCM+ HamiltonianH in
section 5.5, upon substitution N ki i( )k = .

2. Exponential random graphs

ERGM [8, 29, 35, 36] is one of the most popular and well-studied equilibrium network
models, also known as the p* model in the social network research community [38–40].
ERGM is a graph ensemble ,N( )  , where N is the set of all simple graphs (i.e. undirected
graphs without self-loops or multi-edges) on N nodes, and  is the probability distribution on

N that maximizes the Gibbs entropy
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S G Gln max, 2
G N

( ) ( ) ( ) ( )


  å= - 
Î

subject to the constraints

x x i r, 1, , . 3i i¯ ( )= = ¼

The xi in the above relation are certain graph properties (e.g. number of edges or number of
triangles) often referred to as the graph ‘observables’, xi¯ are the prescribed expected values of
these observables in the model, and · denotes the expectation with respect to . Intuitively,
an ERGM is a ‘maximally random’ ensemble of graphs with fixed values xi¯ for certain
ensemble averages xi . Mathematically, the maximization of randomness corresponds to the
maximization of the entropy (2). Constraining the expected rather than exact values of
graph observables relaxes the topological conditions on the network and makes the model
amenable to analytical treatment.

The constrained optimization problem (2) and (3) can be solved by the standard method
of Lagrange multipliers, and it has the following explicit solution [29]

G
Z

e
, 4

H G
( ) ( )

( )
 =

-

where

Z e 5
G

H G

N

( )( )


å=
Î

-

is the partition function, i.e. the normalizing constant for distribution (4), and

H G x G 6
i

r

i i
1

( ) ( ) ( )åq=
=

is the graph Hamiltonian, i.e. the energy of microstate G in the equilibrium Boltzmann
distribution (4). The parameters iq are the Lagrange multipliers (‘auxiliary fields’) coupled to
observables xi. They are determined by the following system of r equations

F
x i r, 1, , , 7

i
i¯ ( )

q
¶
¶

= = ¼

where F Zln= - is the free energy. The ERGM distribution (4) is thus fully determined by
the observables xi and their expected values xi¯ . In [41], the ERGM is extended to exponential
random simplicial complexes.

As an example of an ERGM, which we will refer to in section 5.1, consider the edge-
independent random graph (EIRG) model. In this case, the graph observables are the
graph edges: x aij ij= , where a aij( )= is the adjacency matrix of G NÎ . The constrains (3)
are then

a p i j i j N, , , 1, , , 8ij ij ( )= < = ¼

where p0 1ij  , and the Hamiltonian is

H G a . 9
i j

ij ij( ) ( )å q=
<

Unlike many other examples, the partition function Z can be calculated exactly for the EIRG
model [29]:
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Z 1 e . 10
i j

ij( ) ( )= + q

<

-

The relationship between the Lagrange multipliers ijq and the model parameters pij follows
from (7)

p
1

1 e
. 11ij

ij
( )=

+ q

Knowing the partition function allows to find the corresponding ERGM distribution (4)

G p p1 . 12
i j

ij
a

ij
a1

ij ij( )( ) ( ) = -
<

-

This expression immediately suggests how to generate graphs from the maximum-entropy
ensemble ( ,N ): connect every pair (i,j) of distinct nodes i j¹ , i j N, 1, ,= ¼ ,
independently at random with probability pij. We remark that (11) is nothing but the
Fermi–Dirac distribution, where the Lagrange multiplier ijq is interpreted as the energy of the
‘single-particle’ state (i, j). Throughout the paper, we will often use the so-called classical
limit for the Fermi–Dirac distribution, i.e. if the energy ijq is large, then p eij

ij» q- .

3. Random graphs with hidden variables

Random graphs with hidden variables [32, 37] are ensembles of random graphs in which
graphs are generated (or sampled) as follows. Each node i = 1,K, N is first assigned a hidden
variable ri, sampled from the probability distribution r( )r , and then each pair of nodes (i, j) is
connected with probability p p r r,ij i j( )= . Since the hidden random variables are indepen-
dent, the probability G( ) of graph G in the ensemble ,N( )  is

G G

p p r r

r r rd

1 d , 13
i j

ij
a

ij
a

i

N

i i
1

1

ij ij( )
( ) ( ∣ ) ( )

( ) ( )

 ò

ò  

r

r

=

= -
>

-

=

where aij( ) is Gʼs adjacency matrix and r rr , , N1( )= ¼ . This equilibrium graph ensemble is
thus fully defined by two functions: the hidden variable PDF r( )r and the connection
probability function p r r,( )¢ .

In equilibrium statistical mechanics, two ensembles are equivalent if their state occu-
pation probabilities are the same for any state. Similarly, two graph ensembles ,N 1( )  and

,N 2( )  are equivalent if they generate any graph G NÎ with the same probability:

G G . 141 2( ) ( ) ( ) =

It follows from equation (13) that two ensembles of random graphs with hidden variables are
equivalent if their hidden variable distributions and connection probabilities are the same:

r r , 151 2( ) ( ) ( )r r=

p r r p r r, , . 161 2( ) ( ) ( )¢ = ¢

Random graphs with hidden variables are closely related to exponential random graphs.
If we sample all hidden variables ri from r( )r just once, and then fix them, then the prob-
ability of graph G in the ensemble with these fixed ris is given by (12), with p p r r,ij i j( )= .
Rewriting these pijs as 1 1 e ij( )+ q makes the ensemble manifestly identical to the EIRG
ensemble with Lagrange multipliers ijq . Therefore one can think of graphs with unfixed
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(sampled) hidden variables as a collection EIRGs with ‘randomized’ Lagrange multipliers
sampled from a fixed distribution.

