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a b s t r a c t

Gaussian process emulators of computationally expensive computer codes provide fast sta-
tistical approximations to model physical processes. The training of these surrogates de-
pends on the set of design points chosen to run the simulator. Due to computational cost,
such training set is bound to be limited and quantifying the resulting uncertainty in the
hyper-parameters of the emulator by uni-modal distributions is likely to induce bias. In
order to quantify this uncertainty, this paper proposes a computationally efficient sampler
based on an extension of Asymptotically Independent Markov Sampling, a recently devel-
oped algorithm for Bayesian inference. Structural uncertainty of the emulator is obtained as
a by-product of the Bayesian treatment of the hyper-parameters. Additionally, the user can
choose to perform stochastic optimisation to sample from a neighbourhood of the Maxi-
mumaPosteriori estimate, even in the presence ofmultimodality.Model uncertainty is also
acknowledged through numerical stabilisationmeasures by including a nugget term in the
formulation of the probability model. The efficiency of the proposed sampler is illustrated
in examples where multi-modal distributions are encountered. For the purpose of repro-
ducibility, further development, and use in other applications the code used to generate the
examples is freely available for download at https://github.com/agarbuno/paims_codes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computationally expensive computer codes are frequently needed to implement mathematical models which are
assumed to be reliable approximations to physical processes. Such simulators often require intensive use of computational
resources that makes them inefficient if further exploitation of the code is needed for optimisation, uncertainty propagation
and sensitivity analysis (Forrester et al., 2008; Kennedy and O’Hagan, 2001a). For this reason, surrogate models are needed
to perform fast approximations to the output of demanding simulators and enable efficient exploration and exploitation
of the input space. In this context, Gaussian processes are a common choice to build statistical surrogates – also known as
emulators – which allow to take into account the uncertainty derived from the inability to evaluate the original model in
the whole input space. Gaussian processes have become popular in recent years due to their ability to fit complexmappings
between outputs and inputs by means of a non-parametric hierarchical structure. Such applications are found, amongst
many other areas, in Machine Learning (Rasmussen and Williams, 2006), Spatial Statistics (Cressie, 1993, with the name of
Kriging), likelihood-free Bayesian Inference (Wilkinson, 2014) and Genetics (Kalaitzis and Lawrence, 2011).
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To build an emulator, a number of runs from the simulator is needed, but due to computing limitations only a small
number of evaluations can be performed. With a small amount of data, it is possible that the uncertainty in the parameters
of the model cannot be described by a uni-modal distribution. In such scenarios, Model Uncertainty Analysis (Draper, 1995)
is capable of setting a proper framework that acknowledges all uncertainties related to the idealisations made through the
modelling assumptions and the available, albeit limited information. To this end, hierarchical modelling should be taken into
account. This corresponds to adding a layer of structural uncertainty to the assumed emulator either in a continuous or
discrete manner (see Draper, 1995, Section 4). In the case of Gaussian processes, continuous structural uncertainty can be
accounted for as a natural by-product of Bayesian inference. Hence, this is pursued in this work by focusing on samplers
capable of exploring multi-modal distributions.

In order for the Gaussian process to be able to replicate the relationship between inputs and outputs and make
predictions, a training phase is necessary. Such training involves the estimation of the parameters of the Gaussian process
from the data collected by running the simulator. These parameters are referred to as hyper-parameters. The selection of the
hyper-parameters is usually done by using Maximum Likelihood estimates (MLE), or their Bayesian counterpart Maximum
a Posteriori estimates (MAP) (Oakley, 1999; Rasmussen andWilliams, 2006), or by sampling from the posterior distribution
(Williams and Rasmussen, 1996) in a fully Bayesian manner.

In this paper we assume a scenario where the task of generating new runs from the simulator is prohibitive. Such limited
information is not enough to completely identify either a candidate or a region of appropriate candidates for the hyper-
parameters. In this scenario, traditional optimisation routines (Nocedal and Wright, 2004) are not able to guarantee global
optima when looking for the MLE or MAP, and a Bayesian treatment is the only option to account for all the uncertainties
in the modelling. In the literature, however, it is common to see that MLE or MAP alternatives are preferred (Kennedy and
O’Hagan, 2001a; Gibbs, 1998) due to the numerical burden of maximising the likelihood function or because it is assumed
that Bayesian integration will not produce results worth the effort. Though it is a strong argument in favour of estimating
isolated candidates, in high-dimensional applications it is difficult to assess if the number of runs of the simulator is sufficient
to produce robust hyper-parameters. Robustness is usually measured with a prediction-oriented metric such as root-
mean-square error (RMSE) (Kennedy and O’Hagan, 2001b), ignoring uncertainty and risk assessment of choosing a single
candidate of the hyper-parameters by an inference process with limited data. In order to account for such uncertainty in the
hyper-parameters when making predictions, numerical integration should be performed. However, methods as quadrature
approximation become infeasible as the number of dimensions increases (Kennedy and O’Hagan, 2001a). Therefore, an
appropriate approach is to perform Monte Carlo integration (MacKay, 1998). This allows to approximate any integral by
means of a weighted sum, given a sample from the correct distribution.

In Gaussian processes, as in many other applications of statistics, the target distribution of the hyper-parameters cannot
be sampled directly and one should resort toMarkov ChainMonte Carlo (MCMC)methods (Robert and Casella, 2004). MCMC
methods are powerful statistical tools but have a number of drawbacks if not tuned properly, particularly if one wishes to
sample from multi-modal distributions (Neal, 2001; Hankin, 2005). One of such limitations is the tuning of the proposal
distribution, which allows the generation of a candidate in the chain. This proposal function has to be tunedwith parameters
that define its ability to move through the sample space. If an excessively wide spread is selected, this will produce samples
with space-filling properties but which are likely to be rejected. On the other hand, having a narrower spread will cause
an inefficient exploration of the sample space by taking short updates of the states of the chain, known in the literature as
Random Walk behaviour (Neal, 1993). In practice it is desirable to use a proposal distribution which is capable of balancing
both extremes. To find an appropriate tuning in high-dimensional spaces with sets of highly correlated variables can be
an overwhelming task and often MCMC samplers can become expensive due to the long time needed to reach stationarity
(Ching and Chen, 2007). Neal (1998) and Williams and Rasmussen (1996) favour the Hybrid Monte Carlo (HMC) method to
generate a sample from the posterior distribution, preventing the random walk behaviour of traditional MCMC methods.
If tuned correctly, HMC should be able to explore most of the input space (Liu, 2008). Such tuning process is problem-
dependent and there is no guarantee that the method will sample from all existing modes, thus failing to adapt well to
multi-modal distributions (Neal, 2011).

