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Abstract 

Understanding a complex system of relationships between courses is of great impor-
tance for the university’s educational mission. This paper is dedicated to the study of 
course-prerequisite networks (CPNs), where nodes represent courses and directed links 
represent the formal prerequisite relationships between them. The main goal of CPNs is 
to model interactions between courses, represent the flow of knowledge in academic 
curricula, and serve as a key tool for visualizing, analyzing, and optimizing complex cur-
ricula. First, we consider several classical centrality measures, discuss their meaning in 
the context of CPNs, and use them for the identification of important courses. Next, we 
describe the hierarchical structure of a CPN using the topological stratification of the 
network. Finally, we perform the interdependence analysis, which allows to quantify 
the strength of knowledge flow between university divisions and helps to identify the 
most intradependent, influential, and interdisciplinary areas of study. We discuss how 
course-prerequisite networks can be used by students, faculty, and administrators for 
detecting important courses, improving existing and creating new courses, navigating 
complex curricula, allocating teaching resources, increasing interdisciplinary interac-
tions between departments, revamping curricula, and enhancing the overall students’ 
learning experience. The proposed methodology can be used for the analysis of any 
CPN, and it is illustrated with a network of courses taught at the California Institute of 
Technology. The network data analyzed in this paper is publicly available in the GitHub 
repository.

Keywords: Course-prerequisite networks, Curriculum analytics, Curriculium 
complexity, Directed acyclic graphs, Network data analysis, Higher education

Introduction
An academic curriculum is a complex system of courses and interactions between them 
that lies at the heart of a university and underlies its educational mission. Understanding 
a university curriculum as a whole is an important prerequisite for providing students 
with a high quality education and meaningful learning experiences. Moreover, designing 
an appropriate curriculum is of great importance not only from an academic point of 
view, but also for organizational and financial management.

A full list of courses together with their descriptions given in the university catalog 
allows, at least in principle, to know everything about the curriculum and answer any 

*Correspondence:   
kostia@caltech.edu

1 Department of Computing 
and Mathematical Sciences, 
California Institute of Technology, 
Pasadena, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00543-w&domain=pdf


Page 2 of 37Stavrinides and Zuev  Applied Network Science            (2023) 8:19 

question about it. However, it is hard to comprehend this raw data, extract actionable 
knowledge, and make data-driven decisions.

A network, where nodes represent courses and links represent certain relationships 
between them, is a natural model for conceptualizing, representing, and analyzing a cur-
riculum. For example, links can represent the temporal relationships between courses 
based on how many students move from one course to another through out their stud-
ies (AkbaşMI et al. 2015). These temporal networks can be used for forecasting course 
enrollments, predicting student performance (Slim et al. 2014a), and estimating the rela-
tive contribution of courses (Meghanathan 2017). Alternatively, links between courses 
can reflect the influence that some subjects have on others based on the expert knowl-
edge of the professors. Such influence network models can be used for the curriculum 
design and recommendations (Simon de Blas et al. 2021).

This paper focuses of the study of course-prerequisite networks (CPNs), where nodes 
represent courses and directed links represent the formal prerequisite requirements 
between them listed in the university catalog. Unlike temporal and influence networks, 
CPNs are objectively defined and, when in a steady state, don’t change substantially from 
year to year. Over the last decade, CPNs have attracted a lot of interest from researchers 
due to their key role in the understanding of the complex structure of academic cur-
ricula. For example, Slim et al. used CPNs for detecting crucial courses that have a high 
impact on students progress and graduation rates (Slim et al. 2014b), Aldrich discussed 
applications of CPNs to advising and curriculum reform (Aldrich 2015), and Molontay 
et  al. introduced a data-driven probabilistic approach for studying the distribution of 
graduation time based on the CPN topology (Molontay et al. 2020).

In this paper, we propose a general network-science-based framework for analysis of 
CPNs and illustrate it with a CPN based on the courses offered at the California Institute 
of Technology in the 2021–2022 academic year. We show that a CPN is an indispensable 
tool for visualizing, understanding, and optimizing an academic curriculum. It can be 
used not only for identification of important courses, but also for improving existing and 
creating new courses. We discuss how students can use a CPN to navigate their complex 
curriculum, and how a CPN can help faculty and administrators to meaningfully allocate 
teaching resources, increase interactions between divisions and departments, revamp 
the curriculum, and enhance the overall students’ learning experience.