4. Soft preferential attachment

Our first goal is to represent the PA model as an ERGM. The original formulation of PA [12],
where a new node connects to an existing node with probability proportional to its degree, is
very intuitive, but not convenient for this purpose. Instead, we will use a hidden variable
formulation of PA. It was shown in [42] that PA can be formulated as a hidden variable
model, which generates growing networks up to some size N with average degree k̄ and
power-law exponent 2g , as follows. For each new node i = 1,K, N:

1. Assign to node i hidden variable

r iln . 17i ( )=

2. Update the values of hidden variables of all existing nodes j i< by setting

r i r r1 , where 18j j i( ) ( ) ( )b b= + -

1

1
. 19( )b

g
=

-

3. Connect node i to each existing node j i< with probability

p
1

1 e
, 20ij r i r Rj i i

( )( )=
+ + -

where

R r
m

m
k

ln
1 e

1
and

2
. 21i i

r1 i

( )
¯

( )
( )

b
= -

-
-

=
b- -

In large sparse networks, where ri is large and 1b < , the linking probability

p m i
i

j
1 e e . 22ij

r i r i 1j j( ) ( )( ) ( )b» - µ =
b

- - -
⎛
⎝⎜

⎞
⎠⎟

In section 6.1, we show that the expected degree of node j at time i is

i
m i

j

m1 2 1
23j ( ) ( ) ( ) ( )k

b
b

b
b

=
-

+
-b⎛

⎝⎜
⎞
⎠⎟

and therefore, the probability that i connects to j is approximately a liner function of jʼs
expected degree ij ( )k . We note that equation (23) holds for 1b < , i.e., 2g > . The
corresponding relation for the limit 1b  ( 2g  ) is derived in appendix A.1. We refer to
the hidden variable formulation of PA as the SPA model. Figure 1(a) shows a doubly
logarithmic plot of the empirical degree distribution in a network generated by SPA along
with the fitted power-law distribution.

A conceptually similar formulation of PA as an equilibrium network model with hidden
variables was first introduced in [32], where the hidden variable ri of node i is simply its
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injection time, r ii = . For technical reasons that will become apparent in the next section, here
we define r ilni = , so that ri can be identified with the cosmological time of birth of
nodei [42, 43].

5. SPA as an ERGM

Let ,N SPA( )  be the ensemble of graphs induced by SPA, where GSPA( ) is the probability
that SPA generates G NÎ . In this section we show that

Figure 1. SPA and SCM networks. Panel(a) shows the empirical complementary
cumulative degree distribution functions (CCDF) P k k

k kc ( ) ( )å= ¢
¢> for two

networks of size N 104= generated by SPA and SCM with k 10¯ = and 3g = , and
the corresponding power-law fit. As expected, P k kc

1( ) ~ g- + . Panel(b) shows the
empirical probability density functions (PDF) of the hidden variables ri in these two
networks.
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G e , 24H G
SPA SPA( ) ( )( ) µ -

where the SPA Hamiltonian HSPA is intimately related to the Hamiltonian in the SCM.

5.1. Soft configuration model

SCM [29–31] is an ERGM, where graph observables are node degrees ki, i = 1,K, N. The
model has various equivalent formulations, and, in particular, SCM appears as a special
degenerate case of the equilibrium hyperbolic model [43] in a certain limiting parameter
regime. This formulation also belongs to the wide class of network models with hidden
variables. Specifically, the SCM formulation in [43] generates equilibrium networks of size N
with average degree k̄ and power-law exponent 2g > , as follows:

1. For i=1, K, N, assign to node i hidden variable

r r r Re , 0 , 25i
r R

SCM SCMSCM( ) ( )( )  r a~ » a -

where 11a b g= = -- and

R
N

k
ln

1
. 26SCM 2¯ ( )

( )
b

=
-

2. Connect nodes i and j, j i¹ , with probability

p
1

1 e
. 27ij r r Ri j SCM

( )=
+ + -

A more familiar (but less convenient for our purposes) formulation of the SCM is
obtained by the change of hidden variables h h eR r

0 SCM= - , h k 10 ¯ ( )b= - . The hidden
variable h has then the power-law distribution h h h( )r~ µ g- and the connection prob-
ability is p Nk h h1 1ij i j( ¯ )= + [21, 44, 45]. Comparing the connection probabilities in
EIRG (11) and SCM (27), we readily obtain that the Lagrange multiplier ijq in SCM is

r r R . 28ij i j SCM ( )q = + -

The SCM Hamiltonian is then

H G a r r R a

k r MR , 29

i j
ij ij

i j
i j ij

i

N

i i

SCM SCM

1
SCM

( )( )

( )

å å

å

q= = + -

= -

< <

=

where ki is the degree of node i and M is the total number of edges in the graph G.
Figure 1(a) shows the degree distribution in a network generated by SCM, which is

identical to the degree distribution in an SPA network generated with the same parameters. As
expected, both are power-laws with exponent γ. Figure 1(b) shows the empirical distributions
of the hidden variables rSPA ( )r and rSCM ( )r in the generated networks. Although both
distributions are highly skewed to the right, there is a clear discrepancy between them. In the
next section we fix this discrepancy by introducing a shifted SCM model, which is strongly
equivalent to SCM, but has the same distribution of hidden variables as SPA.
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5.2. Shifted soft configuration model

While the hidden variables in SCM are random, in SPA they are deterministic. Nevertheless
we can readily overcome this technical obstruction that hinders the comparison of hidden
variable distributions in the two models.

Let r N( )* denote one of the hidden variables r N r N, , N1( ) ( )¼ in SPA chosen uniformly
at random at time N 1 . The CDF of r N( )* is then

F r r N r
i r N r

N
i i N r

N

i i

N N

N
i

:

: ln 1 ln

: e 1
1

1
1d e . 30

r N
i

N

i

ln

e

0

e

r

r N

r N

r N

1

1
ln

1
ln

ln

{ }

( ) { }
( ) ( )

( )

∣{ ( ) }∣

( )

( ) **
 









ò

å

b b

= =

=
+ -

= =

» =

-b
b

b

b
b

b

b
b

b

b

-

- -

- -

-

When N is large, the SPA hidden variables r N r N, , N1( ) ( )¼ can be viewed as being
approximately i.i.d. samples from F rr N ( )( )*

. This distribution has the following PDF

r
r

F r
d

d

1
e , 31r NSPA

r Nln( ) ( ) ( )( )*
r

b
= = b

-

which is structurally similar to the distribution of hidden variables in SCM

r e
1

e , where 32r R
SCM

r N
SCM

ln( ) ( )( )r a
b

» =a - s
b

- +

kln 1 . 332¯ ( ) ( )s b= -

It is readily verifiable that the approximate supports of rSPA ( )r and rSCM ( )r ,
i.e. segments that contain almost all probability mass of these distributions, are

N Nsupp 1 ln , ln , 34PA [( ) ] ( )r b= -

N Nsupp 1 ln , ln . 35SCM [( ) ] ( )r b s s= - - -

Therefore, it immediately follows from (31)–(35) that rSPA ( )r is obtained from rSCM ( )r by
translation by σ. This motivates the shifted SCM model, denoted SCM+, which generates
networks of size N with average degree k̄ and power-law exponent 2g > , as follows:

1. For i = 1,K, N, assign to node i hidden variable ri
+ by, first, sampling r ri SCM ( )r~ , and

then shifting r ri i s= ++ , where kln 1 2¯ ( )s b= - .
2. Connect nodes i and j, j i¹ , with probability

p
1

1 e
, 36ij r r Ri j SCM

( )=
+ + -+ + +

where RSCM+ is given by(39).