This paper proposes a sampler for the hyper-parameters of a Gaussian process based on recently developed methods for
Bayesian inference problems. Additionally, it uses the Transitional Markov Chain Monte Carlo (TMCMC) method of Ching
and Chen (2007) to set a framework for the parallelisation of Asymptotically Independent Markov Sampling in both the
context of hyper-parameter sampling (AIMS) (Beck and Zuev, 2013) and in stochastic optimisation (AIMS-OPT) (Zuev and
Beck, 2013) reminiscent of Stochastic Subset Optimisation (Taflanidis and Beck, 2008a,b). Such an extension is built using
concepts of Particle Filtering methods (Andrieu et al., 2010; Gramacy and Polson, 2009), Adaptive Sequential Monte Carlo
(DelMoral et al., 2006, 2012) andDelayed Rejection Samplers (Zuev andKatafygiotis, 2011;Mira, 2001). AIMS is chosen since
it provides a framework for Sequential Monte Carlo sampling (Neal, 1996, 2001; Del Moral et al., 2006) which automatically
chooses the sequence of transitions.Moreover, it usesmost of the information generated in the previous step in the sequence
as opposed to traditional sequential methods, thus building a robust sampler when applied to multi-modal distributions.
Finally, by using the AIMS-OPT algorithm a solution is built by means of a nested sequence of subsets, which converges to
the optimal solution set. The algorithm can be terminated prematurely given a previously chosen accuracy threshold, thus
providing a set of nearly optimal solutions.Whether it is composed by a single element, or a set of elements whose objective
function differs by a negligible quantity, a full characterisation of the optimal solution is achieved. This contrasts with the
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Fig. 1. The length-scale parameters represent how sensitive is the output of the simulator to variations in each dimension. The plot corresponds to 8 design
points chosen for the function η(x) = 5 + x + cos(x) + 0.5 sin(3x). For low values of the length-scale parameter the training runs are less dependent of
each other.

capabilities of other stochastic optimisation schemes such as particle swarm optimisation or genetic algorithms (Schneider
and Kirkpatrick, 2007).

By selecting the hyper-parameters using the AIMS-OPT framework the effect is twofold. First, the uncertainty inherent
to the specification of the hyper-parameters is embedded in the set of suboptimal approximations to the solution. This
uncertainty, expressed in a mixture of Gaussian process emulators, yields a robust surrogate where model uncertainty
is accounted for. Second, computational implementation deficiencies of the inference procedure in Gaussian processes is
overcome by incorporating stabilising approaches exposed in the literature as in Ranjan et al. (2011) and Andrianakis and
Challenor (2012) in a Bayesian framework. The problem is therefore treated from both a probabilistic and an optimisation
perspective.

The paper is organised as follows. In Section 2, a brief introduction to Gaussian processes and their treatment by
Bayesian inference is discussed. Section 3 presents both the AIMS algorithm and the proper generalisation for a parallel
implementation. Section 4 discusses several aspects of the computational implementation of the algorithm and their effect
on the modelling assumptions. The efficiency and robustness of the proposed sampler are discussed in Section 5 with some
illustrative examples. Concluding remarks are given in Section 6.

2. Gaussian processes

Let X = {x1, . . . , xn} be the set of trials run by a simulator where xi ∈ Rp denotes a given configuration for the model.
The set X will be referred to as the set of design points. Let y = {y1, . . . , yn} be the set of outputs observed for the design
points. The pair (xi, yi) will denote a training run. The emulator is assumed to be a real-valued mapping η : Rp

→ R which
is an interpolator of the training runs, i.e. yi = η(xi) for all i = 1, . . . , n. This omits any random error in the output of
the computer code in the observed simulations, that is, the simulator is deterministic. It is assumed that the output of the
simulator can be represented by a Gaussian process. Therefore, the set of design points is assumed to have a joint Gaussian
distribution where the output satisfies the structure

η(x) = h(x)Tβ + Z(x|σ 2, φ), (2.1)

where h(·) is a vector of known basis (location) functions of the input, β is a vector of regression coefficients, and Z(·|σ 2, φ)
is a Gaussian process with zero mean and covariance function

cov(x, x′|σ 2, φ) = σ 2 k(x, x′|φ), (2.2)

whereσ 2 is the signal noise andφ ∈ Rp
+ denotes the length-scale parameters of the correlation function k(·, ·). Note that for a

pair of design points(x, x′), the function k(·, ·|φ)measures the correlation between η(x) and η(x′) based on their respective
input configurations. The effect of different values of φ in a one-dimensional example is depicted in Fig. 1.

The role of the correlation function is tomeasure how close to each other the design points are, following the assumption
that similar input configurations should produce similar outputs. For its analytical simplicity, interpretation and smoothness
properties, this work uses the squared-exponential correlation function, namely

k(x, x′|φ) = exp


−

1
2

p
i=1

(xi − x′i)
2

φi


. (2.3)

Note that other authors prefer the parameterisation with φ2
i as denominators. However, this work uses a linear term in the

denominator since the restriction of the length-scale parameters to lie in the positive orthant is more naturally interpreted,



370 A. Garbuno-Inigo et al. / Computational Statistics and Data Analysis 103 (2016) 367–383

as weights in the norm used to measure closeness and sensitivity to changes in such dimensions. Both interpretability and
numerical performance can be improved if the length-scales refer to the same units, which leads to rescaling all dimensions
of the input configurations. In the computer simulation terminology this translates into utilising experimental designs
restricted to hypercubes, such as Latin hypercube sampling or Sobol sequences. Design of experiments is an active area
of research outside the scope of this work.

In summary, the output of a design point, given the hyper-parameters β, σ 2 and φ, has a Gaussian distribution

y|x, β, σ 2, φ ∼ N (h(x)Tβ, σ 2 k(x, x′|φ)), (2.4)

which can be rewritten as the joint distribution of the vector of outputs y conditional on the design points X and hyper-
parameters β, σ 2 and φ as

y|X, β, σ 2, φ ∼ N (Hβ, σ 2 K), (2.5)

whereH is the designmatrixwhose rows are the inputs h(xi)T and K is the correlationmatrix with elements Kij = k(xi, xj|φ)
for all i, j = 1, . . . , n.

2.1. Estimating the hyper-parameters

The hyper-parameters of the process are not known beforehand and this induces uncertainty in the emulator itself. They
can be estimated byMaximumLikelihood principles, but doing so lacks rigorous uncertainty quantification by concentrating
all the density of the unknown quantities in a single value. The alternative is to treat them in a fully Bayesian manner and
marginalise themwhen performing predictions. This way their respective uncertainty is taken into account. In this scenario,
the prediction y∗ for a non-observed configuration x∗ can be performedwith the data available,D = (y, X), and the evidence
they shed on the hyper-parameters of theGaussian process. Therefore, the predictions should bemadewith themarginalised
posterior distribution

p(y∗|x∗, D) =


Θ

p(y∗|x∗, D, θ) p(θ|D) dθ, (2.6)

where θ = (β, σ 2, φ) denotes the complete vector of hyper-parameters. One should note that given the properties of
a collection of Gaussian random variables, a prediction for y∗ conditioned in the data and θ is also a Gaussian random
variable (see Oakley, 1999). As in hierarchical modelling, each possible value of θ defines a specific realisation of a Gaussian
distribution, so it is appropriate to refer to θ as the hyper-parameters of the Gaussian process.