The proposed framework is based on network science (Newman 2018; Newman et al. 
2006; Dorogovtsev 2010; Easley and Kleinberg 2010), which is an interdisciplinary field 
that emerged at the intersection of graph theory, computational statistics, computer sci-
ence, and statistical physics. The basic idea of network science is to use a network as a 
simplified representation of a complex system that captures the pattern of connection 
between system’s components and represents its structural skeleton. Networks have 
been used to represent a variety of social, technological, information, and biological sys-
tems consisting of many interconnected, interacting components. Modeling complex 
systems with networks has proved to be useful for understanding systems as intricate 
and diverse as the Internet, the world wide web, food webs, power grids, protein interac-
tions, interwoven social groups, and even the human brain.

The rest of the paper is organized as follows. In “Network representation of university 
courses” section, we define an abstract CPN and basic related notions and describe the 
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Caltech CPN and its giant connected component. In “Centrality measures” section is 
dedicated to the identification of important courses and different measures for impor-
tance quantification. In “Topological stratification” section, we construct the topologi-
cal stratification of a CPN and discuss how the emergent hierarchical structure on the 
CPN can be used for finding hidden prerequisites and creating comprehensive schedules 
for different areas of study. In “Interdependence analysis” section, we perform an inter-
dependence analysis of a CPN that provides a bird’s eye view of the whole curriculum 
and allows to quantify the strength of flow of knowledge from one university division or 
area of study to another and identify the most intradependent, influential, and interdis-
ciplinary divisions and areas of study. Finally, “Summary and discussion” section con-
cludes with a brief summary and specific recommendations on how students, faculty, 
and administrators can use the results of the CPN analysis for efficient navigation and 
optimal enhancement of the curriculum.

Network representation of university courses
The main object of study in this paper is a course-prerequisite network (CPN), which is 
a directed network that describes interactions between university courses. In a CPN, 
nodes represent different courses and directed links between nodes represent the 
course-prerequisite relationships between the corresponding courses. A course X is 
called a prerequisite for course Y if taking X is required before taking Y. Usually prereq-
uisites cover material that is necessary for understanding more advanced courses. For 
example, a calculus course is often listed as a prerequisite for a course on differential 
equations. If X is a prerequisite for Y, then, in the CPN, this is represented by a directed 
link from node X to node Y. In this case, Y is called a postrequisite of X.

It is convenient to mathematically represent a CPN by its adjacency matrix. If a CPN 
has n nodes labeled by 1, . . . , n , then its adjacency matrix is the n× n matrix with ele-
ments Aij , i, j = 1, . . . , n , defined as follows:

The adjacency matrices of CPNs are sparse (most of Aij equal to zero), since a typical 
course has a small number of prerequisites and serves as a prerequisite to a small num-
ber of courses.

As an example, consider a toy curriculum consisting of six courses: A, B, C, X, Y, and 
Z. The course-prerequisite relationships are summarized in Table 1.

(1)Aij =
1, if there is a link from i to j,
0, otherwise.

Table 1 Example of a curriculum consisting of six courses

Course Prerequisites

A –

B –

C –

X A, B

Y B, C

Z –
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Course X has two prerequisites, A and B, course Y has two prerequisites, B and C, and 
all other courses have no prerequisites. If a course does not have any prerequisites, like 
courses A, B, C, and Z, then it can be taken any time. If a course does not have any pre-
requisites and postrequisites, like course Z, then it is represented by an isolated node, i.e. 
a node without incoming and outgoing links. Figure 1 shows the CPN induced by the toy 
curriculum.

The adjacency matrix of the this toy CPN is

A course-prerequisite network represents the flow of knowledge between different 
courses in a university curriculum. The main goal of this paper is to show how CPNs 
can be used for visualization of complex curricula, drawing important observations and 
insights about the courses, and helping students to navigate and faculty and administra-
tors to optimize their curricula.

The methods described here can be applied to the analysis of any CPN. We will illus-
trate them with a real CPN based on the courses that were offered at the California 
Institute of Technology (Caltech) in the 2021–2022 academic year. The Caltech CPN, 
consisting of both undergraduate and graduate courses, is shown in Fig. 2. All network 
visualizations in this paper are done in Gephi, an open-source and free network visuali-
zation software package (https:// gephi. org/). For visual clarity, the network visualization 
in Fig. 2 omits the node labels (course names). A larger and more detailed visualization 
of the Caltech CPN is shown in Fig. 15 in the “Appendix”. The network data is publicly 
available in the GitHub repository (https:// github. com/ pstav rin/ Course- Prere quisi te- 
Netwo rks).