By construction, the distributions of hidden variables in SCM+ and SPA are identical

r r r . 37SCM SCM SPA( ) ( ) ( ) ( )r r s r= - =+
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To make SCM+ equivalent to SCM, we need to choose RSCM+ appropriately. If two nodes
have hidden variables r and r ́ in SCM, then in SCM+ the values of these hidden variables are
r r s= ++ and r ŕ ́ s= ++ . The two models will be strongly equivalent, i.e. will generate
graphs G NÎ with equal probabilities G GSCM SCM( ) ( ) = + , if the connection probabilities
p r r,SCM ( )́ and p r r,SCM ( ́ )+ +

+ are the same. This leads to the following equation for RSCM+

r r R r r R . 38SCM SCḾ ́ ( )+ - = + -+ + +

Therefore

R N Nkln ln 1 . 39SCM
2¯ ( ) ( )s b= + = -+

It is convenient to work with SPA and SCM+ (instead of SCM) since not only the degree
distributions in the networks generated by these two models match, but also the distributions
of hidden variables are the same. Our next step is to adjust SPA so that it becomes strongly
equivalent to SCM+ (and, therefore, to SCM).

5.3. Bridging SPA and SCM+

Matching degree distributions is a necessary but, of course, not sufficient condition for model
equivalence. In SPA, a link between nodes i and j i< may appear only at time i upon the
birth of the younger node. We refer to such links—appearing at time i and connecting new
node i to already existent nodes—as ‘external’ links. We make the SPA model equivalent to
SCM+ by also allowing ‘internal’ links that appear at time i and connect old nodes a and b,
where a b i, < . Namely, we define the model SPA

~
that generates growing networks up to

some size N with average degree k̄ and power-law exponent 2g > , as follows. For each new
node i = 1,K, N:

1. Assign to node i hidden variable r ilni = .
2. Update the values of hidden variables of all existing nodes j i< by setting

r i r r1j j i( ) ( )b b= + - , where 1

1
b =

g-
.

3. Connect node i to each existing node j i< with probability

p
1

1 e
, 40ij r i r R

ext

j i i
ext ( )

( )
=

+ + -

where

R r
m

ln
1 e

1
41i i

r
ext

1

ext

i

( )
( )

( )

b
= -

-
-

b- -

and mext given by(46).
4. Connect each pair of existing nodes a b i, < with probability

p i
1

1 e
, 42ab r i r i R

int

a b
int( ) ( )

( ) ( )
=

+ + -

where

R mln 1 , 43int
int ( ) ( )b= -

and mint given by(50).

In Step4, we scan all pairs of existing nodes and attempt to connect even those nodes
which are already connected. The SPA

~
model thus allows multi-edges. In large sparse

(k N¯  ) networks, however, the proportion of multi-edges is small. For example, the
expected ratio of multi-edges in SPA

~
networks of size N 10 , 10 ,2 3= and 104 with k 10¯ =
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and 2.5g = is, respectively, 7%, 4% and 2%. We can therefore ignore the multi-edge effect.
The choices for mext and mint (Equations (46) and (50)) are explained below.

First, a necessary (but not sufficient) condition for the equivalence of two models is that
the expected minimum degrees in the two models must be the same. The expected minimum
degree in large networks generated by SCM (and therefore by SCM+) is k 1¯ ( )b- [43].
Thus, we have the following condition

k k 1 . 44min SPA
¯ ( ) ( )b= -~

Let us now compute the expected degree of a new node i upon its birth in SPA
~

. For large i,
R r mln 1i i

ext
ext ( )b» + - , and using the classical limit for the Fermi–Dirac distribution, we

get

i p
j

j

j

j i

m

m

i
j j

m

d

1 e

d

1 e
d

1
1

1
d

. 45

i
j i

ij

i

r i r R

i

r r m

i i

ext

0

0 1 ln 1

0 1

ext

ext
1 0

ext

j i i

j i

ext

ext

( )

( )

( )

( )

( )

( ) ( )

ò

ò

ò ò

åk

b

b

= »
+

»
+

=
+

-

»
-

=

b b b

b b b
b

<
+ -

+ - - -

- -
-

Every new node thus establishes on average mext links, and, as time goes, its degree may only
increase. This means that mext is the expected minimum degree in SPA

~
, k mmin SPA ext=~ , and

therefore

m k 1 . 46ext ¯ ( ) ( )b= -

Another necessary condition (that helps to determine mint) for the equivalence between
SPA
~

and SCM+ is that the expected average degrees in both models must be the same. That
is, if in SCM+ the expected average degree k SCM

¯ + equals k̄ , then we must have

k k. 47
SPA

¯ ¯ ( )=~

Let Li
int¯ denote the expected number of internal links generated at time i. Then, the expected

total number of links generated at time i is m Liext
int¯+ , and the expected average degree in the

network is given by

k
N

m L i
2

d . 48
N

iSPA
0

ext
int( )¯ ¯ ( )ò» +~

For large i,

L p i
b a

dbda

b a
a b i

m

d d

1 e

1 e
d d

1
1

i
a i b a

ab

i a

r i r i R

i a

r r r m

i a

int int

0 0

0 0 2 1 ln 1

0 0 2 1

int

a b

a b i

int

int

¯ ( )

( )

( ) ( )

( ) ( )

( )

ò ò

ò ò

ò ò

å å

b

= »
+

=
+

=
+

-

b b b b

b b b

< <
+ -

+ + - - -

-
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m

i
a b b a

m

1
d d

2 1
. 49

i a
int

2 1 0 0

int

( )

( )
( )

( ) ò ò
b

b

»
-

=
-

b
b b

-
- -

Combining (46)–(49), we get mint

m k 1 2 1 , 50int ¯ ( )( ) ( )b b= - -

which is positive if 1 2, 1( )b Î , or, equivalently, 2, 3( )g Î . We note that 2 3g< < is
exactly the range of power-law exponents empirically observed in most real networks [46].
Figure 2 shows the perfect match between the distributions of node degrees and hidden
variables in SPA

~
and SCM+ networks with 2.5g = . Recall that the match between the

hidden variable distributions is the first condition(15) for two ensembles of random graphs
with hidden variables to be equivalent.