Due to its computational complexity, the integral in (2.6) is often omitted when making predictions. It is commonly
assumed that the MLE of the likelihood

L(θ) = p(y|X, β, σ 2, φ), (2.7)

or the MAP estimate from the posterior distribution

p(θ|D) ∝ p(y|X, β, σ 2, φ) p(β, σ 2, φ), (2.8)

are robust enough to account for all the uncertainty in the modelling. However, when either the likelihood (2.7) is a non-
convex function or the posterior (2.8) is amulti-modal distribution, conventional optimisation routinesmight only find local
optima, thus failing to find the most probable candidate of such distribution. Moreover, by selecting only one candidate,
robustness and uncertainty quantification are lost in the process. Additionally, there are degenerate cases when it is crucial
to estimate the integral in (2.6) bymeans ofMonte Carlo simulation instead of by proposing a single candidate. As it has been
noted by Andrianakis and Challenor (2012), two extreme cases for the Gaussian process length-scale hyper-parameters can
be identified. One possibility is for φ to approach infinity, which makes every design point dependent of each other; the
other, when φ approaches the origin where a multivariate regression model becomes the limiting case. In the first case,
high correlation among all the training runs results in amodel which is not able to distinguish local dependencies. As for the
second, it violates the assumptions that constitute a Gaussian process, by completely ignoring the correlation structure in
the design points to predict the output. Consequently, if MCMC is performed one can approximate the integrated predictive
distribution in (2.6) by means of

p(y∗|x∗, D) ≈

N
i=1

wi p(y∗|x∗, D, θi), (2.9)

where θi is obtained through an appropriate sampler, i.e. one capable of sampling from multi-modal distributions. The
coefficients wi denote the weights of each sample generated. Since each term p(y∗|x∗, D, θi) corresponds to a Gaussian
density function, the predictions are made by a mixture of Gaussians.

Proposition 1. If the emulator output y∗ conditional on its configuration vector x∗ has a posterior density as in (2.9), then its
mean function and covariance function can be computed as
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µ(x∗) =
N
i=1

wi µi(x∗), (2.10)

cov(x∗, x′) =
N
i=1

wi

(µi(x∗)− µ(x∗))(µi(x′)− µ(x′))+ cov(x∗, x′|θi)


, (2.11)

where µi(x∗) denotes the expected value of the likelihood distribution of y∗ conditional on the hyper-parameters θi, the training
runs D and the input configuration x∗.

Proof. Equality in (2.10) is a direct application of the tower property of conditional expectation and (2.11) follows from
the covariance decomposition formula using the vector of weights wi as an auxiliary probability distribution on the
conditioning. �

From Eq. (2.11) we can compute the variance, also known as the prediction error, of an untested configuration x∗ as

var(x∗) =
N
i=1

wi ((µi(x∗)− µ(x∗))2 + σ 2
i (x∗)). (2.12)

By doing this, a more robust estimation of the prediction error is made since it balances the predicted error in one sample
with how far the prediction of such sample is from the overall estimation of the mixture.

2.2. Prior distributions

In order to perform a Bayesian treatment for the prediction task in Eq. (2.6) the prior distribution p(β, σ 2, φ) in Eq. (2.8)
has to be specified. Weak prior distributions are commonly used for β and σ 2 (Oakley, 1999). Such weak prior has the form

p(β, σ 2, φ) ∝
p(φ)

σ 2
, (2.13)

where it is assumed a priori that both the covariance and the mean hyper-parameters are independent. Even more, β and
σ 2 are assumed to have an improper non-informative distribution.

As for the length-scale hyper-parameter φ, a prior distribution p(φ) is still needed. In this case the reference prior
(studied by Berger and Bernardo, 1992; Berger et al., 2009) sets an objective framework to account for the uncertainty of
φ, thus avoiding any potential bias induced by the modelling assumptions. This prior is built based on Shannon’s expected
information criteria and allows the use of a prior distribution in a setting where no previous knowledge is assumed. That
way, the training runs are the only source of information for the inference process. Additionally, the reference prior is capable
of ruling out subspaces of the sample space of the hyper-parameters (Andrianakis and Challenor, 2011), thus reducing
regions of possible candidates of Gaussian distributions in the mixture model in Eq. (2.9). Since this provides an off-the-
shelf framework for the estimation of the hyper-parameters, the reference prior developed by Paulo (2005) is used in this
work. Note that, there are no known analytical expressions for its derivatives which limits its application toMCMC samplers
that use gradient information. Note that there are other possibilities available for the prior distribution of φ. Examples of
these are the log-normal or log-Laplacian distributions, which can be interpreted as a regularisation in the norm of the
parameters. Andrianakis and Challenor (2011) suggest a decaying prior. Another option is to elicit prior distributions from
expert knowledge as in Oakley (2002).

2.3. Marginalising the nuisance hyper-parameters

The nature of the hyper-parameters β, σ 2 and φ is potentially different in terms of scales and dynamics, as seen and
explained in Fig. 2. It is possible to cope with this limitations by using a Gibbs sampling framework, but it is well-known
that such sampling scheme can be inefficient if it is used for multi-modal distributions in higher dimensions. Analogously,
a Metropolis–Hastings sampler can also be overwhelmed.
Another alternative is to focus on φ and perform the inference in the correlation function. This is done by regarding β and
σ 2 as nuisance parameters and integrating them out from the posterior distribution (2.8). The modelling assumptions in
the training runs and the prior distribution, Eqs. (2.5) and (2.13) respectively, allow to identify a Gaussian-inverse-gamma
distribution for β and σ 2, which can be shown to yield the integrated posterior distribution

p(φ|D) ∝ p(φ) (σ̂ 2)−
n−p
2 |K |−

1
2 |HTK−1H|−

1
2 , (2.14)

where

σ̂ 2
=

yT

K−1 − K−1H(HTK−1H)−1HTK−1


y

n− p− 2
, (2.15)
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(a) Correlations. (b) Scales.

Fig. 2. In 2(a), different dynamics of the hyper-parameters for the log-posterior distribution of a test function (see Section 5.1) are shown: A. corresponds
to positive correlation. B. corresponds to an independent region. C. corresponds to negative correlation. In 2(b), the marginal log-posterior function of the
same example with h(x) = 1, presents the same contour level for a wide range of β . Thus, the hyper-parameters exhibit very different scales. The dot
represents the minimum of the corresponding function.

and

β̂ = (HTK−1H)−1HTK−1y, (2.16)

are estimators of the signal noise σ 2 and regression coefficients β (see Oakley, 1999, for further details). Additionally, the
predictive distribution conditioned on the hyper-parameters follows a Gaussian distribution with mean and correlation
functions

µ(x∗|φ) = h(x∗)T β̂ + t(x∗)TK−1(y− Hβ̂), (2.17)

corr(x∗,w∗|φ) = k(x∗,w∗|φ)− t(x∗)TK−1 t(w∗)

+

h(x∗)T − t(x∗)TK−1H


(HTK−1H)−1


h(w∗)T − t(w∗)TK−1H

T
, (2.18)

where x∗, w∗ denote a pair of test configurations and t(x∗) denotes the vector obtained by computing the covariance of
the new proposal with every design point t(x) = (k(x, x1|φ), . . . , k(x, xn|φ))T . Note that both estimators depend only
on the correlation function hyper-parameters φ since both β and σ 2 have been integrated out. Considerations of when it
is appropriate to integrate out the hyper-parameters in a model has been discussed by MacKay (1996). In the Gaussian
process context it gains additional significance since it allows the development of appropriate MCMC samplers capable of
overcoming the dynamics of different sets of hyper-parameters.