Any university curriculum contains courses that are completely independent of 
each other: they are not prerequisites for each other, not prerequisites for another 
course, there is not a course which is a common prerequisite for them, etc. This 
independence between two courses manifests itself in the CPN by the absence of a 
path between the nodes representing the courses. Independent courses belong to 
different connected components of the CPN. Technically, a (weakly) connected com-
ponent of a CPN is a subset of nodes such that for any two nodes in the subset there 
exists at least one path through the network connecting the nodes, where paths are 

(2)

A B C

X Y Z
Fig. 1 The course-prerequisite network (CPN) for the toy curriculum with six courses defined in Table 1

https://gephi.org/
https://github.com/pstavrin/Course-Prerequisite-Networks
https://github.com/pstavrin/Course-Prerequisite-Networks
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allowed to go in both ways along any link (the directions of the links are ignored). 
Each isolated node constitutes a trivial connected component. Isolated nodes usu-
ally represent seminars, projects, outreach, and special topics courses. For example, 
the toy CPN on Fig. 1 has two connected components: consisting of nodes {A, B, C, 
X, Y} and one isolated node Z.

Real-world CPNs have several small connected components and one “giant” con-
nected component, called the largest connected component (LCC), which contains 
the largest fraction of nodes, almost all links, and constitutes the most interesting 
and nontrivial part of a CPN. The LCC of a CPN, denoted by G , is the main part of 
the network, which represents its complex structure and function.

In the Caltech CPN, in addition to isolated nodes, there are 10 connected compo-
nents represented by different colors in Fig. 2 and, in more detail, in Fig. 15. All but 
one are very small, with sizes not exceeding six nodes. The largest connected com-
ponent G (shown in pink) contains n = 436 nodes (57% of all nodes) and m = 747 
links (97% of all links). In what follows, we focus our analysis on the largest connect 
component G of the Caltech CPN, which is shown in Fig. 16 in the “Appendix”.

Fig. 2 The 2021–2022 Caltech CPN. Nodes in gray are isolated, i.e. have no prerequisites and do not serve as 
prerequisites. Nodes in color other than gray represent connected components. The network has 771 nodes 
and 772 links
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Centrality measures
One of the most interesting and intriguing questions about a university curriculum 
is the following: “Which are the most important courses in the curriculum?”. In other 
words, “Which are the most important nodes in the CPN?”. Knowing the most impor-
tant courses, the courses that form the “backbone” of the curriculum, could help to 
a) better allocate university resources to provide students with better experiences in 
these courses and b) inform students about these courses, so that they can pay special 
attention to them.

There are different ways to define the “importance” of a node in a CPN. Here, we 
will consider three widely used in network science centrality measures, which quan-
tify the node importance: degree, PageRank centrality, and betweenness centrality.

Degree distributions

The total degree of a node is the total number of links connected to it. In directed net-
works like CPNs, nodes have two kinds of degree: an in-degree, the number of incom-
ing links, and an out-degree, the number of outgoing links. The in-degree kin(i) of a 
node i is the number of prerequisites course i has, and the out-degree kout(i) of i is the 
number of courses for which i is a prerequisite. In terms of the adjacency matrix A, 
the in- and out-degrees of node i are given by

The total degree of node i is then

The in-degree of a node measures how specialized the corresponding course is: the larger 
kin(i) is, the more prerequisites course i has, the more specialized it is. The out-degree, 
on the other hand, measures how fundamental a course is: the larger kout(i) is, the more 
courses have i as a prerequisite, the more fundamental course i is. We expect that in 
real-wold CPNs, the in- and out-degrees of nodes are negatively correlated. The absolute 
value of the Pearson correlation coefficient between in- and out-degrees of nodes,

can be used to measure the structural difference between fundamental and specialized 
courses.

To elaborate more on this, consider two extreme cases shown in Fig. 3.
In curriculum (a), essentially all courses are structurally equivalent (except for 

the first and the last one); there are no fundamental and specialized courses. The 

(3)kin(i) =

n∑

j=1

Aji and kout(i) =

n∑

j=1

Aij .

(4)k(i) = kin(i)+ kout(i) =

n∑

j=1

(Aij + Aji).

(5)ρin,out =

n∑
i=1

(
kin(i)− k̄in

)(
kout(i)− k̄out

)

√
n∑

i=1

(
kin(i)− k̄in

)2
√

n∑
i=1

(
kout(i)− k̄out

)2
,
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sequences of in- and out-degrees are kin = (0, 1, . . . , 1) and kout = (1, . . . , 1, 0) , and the 
correlation coefficient between them is

In curriculum (b), however, there are fundamental courses (bottom row) and specialized 
courses (top row). These two types of courses are structurally very different: all funda-
mental courses are prerequisites for all specialized courses. The sequences of in- and 
out-degrees are kin = (0, . . . , 0, n/2, . . . , n/2) and kout = (n/2, . . . , n/2, 0, . . . , 0) , and the 
correlation coefficient between them is

In real-world CPNs, the correlation coefficient ρin,out ∈ (−1, 0) , and its magnitude 
|ρin,out| quantifies the structural “gap” between fundamental and specialized courses: the 
larger |ρin,out| is, the more significant the split of the curriculum into fundamental and 
specialized courses.