We note that as 1 2b  , or, equivalently, 3g  , SPA
~

becomes manifestly identical to
SPA. Indeed, in this case,

m m
k

m
2

and 0, 51ext int

¯
( ) = 

which means

R p i iand 0, . 52ab
int int ( ) ( ) -¥  "

The other limiting case 1b  ( 2g  )is analyzed in appendix A.1.
It is important to realize that by choosing mext and mint according to (46) and (50) we

only satisfied two necessary conditions, but we did not actually prove that SPA
~

is equivalent
to SCM+. We prove this in the next section.

5.4. gSPA and SCM+ are strongly equivalent

Since the distributions of hidden variables in SPA
~

and SCM+ are the same,
i.e. r rSPA SCM( ) ( )r r=~ + , to prove the strong equivalence between the two models, we need to

show that the connection probabilities in SPA
~

and SCM+ are also the same. More precisely, if
at time N the values of hidden variables of nodes j and i j> in SPA

~
are r and r ŕ > , then the

probability that these two nodes are connected p i j,SPA( )~ must be equal to the connection
probability p r r,SCM ( )́+ of nodes with hidden variables r and r ́ in SCM+. In what follows, we
compute these probabilities in large sparse graphs (N 1 , k N¯  ) and show that they
indeed coincide. Throughout this section we assume that 1 2, 1( )b Î ( 2, 3( )g Î ).

Let p i j,
SPA

( )*~ denote the probability that nodes i and j are not connected in SPA
~

, then

p i j p i j

p p i p N

p p s p p s s

, 1 , ,

1 1 1 1 1 ,

d . 53

ij ij ij

ij
s i

N

ij ij
i

N

ij

SPA SPA

ext int int

ext int ext int

( )( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

*

òå

= -

= - - - + ¼ -

» + » +
>

~ ~

Let us compute the integral first

p s s
s s

d
d

1 e

d

1 e
. 54

i

N

ij
i

N

r s r s R i

N

r r s m
int

2 1 ln ln 1i j i j
int

int
( ) ( )

( ) ( ) ( ) ( )ò ò ò=
+

=
+ b b b b+ - + + - - -
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Since r and r ́ are the values of hidden variables of nodes j and i at time N, we have

r r N r N1 ln , 55j j( ) ( ) ( )b b= = + -

r r N r N1 ln . 56i í ( ) ( ) ( )b b= = + -

Finding from these equations ri and rj and substituting them into (54), we obtain

p s s
s

m

s

N

d
d

1
e

1

. 57
i

N

ij
i

N

r r
int

int

2 1
( )

( )

( )́ ( )ò ò
b

=
+

-

b+ -
⎜ ⎟
⎛
⎝

⎞
⎠

Figure 2. SPA
~

and SCM+ networks. Panel(a) shows the empirical CCDF P kc ( ) =
k

k k
( )å ¢

¢>
for two networks of size N 104= generated by SPA

~
and SCM+ with

k 10¯ = and 2.5g = , and the corresponding power-law fit. As expected, for both networks
P k kc

1( ) ~ g- + . Panel(b) shows the perfect match between the PDFs of the hidden
variables in these two networks, illustrating the theoretical result r rSPA SCM( ) ( )r r=~ + .
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To proceed with analytic approximation, we need to use the classical limit for the Fermi–
Dirac distribution, i.e. to drop the term 1 in the denominator. We have already used this
approximation in (45) and (49). In those cases, the second terms in the denominator were
fully deterministic, and it was readily verifiable that they are much larger than 1, and therefore
the approximations hold. In (57) however, both r and r ́ are random, r r, SCḾ r~ +, and a
certain caution is required.

In what follows, we show that the expected value of e r in SCM+ scales as N, and,

therefore,
N

N N
e

1
r r

2 1
2

́

( )
µ

b
b

+

-
 . Indeed,

x x

x

k
x
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k N
N

e e d ,

e
e e d ,

1

e
e d ,

1

1 e
e 1 ,

1
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1
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The probability of the external link is

p

m N

k N

1

1 e
1

1 e

1

1
e

1

1

e
, 60

ij r i r R
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where the last approximation holds because, using (58), N Ner r1 1́ µ+ b
b

b
b

- -
. Combining (53),

(59) and (60), we obtain that the probability that nodes i and j in SPA
~

are connected is

p i j
k N k N i k N

,
1

e

1

e

1

e
. 61

r r r r r rSPA

2 2 2 1 2 1 2 1

1( )
¯ ( ) ¯ ( ) ¯ ( ) ( )́

( )

́ ́

b b b
=

-
-

-
+

-b b

+

- -

+ +
~

b
b

b
b

-

-

To compare this probability with the connection probability in SCM+, we need to rewrite
it fully in terms of hidden variables r and r .́ From (56), r Nlni

r 1́= -
b

b
b
- . Therefore,
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i Ne e . 62N
1

lnr r 1
( )

́ ́= =
b

b-
-

-b b
b

b
-

Substituting this expression into (61), we obtain after some algebra that the last two terms
cancel out, and

p i j
k N

,
1

e
. 63

r rSPA

2
( )

¯ ( ) ( )́
b

=
-
+

~

It remains to show that (63) is, in fact, the connection probability in SCM+. Indeed,

p r r

k N

,
1

1 e
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1

1 e
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1

1

e
, 64
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where the last approximation holds because N
N

er r ́
µ

+
. In appendix A.2, we show the

high accuracy of this approximation with simulation. Figure 3(a) juxtaposes the
empirical connection probabilities in SPA

~
and SCM+ networks, and the corresponding

approximation in(64). Recall that the match between the connection probabilities is the
second condition(16) for two ensembles of random graphs with hidden variables to be
equivalent.