In the light of the above discussion, this work focuses on the inference drawn from the correlation function k(·, ·) in
Eq. (2.2), since the structure of dependencies of the training runs to predict the outputs is recovered by it. The main
assumption is that the mean function hyper-parameter β contains minor information on the structural dependencies of
the data, relative to the correlation function hyper-parameters, which would prevent the use of integrated likelihoods
(see Berger et al., 1999, for further discussion). If prior information is available, then an additional effort can be made
on eliciting an appropriate mean function for the Gaussian process emulator. Such information can be related to expert
knowledge of the simulator which eventually allows the analyst to build a better mean function by adding significant
regression covariates (see Vernon et al., 2010, for a detailed discussion).

3. AIMS framework

Hyper-parameter marginalisation by means of Monte Carlo methods in Gaussian processes is usually performed by
Hybrid Monte Carlo methods (Neal, 1998; Williams and Rasmussen, 1996) which are capable of suppressing the Random
Walk behaviour of MCMC samplers if tuned correctly. In this work, the sampling of the hyper-parameters is done by
means of Asymptotically Independent Markov Sampling (AIMS) (Beck and Zuev, 2013). This method combines techniques
developed for Bayesian inference such as Importance Sampling and Simulated Annealing (Kirkpatrick et al., 1983) to sample
from the posterior distribution as done by other MCMC algorithms. Additionally, AIMS can also be adapted for global
optimisation (AIMS-OPT) (Zuev and Beck, 2013) in the same fashion of the traditional simulated annealing method for
stochastic optimisation. Let the optimisation problem be given by

min
φ∈Φ

H(φ|D), (3.1)

where H(φ|D) denotes the negative log-posterior distribution conditional on the set of training runs D . Let the set of
optimal solutions to the optimisation problem above be

Φ∗ =


φ ∈ Φ : φ = argmin

φ∈Φ
H(φ|D)


, (3.2)
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where |Φ∗| ≥ 1. This formulation acknowledges the presence of multiple global optima in the posterior distribution
conditional on the training runs. It is important to note that using the logarithm of the posterior distribution reduces the
overflow in the computation of Eq. (2.14), which is likely to arise due to ill-conditioning of the matrix K (Neal, 2003).

In this context, AIMS-OPT is capable of producing samples by means of a sequence of nested subsets Φk+1 ⊆ Φk that
converges to the set of optimal solutions Φ∗. Thus, if the algorithm is terminated in a premature step, a set of sub-optimal
approximations to (3.2) will be recovered. Let {pk(φ|D)}∞k=1 be the sequence of density functions such that

pk(φ|D) ∝ p(φ|D)1/τk = exp {−H(φ|D)/τk} , (3.3)

for a sequence of monotonically decreasing temperatures τk. By tempering the distributions in this manner, the samples
obtained in the first step of the algorithm are approximately distributed as a uniform random variable over a practical
support; while in the last annealing level, they are distributed uniformly on the set of optimal solutions, namely

lim
τ→∞

pτ (φ|D) = UΦ(φ), (3.4)

lim
τ→0

pτ (φ|D) = UΦ∗(φ), (3.5)

where UA(φ) denotes a uniform distribution over the set A for every φ ∈ A.

3.1. Annealing at level k

The general framework for the AIMS-OPT algorithm is presented, focusing on how to sample from the hyper-parameter
space at level k based on samples from the previous level. Let φ

(k−1)
1 , . . . , φ

(k−1)
N be samples of the hyper-parameters

distributed as pk−1(φ) at level k−1. For notational simplicity, the conditioning onD will be omitted from pk−1(·). However,
it is important to keep in mind that the training runs are crucial to build statistical surrogates. The objective is to use a
kernel such that pk(·) is the stationary distribution of the Markov chain. Let Pk denote suchMarkov transition kernel, which
satisfies the continuous Chapman–Kolmogorov equation

pk(φ) dφ =


Φ

Pk(dφ|ξ) pk(ξ) dξ, (3.6)

where pk(dφ) = pk(φ) dφ denotes the probability measure. By applying importance sampling using the distribution at the
previous annealing level, Eq. (3.6) can be approximated as

pk(φ) dφ =


Φ

Pk(dφ|ξ)
pk(ξ)

pk−1(ξ)
pk−1(ξ) dξ

≈

N
j=1

Pk(dφ|φ
(k−1)
j ) ω

(k−1)
j = p̂k,N(dφ), (3.7)

where p̂k,N(·) is used as the global proposal distribution for a candidate in the chain and

ω
(k−1)
j =

pk

φ

(k−1)
j


pk−1


φ

(k−1)
j

 ∝ exp

−H


φ

(k−1)
j |D

 1
τk
−

1
τk−1


, (3.8)

ω
(k−1)
j =

ω
(k−1)
j

N
j=1

ω
(k−1)
j

, (3.9)

are the importance weights and the normalised importance weights respectively. Note that for computing ω
(k−1)
j the

normalising constant of the integrated posterior distribution (2.14) is not needed.
The proposals of candidates for the Markov chain are done in two steps. In the first step, a candidate is drawn as an

update from a random marker from the sample of the previous annealing level, checking whether it is accepted or not.
If the local candidate is rejected by a Random Walk Metropolis–Hastings evaluation, then the chain remains invariant,
φ

(k)
i+1 = φ

(k)
i , and another marker is selected at random. In the second step, given the candidate has been accepted as a local

proposal, such candidate is considered as being drawn from the approximation in (3.7) and accepted in an Independent
Metropolis–Hastings framework, hence called a global candidate for the chain. Let qk(·|·) denote the symmetric transition
distribution used for local proposals for the Markov chain. The subscript k accounts for the adaptive nature of the transition
steps in each annealing level. Thus, the kernel distribution of the Random Walk, which leaves the intermediate density
invariant, can be written as

Pk(dφ|ξ) = qk(φ|ξ) min

1,

pk(φ)

pk(ξ)


dφ + (1− αk(ξ)) δξ(dφ), (3.10)
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where δξ(dφ) denotes a delta density and αk(ξ) is the probability of accepting the transition from ξ toΦ\{ξ}. It follows from
(3.7) that the approximated stationary condition of the target distribution at annealing level k can be written as

p̂k,N(φ) =

N
j=1

ω
(k−1)
j qk


φ

φ(k−1)
j


αl
k


φ

φ(k−1)
j


, (3.11)

with

αl
k (ξ |φ ) = min


1,

pk(ξ)
pk (φ)


, (3.12)

the probability of accepting the local transition; whereas

α
g
k (ξ |φ ) = min


1,

pk(ξ) p̂k,N(φ)

pk (φ) p̂k,N(ξ)


, (3.13)

denotes the probability of accepting such candidate for the Markov chain, hence accepting a global transition (see Zuev and
Beck, 2013, for a detailed discussion). This leads to the following two algorithms for each level in the annealing sequence.