Figure  4 shows the histograms of in-, out-, and total degrees in the LCC G of the 
Caltech CPN.

(6)ρ
(a)
in,out = −

1

n− 1
≈ 0, for large n.

(7)ρ
(b)
in,out = −1, for any n.

Fig. 3 Two extreme cases. Curriculum (a) (blue): all courses are equivalent. Curriculum (b) (green): there is 
a substantial structural difference between fundamental courses (bottom row) and specialized courses (top 
row)

Fig. 4 The in-, out-, and total degree distributions in the largest connected component G of the Caltech CPN
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All degree distributions are right-skewed and have long right tails. A network is called 
scale-free, a term coined in the seminal paper (Barabási and Albert 1999), if its degree dis-
tribution follows a power-law,

where P(k) is the probability that a node chosen uniformly at random has degree k, 
kmin is the lower cut-off for the scaling region, and γ is the power-law exponent. Many 
real-world networks are approximately scale-free, with the power-law exponent typi-
cally in the range 2 < γ < 3 (Newman 2018). For example, both the in- and out-degrees 
of the World Wide Web approximately follow power-law distributions with γin = 2.1 
and γout = 2.7 (Broder et al. 2000). For the LCC G of the Caltech CPN, the hypothesis 
test for discerning and quantifying power-law behavior in empirical data developed in 
Clauset et al. (2009) accepts the hypothesis that the total degree distribution (right panel 
in Fig. 4) approximately follows a power-law, but rejects that hypothesis for the in- and 
out-degrees. The maximum-likelihood fitting method developed in Clauset et al. (2009) 
estimates the power-law exponent γ and the lower cut-off kmin as follows:

Most courses in G (74%) have one or two prerequisites (left panel in Fig. 4) and many 
(63%) are “dead ends,” i.e. they do not serve as prerequisites for other courses (mid-
dle panel in Fig.  4). The average in-, out-, and total degrees are (note that always 
k̄in = k̄out = k̄/2):

The Pearson correlation coefficient between in- and out-degrees of nodes is

It is instructive to see how exactly the in- and out-degrees contribute to the total degrees 
of nodes. Let Gd ⊂ G be the subset of nodes with total degree d and nd be the number of 
nodes in Gd,

Then for any node in Gd the sum of its in- and out-degrees is exactly d,

Let k̄(d)in  and k̄(d)out be the average in- and out-degrees of nodes in Gd,

(8)P(k) ∝ k−γ , for k ≥ kmin,

(9)γ = 2.48 and kmin = 3.

(10)

k̄in =
1

n

n∑

i=1

kin(i) = 1.70,

k̄out =
1

n

n∑

i=1

kout(i) = 1.70,

k̄ =
1

n

n∑

i=1

k(i) = k̄in + k̄out = 3.40.

(11)ρin,out = −0.13.

(12)Gd = {i : k(i) = d}, nd = |Gd |.

(13)kin(i)+ kout(i) = d, ∀i ∈ Gd .
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Then, by averaging (13) over all nodes i ∈ Gd , we have

for any total degree d. Figure 5 shows the decomposition of the total degree d into the 
in- and out- components k̄(d)in  and k̄(d)out.

In all subsets Gd ⊂ G for d > 5 , k̄(d)out strongly dominates k̄(d)in  and contributes the most 
to the total degree d. The in-degree component can be viewed as a “noise” added to the 
out-degree component.

Tables 2, 3, and 4 list the top courses with respect to the in-, out-, and total degrees.
As expected, the top in-degree nodes in Table 2 include some of the most special-

ized courses offered at Caltech. These courses are often at the graduate level and 

(14)k̄
(d)
in =

1

nd

∑

i∈Gd

kin(i) and k̄
(d)
out =

1

nd

∑

i∈Gd

kout(i).

(15)k̄
(d)
in + k̄

(d)
out = d,

Fig. 5 Decomposition d = k̄
(d)
in

+ k̄
(d)
out of the total degree d into the in- and out- components k̄(d)

in
 and k̄(d)out

Table 2 The top 9 courses with the largest in-degree. Cutoff was set to in-degree 5

In-Degree Top 9

Course Title In-Deg

1 CMS 139 Algorithm Analysis 7

2 Ge 270 Continental Tectonics 7

3 ACM 106 Computational Math 5

4 ChE 111 Sustainability 5

5 Ch 21 Physical Chem 5

6 Ch 25 Biophysical Chem 5

7 CMS 144 Networks 5

8 ME 50 Modelling in Mech. Eng. 5

9 Ph 6 Physics Lab 5
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require a considerable amount of previous coursework in order to be taken. The top 
out-degree nodes in Table  3 correspond to some of the most fundamental courses 
in mathematics, physics, biology, and chemistry that serve as prerequisites for many 
other courses. Note that some of these courses, such as Ma 1 and Ph 1, are introduc-
tory and elementary, but some, such as ACM 95/100, ACM 116, and Ph 125 are rela-
tively advanced. These advanced courses serve as the basis for even more advanced 
courses, often at the graduate level. Table 4 follows the order of Table 3 closely. This 
confirms the dominance of the out-degree over the in-degree established in Fig. 5.