Thus, we proved that, for large networks, SPA
~

is equivalent to SCM+ in the strong sense.
That is, for any N 1 , SPA

~
and SCM+ generate graphs G NÎ with the same probability,

G G .SPA SCM( ) ( ) =~ + Therefore, the expected values of all graph properties in the ensemble,
not only of the degree distributions in figure 2(a), are the same. As an example, figure 3(b)
shows the vertex-to-vertex distance distribution d(l), which is the distribution of hop lengths l
of shortest paths between nodes in the network, or the probability that a random pair of nodes
are at the distance of l hops from each other.

The following diagram summarizes the relationships between the four considered net-
work models

SPA SPA SCM SCM, 65
s s ( ) » =

~ +

where
s
= denotes the strong model equivalence,

s
» is an approximate strong equivalence that

becomes exact in the sparse graph limit (N  ¥, k N¯  ), and Î denotes the model
transformation allowing internal links. Furthermore,

SPA SPA , 661 2
s

1 2∣ ∣ ( )=
~

b b= =

that is, SPA and SPA
~

are strongly equivalent if 1 2b = , i.e., 3g = .

5.5. Hamiltonians of SCM+, gSPA, and SPA

As discussed in section 5.1, SCM is the ERGM model with Hamiltonian

H k r MR

k r
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k
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Since SCM+ is strongly equivalent to SCM—the two models differ only by parametrization
of hidden variables—SCM+ must have the same Hamiltonian. Indeed

H k r MR

k r
N

k

k r
N

k H

,
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,
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1 1
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å å
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= =
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Further, since SPA
~

is strongly equivalent to SCM+ and the distributions of hidden variables
in these two models are the same, the ERGM Hamiltonian of SPA

~
is

Figure 3. Connection probabilities and vertex-to-vertex distance distribution in SPA
~

and SCM+ networks. Panel (a) shows the empirical connection probabilities in
networks of size N 104= generated by SPA

~
and SCM+ with k 10¯ = and 2.5g = . The

y-axis in the main plot is in logarithmic scale. As expected, the connection probabilities
match remarkably well. The plot also shows the corresponding approximation given in
(64). As expected, this approximation holds very well for sufficiently large values of
r r ́+ , which correspond to the vast majority of node pairs, seefigure 2(b) and
appendix A.2. Panel (b) shows the distance distributions in the same networks. The y-
axis in the inset is in logarithmic scale. As a consequence of the equivalence of SPA

~

and SCM+, the distance distributions also match remarkably well, as expected. In all
cases the results were averaged across 100 networks.
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Finally, since SPA
~

becomes manifestly identical to SPA as 1 2b  , or, equivalently, as
3g  , we can write the ERGM Hamiltonian for SPA

H k r
Nk

k
ln 4

2
. 70

i

N

i i
i

N

iSPA
1 1

( )¯
( )å å= -

= =

This result means that if 1 2b = ( 3g = ), then, in the sparse graph limit, SPA is exactly
ERGM with Hamiltonian (70). We note that this case corresponds to the original Barabási–
Albert model with the scaling exponent 3g = [12]. If 1 2b ¹ , then (70) is an approximate
Hamiltonian of SPA. To the best of our knowledge, this is the first result where the PA model
is represented as an exponential random graph model with explicitly written Hamiltonian.
Even more remarkably, as we show in the next section, a Hamiltonian that is very similar to
the ERGM Hamiltonian (70) describes the Hamiltonian dynamics of growing networks
in SPA.

6. Hamiltonian dynamics of SPA

The key idea in deriving the ERGM Hamiltonian of SPA (70) was to construct a modified
model SPA

~
that: (a) is strongly equivalent to a graph ensemble with a known Hamiltonian;

and (b) coincides with SPA under certain values of the model parameters. Here we adopt a
similar strategy: we study the Hamiltonian dynamics of growing SPA

~
-networks, and the

corresponding results for the Hamiltonian dynamics of SPA are obtained as a special case
with 1 2b = .

The ERGM Hamiltonian of SPA
~

(69) suggests that the canonical coordinates q p,i i{ } of a
growing network are the node degrees ki and hidden variables ri. An immediate technical
problem we face, however, is that both node degrees ki and network time i are discrete. We
overcome this obstruction as follows. First, inspired by the mapping between the hyperbolic
and de Sitter spaces in [47], we define

t iln , 71( )b=

and treat t as a continuous time. The geometric duality between de Sitter spacetime, which is
asymptotically the spacetime of our accelerating Universe, and hyperbolic space, which is a
latent space underlying real complex networks [42, 43] allows to interpret t as the rescaled
cosmological time. Second, instead of the exact (discrete) degree ki(t) of node i, born at time
t ilni b= , at a later time t ti> , we use its expected degree ti ( )k , which is a continuous
function of t, for t ti> .

Our next goal is to derive the time evolution of the canonical coordinates t r t,i i{ ( ) ( )}k in
the growing SPA- and SPA

~
-networks. Given that in network time i, r i r r1j j i( ) ( )b b= + - ,

in the rescaled cosmological time the evolution of the hidden variable ri of node i—in both
SPA and SPA

~
—is
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r t t t
1

, 72i i( ) ( )b
b

= +
-

where t ilni b= is the birth time of node i. The expected node degrees, however, evolve
differently in SPA and SPA

~
, as we show below.

6.1. Evolution of the expected node degree in SPA

The expected degree of node j at network time i j> is
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The first term is the expected degree of node j upon its birth, and the integral is calculated in
the same way as the integral in (45), and it equals to m. The second term is
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This expression coincides exactly with the expression obtained in [14] for the expected degree
of a node in the sharp PA model, where the link attraction probability is a liner function of the
node’s exact degree (versus expected degree).

Finally, in the rescaled cosmological time

t
m m1

e
2 1

. 76i
t ti( ) ( ) ( ) ( )k

b
b

b
b

=
-

+
--

6.2. Evolution of the expected node degree in gSPA

Similarly, the expected degree of node j at network time i j> is

i p p p s . 77j
s j

js
s j

i

sj
s j

i

a s
a j

aj
ext ext int( ) ( ) ( )å å ååk = + +

< > > <
¹

The first two terms are exactly the same as in SPA (73) with m replaced by mext. The last term
is the expected contribution to the jʼs degree from internal links,
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Combining all terms together, we obtain
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and, in the rescaled cosmological time
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If 1 2b = , then, as expected, the expressions for the expected node degrees in SPA and SPA
~

become identical.