Algorithm 1: AIMS-OPT at annealing level k
Input :
� φ

(k−1)
1 , . . . ,φ

(k−1)
N ∼ pk−1(φ), generated at previous level;

� φ
(k)
1 ∈ Φ\


φ

(k−1)
1 , . . . ,φ

(k−1)
N


, initial state of the chain;

� qk(φ|ξ), symmetric local proposal;

Output:

� φ
(k)
1 , . . . ,φ

(k)
N ∼ pk(φ);

for i← 2 to n− 1 do
(1) Generate a local candidate using the previous level samples as ‘‘markers’’

ξ ∼Qk


ξ

φ(k−1)
1 , . . . ,φ(k−1)

n


=

N
j=1

ω
(k−1)
j qk


ξ

φ(k−1)
j


(3.14)

(a) Select index jwith probability proportional to importance weights ω
(k−1)
1 , . . . , ω

(k−1)
N .

(b) Generate candidate from the local proposal distribution

ξ ∼ qk

ξ

φ(k−1)
j


(3.15)

(c) Accept ξ as a local candidate with probability

αl
k


ξ

φ(k−1)
j


(3.16)

(2) Update φ
(k)
i → φ

(k)
i+1 by accepting or rejecting ξ using Algorithm 2.

end

Algorithm 2: Global acceptance of ξ
if ξ was accepted as local candidate then

Accept ξ as a global transition with probability
α

g
k


ξ

φ(k)
i


(3.17)

else
Leave the chain invariant

φ
(k)
i+1 = φ

(k)
i (3.18)

end
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According to Algorithm 1 the initialising step should also be provided for the annealing level. In terms of implementation,
it is suggested that this should be φ

(k)
1 ∼ qk(φ|φ

(k−1)
j )where j = argmaxi ω

(k−1)
i , i.e. the sample with the largest normalised

importance weight.

3.2. Adaptive proposal distribution and temperature scheduling

Even though a RandomWalk is performed in every local proposal, AIMS-OPT performs efficient sweeping of the sample
space by producing candidates from neighbourhoods of the markers from the previous annealing level {φ(k−1)

j }
N
j=1. This is

accomplished if the transition distribution qk(φ|φ
(k−1)
j ) uses an appropriate proposal distribution where sampling is to be

realised; namely, the level curves of the tempered distribution. To be able to cope with the non-negative restriction and
to neglect the effect of the scales on each dimension, the transitions are performed in the log-space of the length-scale
parameters φ, as suggested by Neal (1997). The symmetric transition distribution proposed is a Gaussian distribution for
such log-parameters. That is, each local candidate will be distributed as

ξ ∼ N

ξ

φ(k−1)
j , ckΣk


, (3.19)

where ck is a decaying parameter for the spread of the proposal, i.e. ck = ν ck−1 with ν ∈ (0, 1) commonly chosen as
ν = 1/2 (Zuev and Beck, 2013). The matrix Σk denotes the covariance matrix for log-parameters where typical choices
can be the identity matrix Ip×p, a diagonal matrix or a symmetric positive definite matrix. We propose the use of the
weighted covariance matrix estimated from the sample and their importance weights of the previous level (ω(k−1)

1 , φ
(k−1)
1 ),

. . . , (ω
(k−1)
N , φ

(k−1)
N ). By doing so, the scale and directions of the ellipsoids of the Gaussian steps are learned as in Adaptive

Sequential Monte Carlo methods (Haario et al., 2001; Fearnhead and Taylor, 2013) from the information gathered from the
previous level in the sequence.

The annealing sequence and its effective exploration of the sample space is dictated by the temperature τk of the
intermediate distributions. Moreover, it defines how different is one target distribution from the next one, so the
effectiveness of the sample as markers from the previous annealing level depends strongly on how the scheduling is
performed. It is clear that abrupt changes lead to rapid deterioration of the sample, whilst low paced changes could produce
unnecessary steps in the annealing schedule. In order to cope with this compromise, Zuev and Beck (2013) used the effective
sampling size to determine the value of the next temperature in the process. That is solving for τk, when a sample from level
k− 1 has been produced, in

n
j=1

exp

−2H(φ

(k−1)
j )


1
τk
−

1
τk−1




n
j=1

exp

−H(φ

(k−1)
j )


1
τk
−

1
τk−1

2 =
1
γ n

, (3.20)

where γ defines a threshold for the proportion of the sample to be as effective from the importance sampling. Note that
the value of γ defines additionally how many annealing steps will be performed. As suggested from Zuev and Beck (2013)
a value of 1/2 is used for such parameter.

3.3. Stopping condition

If the temperature continues to drop along the sequence of intermediate distributions, eventually an absolute zero τk = 0
would be reached. However, such limit cannot be achieved in practical implementations and a stopping condition is needed
for the algorithm. By the same assumptions as in the original paper (Zuev and Beck, 2013) and without loss of generality,
the objective function H(φ) is assumed to be non-negative. Similarly, let δk denote the Coefficient of Variation (COV) of the
sample H(φ

(k)
1 ), . . . , H(φ

(k)
N ), i.e.

δk =

 1
N

N
i=1


H

φ

(k)
i


−

1
N

N
j=1

H

φ

(k)
j

2

1
N

N
j=1

H

φ

(k)
j

 . (3.21)

Therefore, δk is used as a measure of the sensitivity of the objective function to the hyper-parameters in the domain Φ∗τk . If

the samples are all located in Φ∗ then their COV will be zero, since ∀ jH(φ
(k)
j ) = minφ∈Φ∗ H(φ). As the progression of the

intermediate distributions advances with k, it is expected that δk → 0. As a consequence, a criteria to stop the annealing
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sequence is needed, and the algorithm will stop when the following condition is attained

δk < α δ0 = δtarget, (3.22)

whereα is assumed to be 0.10 in practical implementations to prevent the algorithm to generate redundant annealing levels
in the last steps of the procedure. Note that the stopping criterion (3.22) is used to drive the simulated annealing temperature
towards the absolute zero. However, if the aim is not localising modes as in stochastic optimisation, and a more traditional
oriented sampling is required, the algorithm could be truncated in a temperature value of 1. This adds an additional layer of
flexibility to the algorithm which other stochastic-search approaches do not share.

3.4. Parallel implementation and guarding against rejection

As found in our earliest experiments, AIMS-OPT with the global acceptance rule as in Algorithm 2 might degenerate
quickly in higher dimensions since the start of the chain comes from the highest normalised weighted sample and a
transitionmight take too long to be performed, resulting in high rejection rates. Furthermore, information from themarkers
is lost since they do not provide good transition neighbourhoods and the ability to create new samples for the next annealing
level is maimed. This aside, AIMS-OPT can become computationally expensive when the number of samples increases. To
copewith these limitationswe propose to incorporate the TransitionalMarkov ChainMonte Carlo (TMCMC) and theDelayed
Rejection methods into the AIMS-OPT framework. This extension not only enhances the mixing properties of the sampler,
i.e. improve acceptance rates, but also provides a computational framework in which parallel Markov chains can be sampled
from the intermediate distributions pk(φ) of the length-scale hyper-parameters.