Out of the three types of node degree, the out-degree is the most suitable meas-
ure of course importance. Any node i in a CPN fully controls its in-degree since 
the instructor who teaches course i can choose which and how many other courses 
should be listed as prerequisites for i. Therefore, at least in principle, any node can 
make its in-degree as large as the entire network size. The in-degree measures the 
specialization of a course quantified by that single course, but not its importance. The 
importance of a node should be determined by other nodes, not by the node itself. 
This is exactly what happens for the out-degree since its value is determined by other 
courses: the out-degree of node i is the number of other courses that decide to require 

Table 3 The top 12 courses with the largest out-degree. Cut-off was set to out-degree 15

Out-Degree Top 12

Course Title Out-Deg

1 Ma 2 Differential Equations 32

2 ACM 95/100 Methods of Applied Math 30

3 Ma 1 Freshman Math 27

4 Bi 8 Molecular Bio 22

5 Ma 3 Intro Probability 19

6 Ph 2 Sophomore Physics 19

7 Ph 125 Quantum Mechanics 17

8 Ch 41 Organic Chem 16

9 Ph 1 Freshman Physics 16

10 ACM 116 Probability Models 15

11 Ch 1 Freshman Chem 15

12 CS 1 Intro Programming 15

Table 4 The top 7 courses with the largest total degree. Cut-off was set to total degree 20

Total Degree Top 7

Course Title Tot-Deg

1 Ma 2 Differential Equations 33

2 ACM 95/100 Methods of Applied Math 32

3 Ma 1 Freshman Math 27

4 Bi 8 Molecular Bio 22

5 Ph 2 Sophomore Physics 21

6 Ma 3 Intro Probability 20

7 Ph 125 Quantum Mechanics 20
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i as a prerequisite and establish links from i to them. A node can “control” its out-
degree only by being important for other nodes.

PageRank centrality

The out-degree is a simple and easily interpretable measure of course importance, but it has 
limitations and drawbacks. The out-degree of course i gives it one “importance point” for 
every other course j that lists i as its prerequisite, but it does not take into account whether j 
itself is an important course or not. As an example, consider two courses, A and B, in Fig. 6.

The out-degree does not distinguish between these two courses and calls them equally 
important since kout(A) = kout(B) = 1 . Intuitively, however, course B is more important 
than A, since B is a prerequisite for Y, and Y has a larger out-degree than X (i.e., gives stu-
dents more options for future coursework). Hence, the importance of a course i is not only 
about how many courses use i as a prerequisite, but also about how important the postreq-
uisites of i are.

This idea is implemented in the PageRank centrality measure (Page et al. 1999), which is 
a key ingredient of the Google search engine (The anatomy 1998). The PageRank centrality 
π(i) of node i is the sum of two terms. One term is a small amount φ of “free” importance 
that all nodes get regardless of their positions in the network. The other term is propor-
tional to the sum of the PageRank centralities of i’s postrequisites, normalized by their in-
degrees, so that

A course j contributes to π(i) if and only if Aij = 1 , i.e. i is a prerequisite for j (equiva-
lently, j is a postrequisite for i). Dividing π(j) by kin(j) allows to prevent j from being too 
influential by increasing the number of its prerequisites and, thus, contributing to π(i) 
for many i. Any course j that adopts this strategy of requiring many prerequisites will 
indeed contribute to many PageRank centralities π(i) , but its contribution π(j)/kin(j) 
will be small, since its in-degree kin(j) will be large. The damping factor α ∈ (0, 1) con-
trols the relative contributions to π(i) from the network structure and “free centrality.” If 
α = 0 , then π(i) = φ for all nodes, which corresponds to the ultimately egalitarian case, 
where all nodes are equally important and network structure plays no role in determin-
ing node importance. As α increases, the influence of the network structure becomes 
stronger. The value of damping factor is usually set to α = 0.85 , which is found to give 

(16)π(i) = α

n∑

j=1

Aij
π(j)

kin(j)
+ φ.