6.3. Dynamic Hamiltonians

We now have all the ingredients necessary to derive the Hamiltonian describing the dynamics
of network growth in SPA

~
. We want to find Hamiltonian

~
such that its Hamilton’s equations

have (72) and (80) as the solutions.
Let r t, ,i i i( ) k

~
be the energy contribution of node i at time t to the total network

Hamiltonian
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Then Hamilton’s equations for node i are

r
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Formally integrating these equations, and noting that

m re and
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, 83i
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b
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we can write the solution in the following form

r t m r t, , e
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b
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where ti ( )x is some function of time t and model parameters k̄ and β.
Since ti ( )x does not affect the equations of motion (82), in principle, it can be chosen

arbitrary. Remarkably, ti ( )x can be chosen in such way that it is the same for all nodes, and

the resulting total Hamiltonian 
~

is identical to the ERGM Hamiltonian HSPA
~ with node

degrees replaced by their expected values. Indeed, let
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Now, consider a network snapshot at time

T Nln 1, 86( )b= 
with given (current) values of ik and ri. Using (80), (85) and (86), we can rewrite the
Hamiltonian of node i as follows
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The total Hamiltonian of the snapshot is then
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which is exactly the expected ERGM Hamiltonian(69). Note that since the ERGM
Hamiltonian can be interpreted as the energy of a given network snapshot at some time t, the
dynamic Hamiltonian with ti ( )x in (85) yields indeed the expected energy of the snapshot.

To obtain the dynamic SPA Hamiltonian, all we need to do is to set 1 2b = in the
above derivations. The energy contribution of node i is then

k
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k
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and the total Hamiltonian that describes the dynamics of growing networks in SPA is

r
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As expected, this Hamiltonian is exactly the ERGM Hamiltonian of SPA (70) with the node
degrees replaced by their expected values.

7. Conclusion

We have studied the dynamics of networks growing according to PA, and obtained two
important results. First, we have shown that SPA can be casted as an equilibrium exponential
random graph model, nearly identical to the SCM. In other words, the ensemble of random
graphs that PA generates is nearly identical to the equilibrium ensemble of random graphs
with power-law degree distributions, meaning that PA and configuration model generate any
graph G of any size N with the same probability G( ) . In general, this result is important
because equilibrium network models tend to be more amenable for analytic treatment. In
particular, this result, for the first time to the best of our knowledge, provides an explicit
expression G H Gexp( ) [ ( )] µ - with Hamiltonian H(G) (70) for the probability G( ) that
PA generates any given network G. The knowledge of G( ) can be used, for example, for
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answering the question of how likely it is that a given real network has been grown according
to PA. This question can now be answered by standard techniques, such as comparing the
probabilities G( ) of the typical PA networks and the real network under study. Another
application is an alternative simpler method to generate PA networks, which has already been
implemented and publicly released as a part of a more general software package that generates
random hyperbolic graphs [48].

Second, we have demonstrated that the growing dynamics of PA networks is Hamilto-
nian. Remarkably, the Hamiltonian  (89) that defines the equations of motion(72), (80)
describing network dynamics is nearly identical to the ERG Hamiltonian H(69). The only
difference between the two is that the exact node degrees in H are replaced by their expected
values in .

These results may appear quite surprising at the first glance, but there is an intuitive
explanation. On the one hand, the equilibrium Hamiltonian H(G) in the soft configuration
model is the energy of graph G in the Boltzmann distribution G( ) of this exponential
random graph model. This energy is the sum of energies of all edges in graph G, and one can
check that the energy of edge ij{ } is simply the sum of iʼs and jʼs Lagrange multipliers
r ri j+ . On the other hand, as shown in section 5, SPA, at each timet, is also a similar
exponential random graph model, with hidden variables ri playing the role of Lagrange
multipliers, and the energy of edge ij{ } at time t is also r t r ti j( ) ( )+ .

In simpler terms, the reason behind this equivalence is quite physical: both the dynamic
Hamiltonian in PA and the equilibrium Hamiltonian in the configuration model are system
energies, albeit the established equivalence between the growing and equilibrium repre-
sentations of the same system is slightly atypical in physics [21].

Very few real networks can be adequately modeled as random graphs in the configuration
model, which suggests that some additional terms must be added to the Hamiltonian to
adequately describe the dynamics of different real networks. In this context, it is an interesting
observation that the ERG ensemble that we found to be equivalent to PA is a degenerate case
of the more general geometric network ensembles, which can be considered as a Fermi gas in
a hyperbolic space, whose symmetry group is the Lorentz group [42, 43]. This observation
calls for extending the developed canonical formalism for network analysis to this more
general geometric case with non-degenerate symmetries. This extension is a highly non-trivial
task for a number of technical reasons, but if successful, it may shed some light on the second
question we raised in the introduction, concerning small-scale dynamics of networks.

We have shown that PA can be formulated within the canonical formalism, in which the
time evolution of a system is described by Hamilton’s equations q p˙ = ¶ ¶ and
p q˙ = -¶ ¶ . The traditional application of the Hamiltonian formalism in mathematical
physics [49] deals with the following direct problem: given a Hamiltonian , which in most
cases is the energy of the system, find the solution of the corresponding dynamical equations
of motion. However, in physics history, the problem has almost always been inverse: first,
chronologically, the equations of motion are found by some other, usually experimental
methods, and only much later it is recognized by theoreticians that these equations are
solutions of some Hamiltonian or Lagrangian systems defined by their symmetry groups. This
was the case in most physics theories, from classical mechanics [49] to general relativity [20].
Our understanding of network dynamics seems to have been driven along a similar historic
path. First PA was suggested as a likely mechanism responsible for the emergence of scale-
free degree distributions [12–14], experimentally validated for many real networks [15–18].
And only fifteen years later have we recognized that the PA dynamics(72), (80) is
Hamiltonian(89).
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We emphasize however that these results hold only for the soft versions of PA and
configuration model. The difference between the SCM with a fixed expected scale-free degree
sequence and the configuration model in which the expected degree sequence is sampled for
each graph from a fixed scale-free distribution has been recently quantified in [50]. This
difference is well-behaved, in the sense that the entropy distribution in the latter ensemble is
self-averaging, meaning that its relative variance vanishes in the thermodynamic limit.
However, it is known that the soft (canonical) and sharp (microcanonical) configuration
models are different even in the thermodynamic limit—the ensemble distributions do not
converge in the limit [31, 51]. To the best of our knowledge, there are no results of this sort
concerning the difference between the soft and sharp versions of PA, but one could expect
them to be different as well. Therefore the existence of any connections between sharp
configuration model and sharp PA, and the possibility to formulate the latter within the
canonical approach, remain to be open questions.
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Appendix