The idea to enable parallelisation comes from the TMCMC algorithm (see Ching and Chen, 2007, for further details). In the
framework of Algorithm 1, every marker from the annealing level k− 1 is a starting point for a Markov chain. This produces
not only specialised chains which are likely to explore the marker’s neighbourhood on the sample space, but also allows
an assessment of which markers will generate a better chain. The normalised weights ω

(k)
j will dictate how deeply a chain

will evolve starting from its marker φ
(k−1)
j . Consequently, the number of samples in each chain will be set with probability

proportional to the normalised weight, a direct result from the TMCMC algorithm.
In order to guard against high rejection rates, and therefore degeneracy on the sampling scheme, we propose to generate

an additional candidate if the first one is rejected as in Delayed Rejection Algorithms (Mira, 2001). Let S1(·|·), S2(·|·, ·) be
a one step and two steps proposal density distributions respectively; π(·) the target distribution of the Markov chain and
a1(·, ·) the probability of accepting a transition in one step. Then, the probability of accepting a transition in two steps,
denoted by a2(·, ·), is

a2(φ0, φ2) = min

1,

π(φ2) S1(φ1|φ2) S2(φ0|φ2, φ1) (1− a1(φ2, φ1))

π(φ0) S1(φ1|φ0) S2(φ2|φ0, φ1) (1− a1(φ0, φ1))


, (3.23)

where φ0 denotes the starting point, φ1 the rejected candidate and φ2 the second stage candidate. In our context, the target
distribution π(·) is each annealing level pk(·) density function, the one step proposal distribution S1 is the independent
approximation in Eq. (3.11) and the one-step acceptance probability is the global acceptance probability in (3.13). The two-
step proposal density S2 can be chosen from several alternatives. In this work we use a symmetric distribution centred at
the starting point φ0, since it can be seen as a back-guard against S1 being a deficient independent sampler (see Zuev and
Katafygiotis, 2011, for a detailed discussion). Therefore, the previous equation can be rewritten in compact form as

αk,2(φ0, φ2) = min

1,

pk(φ2) (1− α
g
k (φ1|φ2))

pk(φ0) (1− α
g
k (φ1|φ0))


, (3.24)

where α
g
k (·|·) is defined as in Eq. (3.13). The fact that S2 is a symmetric distribution centred in the starting point φ0 has been

used, i.e. S2(φ2|φ0, φ1) = g(φ2|φ0) = g(φ0|φ2) = S2(φ0|φ2, φ1), where g(·|·) denotes such symmetric proposal density. By
performing the second stage proposal, the stationary condition of pk(·) is maintained as stated in the following proposition.

Proposition 2. AIMS-OPT coupled with delayed rejection in two stages leaves the target distribution pk(·) invariant at each
annealing level.

Proof. See Appendix for a proof using a general transition distribution S2(·|·, ·). �

From the above discussion, the proposed scheme provides a fail-safe against any possiblemismatch of the approximation
done with (3.11). Additionally, the results presented in this paper correspond to the second step candidate being a Gaussian
random variable, ξ ∼ N (φ

(k)
i |c0Σk). The ideas to accept a global transition after having accepted a local proposition can be

summarised in Algorithm 3.

4. Implementation aspects

The computational complexity of the posterior distribution in Eq. (2.14) is governed by the inverse of the covariance
matrix K as it scales with the number of training runs N . Several solutions have been developed in the literature, such as
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Algorithm 3: Global acceptance using delayed rejection
if ξ was accepted as local candidate then

Accept ξ as a global transition with probability
α

g
k


ξ

φ(k)
i


(3.25)

else
Generate a second candidate ξ2 from

ξ2 ∼ N (φ
(k)
i |c0Σk) (3.26)

if ξ2 is accepted with probability αk,2(φ
(k)
i , ξ2) computed as in equation (3.24) then

φ
(k)
i+1 = ξ2 (3.27)

else
φ

(k)
i+1 = φ

(k)
i (3.28)

end
end

(a) Numerically unstable surface. (b) Numerically stable surface.

Fig. 3. Projection of the negative log-posterior curves in the two dimensional length-scale space. Adding the nugget φδ results in a numerically stable
surface.

computation of inverse products of the form K−1u, with u ∈ RN , by means of Cholesky factors or Spectral Decomposition
(see Golub and Van Loan, 1996, for efficient implementations) to preserve numerical stability in the matrix operations
(see Gibbs, 1998). Nonetheless, numerical stability is not likely to be achieved if the training runs are very limited, or if
the sampling scheme for such training runs cannot lead to stable covariance matrices, as depicted in Fig. 3.

To overcome this practical deficiency, a correction term in the covariance matrix can be added in order to preserve
diagonal dominancy, that is, we add a nugget hyper-parameter φδ to the covariance such that

Kδ = K + φδ I, (4.1)

is positive definite. Doing so results in the stochastic simulator

yi = η(xi)+ σ 2 φδ. (4.2)

Note that the interpolating quality of the Gaussian process is lost, however, the term σ 2 φδ accounts for the variability of
the simulator that cannot be explained by the emulator given the original assumptions (adequacy of the covariance function,
for example). The nugget can also provide further quantification of model uncertainty in the inference process as it provides
an alternative to smoothing an already complex surface. As it is also noticed by Andrianakis and Challenor (2012) and Ranjan
et al. (2011), the quality of the emulator changes with the inclusion of the nugget, since it modifies the objective function
itself by introducing newmodes in the landscape of the posterior distribution. The configuration reflected by newmodes in
these cases might correspond to emulators with no local dependencies and an overall simple trend, defined from the basis
functions and regression hyper-parametersβ . Therefore, if a Gaussian processwith no local dependencies, e.g.with itsmode
farther away from the origin in the length-scale space, is assessed as not appropriate for the model, a regularisation term
can be added in the optimisation formulation as in Andrianakis and Challenor (2012). This corresponds to precautions for
the inclusion of the nugget and can be seen as elicited prior beliefs in the Bayesian formulation. However, by using a multi-
modal sampler for stochastic optimisation as the one proposed, a robust emulator capable of mixing various possibilities
can be provided. This results in an emulator that is able to cope with violations to the modelling assumptions originated by
working with a limited amount of training runs.

We incorporate the nugget termφδ as a hyper-parameter of the correlation function in the Bayesian inference process. As
suggested by Ranjan et al. (2011) a uniform prior distribution U(10−12, 1) is considered. The effect of the bounds is twofold.
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(a) Level curves and modes. (b) Parallel AIMS-OPT sample. (c) Residual plots.

Fig. 4. Projection of the negative log-posterior curves in the two dimensional length-scale space for the Branin simulator. The minimum possible value of
10−12 for the nugget φδ has been used for such projection. The reference diagonal helps visualise the regions where the length scales favour one dimension
over the other.

First, the lower bound is used to guarantee stability in the covariance matrix. Second, the upper bound is used to force the
numerical noise of the simulator to be smaller than the signal noise of the emulator itself. Note that this last assumption can
be omitted if the problem requires it. By considering the correlation matrix as in Eq. (4.1), this yields

Σδ = σ 2 Kδ, (4.3)

where Kδ denotes the corrected correlation matrix and Σδ has been used to denote the covariance matrix of the Gaussian
process. By doing so it is clear that previous considerations regarding σ 2, such as the ability of marginalising it as a nuisance
parameter and the use of a non-informative prior remain unchanged (De Oliveira, 2007).