A BX Y

Fig. 6 Intuitively, course B is more important than course A, but the out-degree does not distinguish these 
two courses
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good results (The anatomy 1998). The constant term φ ensures that any course i with 
zero out-degree, i.e. a “dead end” with Aij = 0 for all j, still gets a non-zero centrality 
π(i) = φ �= 0 . This allows dead ends to contribute to PageRank centralities of their 
prerequisites.

It can be shown (e.g. Newman 2018, section 7.1.4) that system (16) of n equations has 
a unique solution, and the vector π = (π(1), . . . ,π(n))⊤ of PageRank centralities is given 
by

where I is the n× n identity matrix, 1 = (1, . . . , 1)⊤ is the n× 1 vector of ones, and Kin 
is the diagonal matrix with diagonal elements Kii = max{kin(i), 1} . A non-zero value of φ 
guarantees that π  = 0 , but the exact value of φ does not affect the ranking based on Pag-
eRank centralities. This observation allows to conveniently set φ = 1 , and get

It is worth mentioning that in the original definition of the PageRank centrality (16), Aji 
and kout(j) are used instead of Aij and kin(j) , respectively. As a result, in (18), A⊤ and Kout 
appear instead of A and Kin . The reason for that is that the original version of PageRank 
was developed for the World Wide Web (WWW), where nodes (web pages) can control 
their outgoing links (hyperlinks to other web pages) but cannot control their incoming 
links (hyperlinks from other web pages), and where the importance of nodes is derived 
from incoming links. For CPNs the situation is exactly the opposite, and the roles of 
incoming and outgoing links, compared to the WWW, are switched. Therefore, (16) and 
(18) represent PageRank adapted to CPNs. The PageRank centralities of CPN nodes can 
be computed by using the standard PageRank method and applying it to A⊤ , the trans-
pose on CPN’s adjacency matrix A. In this paper, all centrality measures are computed in 
NetworkX, a Python package for analysis of complex networks (https:// netwo rkx. org/).

Figure 7 shows the largest connected component G of Caltech’s CPN, where the size 
of node i is proportional to its PageRank centrality π(i) . Table 5 lists the top 12 courses 
with respect to PageRank.

It is interesting to compare the top 12 out-degree courses in Table 3 with the top 12 Pag-
eRank courses in Table 5. The first observation is that 10 out of 12 courses are present in 
both tables. This suggests that, similar to the out-degree, the PageRank centrality measures 
how fundamental a course is. However, among those 10 common courses, PageRank tends 
to rank higher courses that are more introductory. For example, PageRank prefers Ma 1 to 
Ma 2, Ph 1 to Ph 2, Ch 1 to Ch 41, and CS 1 to CS 2, while out-degree prefers Ma 2 to Ma 1, 
Ph 2 to Ph 1, Ch 41 to Ch 1, while CS 2 does not appear in the top 12 with respect to out-
degree. The second course that made it to the top 12 according to PageRank but not accord-
ing to out-degree is Ma 5, “Introduction to Abstract Algebra.” The out-degree of Ma 5 is 11, 
and 3 out of its postrequisites have positive out-degrees (see the bottom right tail of a net-
work in Fig. 18). This is also a case where PageRank can highlight certain characteristics of a 
university. Caltech’s Mathematics department is very algebra oriented, with a lot of research 
carried out in algebraic fields and a lot of courses offered in advanced algebra topics. Due to 

(17)π = φ

(
I − αAK−1

in

)−1
1,

(18)π =

(
I − αAK−1

in

)−1
1.

https://networkx.org/
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Fig. 7 The LCC G of the Caltech CPN visualized with node size proportional to node’s PageRank centrality: 
the larger the node, the higher its PageRank. For clarity, a large scale visualization is shown in Fig. 17 in the 
“Appendix”

Table 5 The top 12 courses with the largest PageRank

PageRank Top 12

Course Title

1 Ma 1 Freshman Math

2 Ma 2 Differential Equations

3 Ph 1 Freshman Physics

4 CS 1 Intro Programming

5 Ch 1 Freshman Chem

6 Bi 8 Molecular Bio

7 Ch 41 Organic Chem

8 Ph 2 Sophomore Physics

9 ACM 95/100 Methods of Applied Math

10 Ph 125 Quantum Mechanics

11 CS 2 Data Structures & Algorithms

12 Ma 5 Intro Abstract Algebra
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this, Ma 5 is listed as a prerequisite for all such courses, thus boosting its place in the Pag-
eRank rankings.

PageRank’s preference towards fundamental introductory courses can be explained 
as follows. A course has a high PageRank centrality if it is either fundamental (has large 
out-degree) or less fundamental but serves as a prerequisite for fundamental courses. Con-
sider now two courses in a CPN, A and B, which are approximately equally fundamental, 
kout(A) ≈ kout(B) . If A is more introductory than B, then directed paths in the CPN start-
ing from A are expected to be longer than directed paths starting from B. As a result, the 
postrequisites of A are likely to have higher PageRank scores than the postrequisites of B 
and, therefore, A is likely to have a higher PageRank than B, π(A) > π(B).