A.1. SPA, gSPA, and SCM+ as β → 1 (γ → 2)

All three models—SPA, SPA
~

, and SCM+
—have singularities at 1b = . In this appendix, we

investigate to what models they degenerate in the limit 1b  .
The SPA model has a well-defined limit. Indeed, since

R r
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m
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1 e
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1
, A.93ij r r m j i
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ln ln lnj i

( )
+

=
++ -

as 1b  , SPA converges to the following simple model. To generate a network of size N
with average degree k̄ and power-law exponent 2g = , for each new node i=1, K, N,
connect node i to each existing node j i< with probability

p m
k1

1
,

2
. A.94ij j i

m

ln

¯
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+
=

In what follows, we show that the average degree in large networks generated by this
limiting model is indeed k̄ . At time N, the expected degree of node i is

N p p . A.95i
j i

ij
j i

N

ji( ) ( )å åk = +
< >
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The first sum is the expected contribution to the iʼs degree from older nodes,
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is the ith harmonic number. The second sum in (A.95) is the

expected contribution to the degree of node i from younger nodes
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where xli( ) is the logarithmic integral function. Therefore,
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The expected average degree in the network at time N is then
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( ) » and H NlnN » , the second term is approximately m. The last term can be

approximated as follows
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Therefore, we finally have

N m
m

N
N N N

m
m N N

N
m k

2 li ln ,

3
li ln

2 . A.101

( ) ( ( ) )

( ) ¯ ( )

k = - -

= - » =

Figure 4 illustrates how this approximation becomes more accurate as the network size
increases.

The SPA
~

model completely degenerates as 1b  . Namely, Ri
ext  -¥ and

Rint  -¥, and, therefore, p 0ij
ext  and p i 0ab

int ( )  . This means that the limiting model

generates networks with no links. Remarkably, even in the limit 1b  , SPA
~

remains
strongly equivalent to SCM+. To prove this, we need to show that in this limit SCM+ also
generates networks without links.

The connection probability in SCM+ is
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and the expected value
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This means that the connection probability in SCM+ converges to zero, p 0ij  , as 1b  ,

and therefore, even in this degenerate regime SPA
~

and SCM+ are strongly equivalent.

A.2. Accuracy of the classical limit approximation for the Fermi–Dirac distribution in SCM+

In section 5.4, we used the classical limit for the Fermi–Dirac distribution in the SCM+ model

p r r p r r
k N

, ,
1

e
. A.106

r rSCM SCM

2

( ) ( )́ ˆ ́
¯ ( ) ( )́

b
» =

-
++ +

Here we show with simulations that this approximation is very accurate in large networks. As
an example, we consider networks with k 10¯ = and 2.5g = . First, we generate N hidden

variables r from distribution rSCM ( )r + , and then, for each of the
N

2
⎜ ⎟
⎛
⎝

⎞
⎠ pairs of nodes with

hidden variables r and r ,́ we compute the relative error of the connection probability
approximation (A.106)

Figure 4. Average degree in SPA networks with 1b = ( 2g = ). For N 10 , 10 ,2 3= and
104, the plot shows the fluctuation of the average degree in 100 independent networks
generated by the limiting ( 1b = ) SPA model with k 10¯ = . As expected, the lager the
network size N, the more accurate the approximation (A.101).
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Figure 5 shows the relative errors sorted in the increasing order for network sizes
N 10 , 10 ,2 3= and 104. As expected, the larger the network, the smaller the classical limit
approximation error.

References

[1] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
[2] Easley D and Kleinberg J 2010 Networks, Crowds, and Markets: Reasoning about a Highly

Connected World (Cambridge: Cambridge University Press)
[3] Dorogovtsev S N 2010 Lectures on Complex Networks (Oxford: Oxford University Press)
[4] Meloni S, Arenas A and Moreno Y 2009 Proc. Natl Acad. Sci. USA 106 16897
[5] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[6] Li W, Bashan A, Buldyrev S V, Stanley H E and Havlin S 2012 Phys. Rev. Lett. 108 228702
[7] Daqing L, Yinan J, Rui K and Havlin S 2014 Sci. Rep. 4 5381
[8] Kolaczyk E 2009 Statistical Analysis of Network Data (New York: Springer)
[9] Jacobs A Z and Clauset A 2014 NIPS Workshop on Networks: From Graphs to Rich Data
[10] Owhadi H, Scovel C and Sullivan T 2015 Electron. J. Stat. 9 1
[11] Burnham K P and Anderson D R 2002 Model Selection and Multimodel Inference : A Practical

Information-Theoretic Approach (New York: Springer)
[12] Barabási A-L and Albert R 1999 Science 286 509
[13] Krapivsky P L, Redner S and Leyvraz F 2000 Phys. Rev. Lett. 85 4629
[14] Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633
[15] Newman M E J 2001 Phys. Rev. E 64 025102
[16] Barabási A, Jeong H, Néda Z, Ravasz E, Schubert A and Vicsek T 2002 Physica A 311 590
[17] Vázquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 066130
[18] Jeong H, Néda Z and Barabás A L 2003 Europhys. Lett. 61 567
[19] Ryder L H 1996 Quantum Field Theory (Cambridge: Cambridge University Press)
[20] Wald R M 2010 General Relativity (Chicage, IL: University of Chicago Press)

Figure 5.Accuracy of the classical limit approximation. For N 10 , 10 ,2 3= and 104, the
percentage of node-pairs with the relative error larger than 5% (1%) is, respectively,
40.5% (100%), 1.8% (13.6%), and 0.08% (1%).