5. Numerical experiments

To illustrate the robustness of estimating the hyper-parameters of a Gaussian process using the parallel AIMS-OPT
framework, three test cases have been selected. The first two are common examples that can be found in the literature.
The first is known as the Branin function and has been modified to resemble usual properties of engineering applications
(Forrester et al., 2008, ). The second one (Bastos and O’Hagan, 2009) has been used as a two dimensional function with
a challenging complexity for emulating purposes. The third example presented in this section comes from a real dataset
also presented in Bastos and O’Hagan (2009). In all the examples it is assumed that h(x) = (1, x1, . . . , xp)T . Regarding the
nugget, a sigmoid transformation has been performed in order to sample from a Gaussian distribution. Namely, we sample
an auxiliary zδ as part of the multivariate Gaussian in (3.19), and compute the nugget as

θδ =
1− lb

1+ exp(−zδ)
+ lb, (5.1)

where lb is the lower bound for the nugget, which is set equal to 10−12. Additionally, the uniform meta-prior distribution
of Eq. (3.4) has been considered in a practical support of the length-scale parameters in the logarithmic space, namely a
uniform distribution with support in [−7, 7]. For the nugget, a truncated beta distribution with parameters α = β = 0.5
has been considered since it corresponds to a non informative meta-prior in the interval [lb, 1]. Here the prefix meta has
been used to refer to the algorithm’s prior distribution and to set a clear distinction from the prior used in the modelling
assumptions in Eq. (2.13).

The code has been implemented in MATLAB and all examples have been run in a GNU/Linux machine with an Intel i5
processor with 8 GB of RAM. For the purpose of reproducibility, the code used to generate the examples in this paper is
available for download at https://github.com/agarbuno/paims_codes.

5.1. Branin function

The version of the Branin function used in this paper is a modification made by Forrester et al. (2008) for the purpose
of Kriging prediction in engineering applications. It is a rescaled version of the original in order to bound the inputs to the
rectangle [0, 1] × [0, 1], with an additional term that modifies its landscape to include a global optimum. Namely,

f (x) =

x2 −

5.1
4π2

x21 +
5
π
x1 − 6

2

+ 10


1−
1
8π


cos(x1)+ 1


+ 5x1, (5.2)

where x1 = 15 x1 − 5 and x2 = 15 x2.
For this case, a sample of 18 design points were chosen with a Latin hypercube sampling scheme. The resulting log-

posterior function possesses 4 different modes in its landscape (see Fig. 4(a)) leading to 4 possible configurations of the

https://github.com/agarbuno/paims_codes
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correlation function. Thus, the impact of the training runs used to construct the emulator is evident. Among these modes,
4 different types of emulators can be distinguished: an emulator with high sensitivity to changes in input x1 (mode A in
Fig. 4(a)); an emulator with rapid changes in x2 for the correlation structure of the training runs (mode B); a limiting case
where dimension x2 is disregarded in the correlation function, due to a high value in φ2 (mode C); or a second limiting
emulator which approximates a Bayesian linear regression model (mode D) (see Andrianakis and Challenor, 2012, for a
detailed discussion).

For this example, two thousand samples were generated in each annealing level. The parallel AIMS-OPT algorithm
generated 7 annealing levels to produce the samples in Fig. 4(b). The RMSE of the MAP model is 7.068 whereas the RMSE
of the mixture is 15.099 which is an indication that in terms of brute prediction, the mixture model could be improved by
taking more samples. Fig. 4(c) depicts the standardised residuals from both the MAP approach (top) and the mixture model
(bottom) using Eqs. (2.10) and (2.11) with uniform weights in the sample. The standardised residuals are defined as

r(x) =
y− µ(x)

σ 2(x)
, (5.3)

where y is the output for configuration x, µ(x) = E[y|x, D] and σ 2(x) = var(y|x, D), the posterior mean and variance for
configuration x (see Bastos and O’Hagan, 2009, for a more detailed discussion on diagnostics). By marginalising the hyper-
parameters it is clear that our estimation is more robust in terms of error prediction. Even with such limited amount of
information the residuals suggest that the uncertainty is being incorporated appropriately in the marginalised predictive
posterior distribution in Eq. (2.6). The standardised residuals are inside the 95% confidence bands, assuming approximate
normality bands, though not too close to 0. This is an indicator that although greater variability is expected, excessively large
variances are avoided. This is done by means of the integrated predictive distribution and the use of the proposed sampler
to build a mixture of emulators leaving the predicted errors inside appropriate bounds.

5.2. 2D model

This functionhas already beenused as an example for emulationpurposes and canbe found inGEM-SA softwarewebpage
(http://ctcd.group.shef.ac.uk/gem.html). Even though it is a two dimensional problem it also serves as a good illustration of
the importance of estimating the hyper-parameters of a Gaussian process with a multi-modal sampler. The mathematical
expression for this simulator is

f (x) =

1− exp


−

0.5
x2

 
2300x31 + 1900x21 + 2092x1 + 60

100x21 + 500x21 + 4x1 + 20


. (5.4)

As in the previous case, the training runs and the modelling assumptions fail to summarise the uncertainty in a uni-
modal posterior distribution. The design points were selected using a Latin hypercube in the rectangle [0, 1] × [0, 1]. It can
be seen from Fig. 5(a) that the modes are separated by a wide valley of low posterior probability, which can become an
overwhelming task for traditional MCMC samplers. The proposed sampler is able to cope with all local and global spread
dynamics present in the neighbourhoods of the modes it encounters, as shown in Fig. 5(b).

Depicted in Figs. 5(a) and (c) the use of the reference prior in the posterior distribution removes probability mass from
the neighbourhood around the origin. This validates the use of the reference prior to cut out regions from the sample space
of hyper-parameters for the sampling and exploit themost information contained in the data available, namely, the training
runs D . As in the previous example, two thousand samples were generated in each annealing level. The parallel AIMS-OPT
algorithm generated 7 annealing levels to produce the samples in Fig. 5(b). In terms of prediction accuracy, the RMSE is
1.356 for the MAP estimate and 1.345 for the mixture model. As for the residuals, from Fig. 5(d) the mixture model allows
for a more robust prediction of the error, by means of increasing the variability in particular locations. This can be seen
as the standardised residuals are concentrated within the 95% confidence bands of an approximate assumed normality
consistently narrows the spread of the prediction, resulting in a more robust estimation of the error by the use of a mixture
model predictions. This motivates the use of multi-modal density samplers in the context of optimisation, where if a single
candidate is provided the overall error prediction of the emulator might be biased towards more concentrated predictions
around the mean estimation.

5.3. Nilson–Kuusk model

This simulator is built from the Nilson–Kuusk model for the reflectance for a homogeneous plant canopy. Such model
is a five dimensional simulator whose inputs are the solar zenith angle, the leaf area index, relative leaf size, the Markov
clumping parameter and a model parameter λ (see Nilson and Kuusk, 1989, for further details on the model itself and the
meaning of the inputs and outputs). For the analysis presented in this paper a single output emulator is assumed and the
set of the inputs have been rescaled to fit the hyper-rectangle [0, 1]5 on a five dimensional space as in Bastos and O’Hagan
(2009).