Overall, in CPNs, the PageRank centrality measures how fundamental a course is and 
favors more introductory courses.

Betweenness centrality

A course-prerequisite network represents the flow of knowledge between different courses 
in a university curriculum, where knowledge “flows” along directed paths in the CPN from 
less to more advanced courses. A course with a small degree and low PageRank can still be 
important and influential if it occupies a dominant position with respect to the paths in the 
CPN. As an example, consider a course X in Fig. 8.

Although this course has small in- and out-degrees and is poorly connected to the rest of 
the CPN, it serves as a bridge between two subsets of courses. Any path from the left sub-
set to the right must go through course X. This gives X control over the flow of knowledge 
between other courses and makes it important.

This notion of importance is formalized in the betweenness centrality (Anthonisse 1971; 
Freeman 1977). Mathematically, the betweenness centrality β(i) of node i in a CPN is 
defined as follows. Let σ(s, t) be the total number of shortest paths from node s to node 
t, and σ(s, t|i) be the number of shortest paths from s to t that pass through node i. All 
paths are understood as directed paths that go along directed links. Note that if σ(s, t) > 0 , 
i.e. there exists a path from s to t, then σ(t, s) = 0 , since a CPN does not have loops. The 
betweenness centrality of node i is

where the sum is over all nodes s, t in the CPN that are different from i, with a conven-
tion that if σ(s, t) = σ(s, t|i) = 0 , then σ(s, t|i)/σ (s, t) = 0 . For example, the between-
ness of course X in Fig. 8 is β(X) = 49 . For a connected pair of nodes (s, t), i.e. for nodes 

(19)β(i) =
∑

s �=i,t �=i

σ(s, t|i)

σ (s, t)
,

X

Fig. 8 Important course X with small degree and PageRank
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with σ(s, t)  = 0 , the ratio σ(s, t|i)/σ (s, t) can be interpreted as the probability that a 
shortest path from s to t, chosen uniformly at random from all shortest paths from s to t, 
passes through i.

The betweenness centrality quantifies the degree to which a node is located between 
other nodes. If a node has zero in-degree (“source”) or zero out-degree (“sink” or 
“dead end”), then, by definition (19), its betweenness is zero,

For course-prerequisite networks, betweenness has the following interesting interpreta-
tion. Courses with high betweenness are intermediate-level courses that serve as critical 
bridges between less and more advanced courses. Removing them from a CPN (by halt-
ing their teaching) would greatly disrupt the flow of knowledge in the CPN.

Figure 9 shows the LCC G of Caltech’s CPN, where the size of node i is proportional 
to its betweenness centrality β(i) . Table 6 lists the top 12 courses with respect to the 
betweenness.

As expected, all high betweenness courses are important intermediate-level courses 
that equip students with fundamental (but not elementary) concepts and tools in 
mathematics, physics, chemistry, and computer science, in preparation for more 
advanced courses. Interestingly, many high betweenness courses are interdisciplinary. 
For example, Ch 21 combines physics and chemistry, ACM 95/100 teaches methods 
of applied mathematics (complex analysis, ordinary differential equations, partial dif-
ferential equations) for the physical sciences, and ACM 116 is a course on probabil-
ity models for science and engineering students. This suggests that courses with high 
betweenness do not only serve as bridges between less and more advanced courses, 
but are also likely to be interdisciplinary and combine different traditional academic 
disciplines.

Among the top 12 PageRank courses in Table  5 and top 12 betweenness courses in 
Table 6, there are 4 courses that appear in both tables: Ph 125, Ph 2, ACM 95/100, and 
Ma  2. These are important, fundamental courses at the intermediate level. The pres-
ence of courses with high values of both centrality measures suggests that PageRank and 
betweenness are positively correlated. Indeed, for the Caltech CPN the Pearson correla-
tion coefficient between PageRank and betweenness is

Figure 10 shows the scatter plot of the two centrality measures. There is a noticeable pos-
itive correlation between PageRank and betweenness, especially for courses with large 
values of PageRank or betweenness. This means that courses which are important with 
respect to one centrality measure tend to be also important with respect to the other.

To better visualize the interplay between PageRank and betweenness, Fig.  11 shows 
the LLC G of the Caltech CPN, where node size is proportional to node’s betweenness 
and the color intensity is proportional to node’s PageRank, so that large dark nodes are 
important with respect to both centrality measures. As expected in view of (21), on aver-
age, larger nodes tends to be darker. One notable exception is the small dark node in the 
middle of Fig. 11, which corresponds to Ma 1, Freshman Math. It has the highest PageR-
ank in G , but its betweenness is zero since its in-degree is zero.