J. Phys. A: Math. Theor. 49 (2016) 105001 K Zuev et al

26

http://dx.doi.org/10.1073/pnas.0907121106
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.108.228702
http://dx.doi.org/10.1038/srep05381
http://dx.doi.org/10.1214/15-EJS989
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1103/PhysRevLett.85.4633
http://dx.doi.org/10.1103/physreve.64.025102
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1103/PhysRevE.65.066130
http://dx.doi.org/10.1209/epl/i2003-00166-9


[21] Krioukov D and Ostilli M 2013 Phys. Rev. E 88 022808
[22] Solomonoff R and Rapoport A 1951 Bull. Math. Biophys. 13 107
[23] Erdős P and Rényi A 1959 J. Publ. Math. Debrecen 6 290–7
[24] Erdős P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17–61
[25] Dorogovtsev S N, Mendes J F F and Samukhin A N 2003 Nucl. Phys. B 666 396
[26] Berg J and Lässig M 2002 Phys. Rev. Lett. 89 228701
[27] Farkas I, Derényi I, Palla G and Vicsek T 2004 Complex Networks (Lecture Notes in Physics vol

650) ed E Ben-Naim, H Frauenfelder and Z Toroczkai (Berlin: Springer) pp 163–187
[28] Baiesi M and Manna S S 2003 Phys. Rev. E 68 047103
[29] Park J and Newman M E J 2004 Phys. Rev. E 70 066117
[30] Garlaschelli D and Loffredo M I 2008 Phys. Rev. E 78 015101
[31] Anand K and Bianconi G 2009 Phys. Rev. E 80 045102
[32] Boguñá M and Pastor-Satorras R 2003 Phys. Rev. E 68 036112
[33] Białas P, Burda Z and Wacław B 2005 AIP Conf. Proc. 776 14
[34] Berger N, Borgs C, Chayes J T and Saberi A 2014 Ann. Probab. 42 1
[35] Holland P W and Leinhardt S 1981 J. Am. Stat. Assoc. 76 33
[36] Frank O and Strauss D 1986 J. Am. Stat. Assoc. 81 832
[37] Caldarelli G, Capocci A, Rios P D L and M noz M A 2002 Phys. Rev. Lett. 89 258702
[38] Wasserman S and Pattison P E 1996 Psychometrika 61 401
[39] Anderson C J, Wasserman S and Crouch B 1999 Soc. Netw. 21 37
[40] Robins G, Pattison P, Kalish Y and Lusher D 2007 Soc. Netw. 29 173
[41] Zuev K, Eisenberg O and Krioukov D 2015 J. Phys. A: Math. Theor. 48 465002
[42] Papadopoulos F, Kitsak M, Serrano M, Boguñá M and Krioukov D 2012 Nature 489 537
[43] Krioukov D, Papadopoulos F, Kitsak M, Vahdat A and Boguñá M 2010 Phys. Rev. E 82 036106
[44] Squartini T and Garlaschelli D 2011 New J. Phys. 13 083001
[45] Colomer-de Simon P and Boguñá M 2012 Phys. Rev. E 86 026120
[46] Albert R and Barabasi A-L 2002 Rev. Mod. Phys. 74 47
[47] Krioukov D, Kitsak M, Sinkovits R S, Rideout D, Meyer D and Boguñá M 2012 Sci. Rep. 2 793
[48] Aldecoa R, Orsini C and Krioukov D 2015 Comput. Phys. Commun. 196 492–96
[49] Arnold V I 2010 Mathematical Methods of Classical Mechanics (New York: Springer)
[50] Anand K, Krioukov D and Bianconi G 2014 Phys. Rev. E 89 062807
[51] Squartini T, Mol J D, Hollander F D and Garlaschelli D 2015 Phys. Rev. Lett. 115 268701

J. Phys. A: Math. Theor. 49 (2016) 105001 K Zuev et al

27

http://dx.doi.org/10.1103/PhysRevE.88.022808
http://dx.doi.org/10.1007/BF02478357
http://dx.doi.org/10.1016/S0550-3213(03)00504-2
http://dx.doi.org/10.1103/PhysRevLett.89.228701
http://dx.doi.org/10.1103/PhysRevE.68.047103
http://dx.doi.org/10.1103/PhysRevE.70.066117
http://dx.doi.org/10.1103/PhysRevE.78.015101
http://dx.doi.org/10.1103/PhysRevE.80.045102
http://dx.doi.org/10.1103/PhysRevE.68.036112
http://dx.doi.org/10.1214/12-AOP755
http://dx.doi.org/10.1080/01621459.1981.10477598
http://dx.doi.org/10.1080/01621459.1986.10478342
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1007/BF02294547
http://dx.doi.org/10.1016/S0378-8733(98)00012-4
http://dx.doi.org/10.1016/j.socnet.2006.08.002
http://dx.doi.org/10.1088/1751-8113/48/46/465002
http://dx.doi.org/10.1038/nature11459
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1088/1367-2630/13/8/083001
http://dx.doi.org/10.1103/PhysRevE.86.026120
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1038/srep00793
http://dx.doi.org/10.1016/j.cpc.2015.05.028
http://dx.doi.org/10.1103/PhysRevE.89.062807
http://dx.doi.org/10.1103/physrevlett.115.268701

	1. Introduction
	2. Exponential random graphs
	3. Random graphs with hidden variables
	4. Soft preferential attachment
	5. SPA as an ERGM
	5.1. Soft configuration model
	5.2. Shifted soft configuration model
	5.3. Bridging SPA and SCM&nobreak;+&nobreak;
	5.4. SPA&tilde; and SCM&nobreak;+&nobreak; are strongly equivalent
	5.5. Hamiltonians of SCM&nobreak;+&nobreak;, SPA&tilde;&maccomma; and SPA

	6. Hamiltonian dynamics of SPA
	6.1. Evolution of the expected node degree in SPA
	6.2. Evolution of the expected node degree in SPA&tilde;
	6.3. Dynamic Hamiltonians

	7. Conclusion
	Acknowledgments
	Appendix
	A.1. SPA, SPA&tilde;&maccomma; and SCM&nobreak;+&nobreak; as &#x003B2;&#x02192;1 &openbr;&#x003B3;&#x02192;2&closebr;
	A.2. Accuracy of the classical limit approximation for the Fermi-Dirac distribution in SCM&nobreak;+&nobreak;

	References