As in the previous test cases, the design pointswere chosen by Latin hypercube designs (100 for this case). In this example,
the dimension of the problem makes it impossible to plot the level curves of the posterior distribution for the length scale

http://ctcd.group.shef.ac.uk/gem.html
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(a) Level curves with reference prior. (b) Parallel AIMS-OPT sample.

(c) Level curves with uniform prior. (d) Residuals plot.

Fig. 5. Projection of the negative log-posterior curves in the two dimensional length-scale space for the 2D Model simulator. The minimum possible
value of 10−12 for the nugget φδ has been used for such projection. The reference diagonal helps visualise the regions where the length scales favour one
dimension over the other.

Fig. 6. Box-plots of the sample of length-scales obtained by the parallel asymptotically independentMarkov sampling. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

hyper-parameters to visualise potential multiple modes. However, the samples can be visualised by means of a box-plot as
shown in Fig. 6, where the red line denotes themedian, the edges of the box the 25th and 75th percentiles, and the whiskers
cover the most extreme cases. The samples are obtained after completing 10 levels of the parallel AIMS-OPT algorithm.
The box-plots of the approximate optimal solutions strongly suggest that the samples come from a multi-modal posterior
distribution. This can be seen from the location of the edges of the boxes and the median for any given input. The last input
possesses a very limited spread which might denote a high concentration around one mode. Note that as the magnitude of
the length-scale increases, thus reducing the sensitivity of the simulator to such input, the length-scales are located in what
can be seen as either a plateau or regions of modes with negligible difference in the posterior density. Additionally, from
the range of values that are covered in log-space, it can be noted that the output of the simulator appears to be insensitive
to changes of the third and fourth input. Furthermore, a limit-case emulator can be suggested by the box-plot in Fig. 6 by
considering a surrogate with no third and fourth inputs in the model. Notice the scales for such hyper-parameters are in
logarithmic space.
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Fig. 7. Residuals plot for the Nilson–Kuusk simulator.

Due to the larger number of dimensions, five thousand samples were generated for each annealing level. In this case the
RMSE of the MAP estimate is 0.022 while the RMSE of the mixture proposal is 0.021 which is a consequence of the posterior
distribution sample being highly concentrated around one mode, in a particular set of length-scales (φ1, φ2 and φ5) while
being less specialised for the less sensitive ones (φ3 and φ4). In Fig. 7 there is evidence that even with such behaviour the
predictive error is improved by narrowing the spread of the standardised residuals, as before, a consequence of an increased
estimation of the variability in particular locations. In this case the residuals cannot all be contained in the approximate
normality 95% bands but as noted by Bastos and O’Hagan (2009) in their experiments there is strong evidence that in
this case more runs of the simulator are needed to adequately built a statistical surrogate. Due to the highly concentrated
posterior density around the high sensitive length-scales there seems to be no apparent gain from using the mixture model.
However, it can be noted from Fig. 6 that by acknowledging the variability of the hyper-parameters, a better understanding
of the sensitivity of the simulator with respect to the inputs is achieved. An improved and more robust uncertainty analysis
of the simulator can be provided in this case understanding the wide spread of length-scales for particular dimensions. For
instance if screening is performed, theMAP estimatewill fail to summarise thewide posterior densitywith respect toφ3 and
φ4 and this in turn, will provide partial information. This analysis cannot be performed solely by maximising the posterior
density. Therefore the proposed method provides additional insight of the sensitivity of both simulator and emulator.

6. Conclusions

This paper proposes to estimate the hyper-parameters of a Gaussian process using a new sampler based on the
Asymptotically Independent Markov Sampling (AIMS) method. The AIMS-OPT algorithm, used in stochastic optimisation,
provides a robust computation of the MAP estimates of the hyper-parameters. This is done by providing a set of
approximations to the optimal solution instead of a single approximation as it is so frequently done in the literature. The
problem is approached in a combined effort from the computational, optimisation andprobabilistic perspectiveswhich serve
as solid foundations for building surrogate models for computationally expensive computer codes. The proposed algorithm
is also capable of sampling from the posterior of the hyper-parameters, if the user desires to do so.

The original AIMS algorithm has been extended to provide an efficient sampler in computational terms, by means of
parallelisation, as well as an effective sampler with good mixing qualities, by means of both the delayed rejection and
adaptivemodification. It has been demonstrated that by using the parallel AIMS-OPT algorithm it is possible to acknowledge
uncertainty in the structure of the emulator proposed as illustrated in the examples provided. Structural uncertainty should
be taken into account to determinewhen the training runs available are sufficient to narrow the posterior distribution of the
hyper-parameters to a uni-modal convex distribution. It is well-known that Gaussian processes are effective surrogates in
lower andmediumdimensions, in such context the proposed sampler is an efficient algorithm. Research in high dimensional
spaces has been left for future research.
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Appendix

In this Appendix, a proof that using the delayed rejection algorithm in the AIMS framework leaves the target distribution
pk(·) invariant is provided.
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A sufficient condition to prove that indeed pk(·) is the stationary distribution for the Markov chain is to prove that the
detailed balance condition is satisfied. Since the first stage approval has been proven to satisfy the detailed balance condition
in Zuev and Beck (2013), it will only be proved for the second stage sampling.

Let fk(φ2|φ0) describe the AIMS-OPT delayed transitions in the kth annealing level from φ0 → φ2, with φ2 ≠ φ0. Let
φ1 be the rejected transition in the first stage, for any φ0, φ1, φ2 ∈ Φ \{φ

(k−1)
1 , . . . , φ

(k−1)
n }. It will be proved that for such

candidates the following holds:

pk(φ0)f2(φ2|φ0) = pk(φ2)f2(φ0|φ2). (A.1)

As seen from the description in Section 3.4 it follows that

fk(φ2|φ0) = p̂k,n(φ1)  
generate φ1

(1− a1(φ0, φ1))  
reject φ1

S2(φ2|φ0, φ1)  
generate φ2

a2(φ0, φ2)  
accept φ2

, (A.2)

where it is used the fact that AIMS-OPT generates first stage proposals with an independent approximate distribution. Recall
that the probability of a second stage proposal is

a2(φ0, φ2) = min

1,

pk(φ2) S2(φ0|φ2, φ1) (1− a1(φ2, φ1))

pk(φ0) S2(φ2|φ0, φ1) (1− a1(φ0, φ1))


(A.3)

and the fact that for any two positive numbers a, b the equality a min{1, b/a} = b min{1, a/b} is satisfied. With these two
equalities we can substitute the left hand side of Eq. (A.1) as

pk(φ0)f2(φ2|φ0) = p̂k,n(φ1) [pk(φ0) S2(φ2|φ0, φ1) (1− a1(φ0, φ1))] a2(φ0, φ2)

= p̂k,n(φ1) [pk(φ2) S2(φ0|φ2, φ1) (1− a1(φ2, φ1))] a2(φ2, φ0)

= pk(φ2) f2(φ0|φ2), (A.4)

which proves the detailed balance for the second stage proposal. Note that the proof has been made with no further
assumptions about the second stage proposal distribution S2(φ2|φ0, φ1), as it can be defined from several candidates. In
this work, a symmetric proposal that ignores the rejected sample has been used since it can be interpreted as a Random
Walk safeguard against a possible ill approximation done by the independent sampler.
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