(20)kin(i) = 0 or kout(i) = 0 =⇒ β(i) = 0.

(21)ρπ ,β = 0.34.
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Topological stratification
A course-prerequisite network is a directed network with a special property: it does not 
have cycles (or loops). A cycle is a closed directed path, i.e. a path that starts and ends 
at the same node and goes along links only in their forward direction. Absence of cycles 
means that if there is a directed path from node i to node j, then there is no a directed 
path from j to i. A directed network without cycles is called a directed acyclic graph 
(DAG).

Directed acyclic graphs constitute an important class of directed networks and 
have many scientific, statistical, and computational applications in various fields. 
Examples of complex systems which are modeled as DAGs include citation networks 
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Fig. 9 The LCC G of the Caltech CPN visualized with node size proportional to node’s betweenness centrality: 
the larger the node, the higher its betweenness. For visual clarity, a large scale visualization is shown in Fig. 18 
in the “Appendix”
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(Radicchi et  al. 2012), where nodes represent academic papers and links represent 
citations between them, and food webs (Dunne et  al. 2002), where nodes represent 
species in an ecosystem and links represent predator–prey relationships. In the causal 
set approach to quantum gravity, DAGs are used to describe the discrete structure of 
spacetime (Bombelli et al. 1987). Bayesian networks (Cowell et al. 1999) and feedfor-
ward neural networks (Goodfellow et al. 2016), which are widely used in causal infer-
ence and machine learning, are other important examples of directed acyclic graphs.

The underlying reason why any CPN is a DAG is that CPN nodes representing 
courses are partially time-ordered: any course can be taken only after its prerequisites 
have been taken. Existence of a cycle i → j → k → . . . → i would mean that course i 
is an indirect prerequisite for itself and, therefore, i can be taken only after i has been 

Table 6 The top 12 nodes with the largest betweenness

Betweenness Top 12

Course Title

1 Ch 21 Physical Chem

2 Ph 125 Quantum Mechanics

3 Ph 2 Sophomore Physics

4 ACM 95/100 Methods of Applied Math

5 CS 38 Algorithms

6 ACM 116 Probability Models

7 Ma 2 Differential Equations

8 ACM 11 Intro Computational Science

9 Ph 12 Analytical Sophomore Physics

10 Ph 106 Topics in Classical Physics

11 ACM 104 Applied Linear Algebra

12 Ae 101 Fluid Mechanics

Fig. 10 Scatter plot of PageRank versus betweenness for the LCC G of the Caltech CPN. Courses that lie on 
the vertical line at the far-left side of the plot have zero betweenness
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taken, which is absurd. The acyclic structure of a CPN is thus a direct corollary of the 
time-ordering. The time-ordering is partial since if nodes i and j are not connected 
by a directed path, i.e. neither course serves as an indirect prerequisite for the other, 
then courses i and j can be taken in any order.

The acyclic structure of a DAG allows to topologically order its nodes. A topological 
ordering of a directed network is an ordering of its nodes i1 < i2 < . . . < in such that for 
each link ik → im from node ik to node im , we have ik < im , i.e. ik appears before im in the 
ordering. To illustrate this definition, consider a DAG on Fig. 12.

This graph has several topological orderings. For example,

(22)
A < D < G < B < E < H < C < F < I

and

D < A < B < H < G < F < E < I < C
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Fig. 11 The LCC G of the Caltech CPN visualized with node size proportional to node’s betweenness and 
color intensity proportional to node’s PageRank. The larger and darker the node, the higher its betweenness 
and PageRank, the more important it is. Links are directed and start at the node of the same color. For clarity, 
a large scale visualization is shown in Fig. 19 in the “Appendix”
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are two of them. It can be shown that a directed network has a topological ordering if 
and only if it is a DAG, and the topological ordering is unique if and only if the network 
has a Hamiltonian path (a directed path that visits each node exactly once) (Sedgewick 
and Wayne 2011). Real-world CPNs do not have Hamiltonian paths, since otherwise 
would imply that for any pair of courses one is an indirect prerequisite for the other, 
which is not realistic. As a result, real-world CPNs allow multiple topological orderings.

A topological ordering of a CPN is a traversal of the network in which each course 
is visited only after all its prerequisites have been visited. This linear ordering yields a 
ranking of CPN nodes. The ranking induced by a topological ordering has, however, a 
serious drawback: it imposes a total order on partially ordered CPN nodes by arbitrary 
ordering topologically equivalent nodes, i.e. nodes that are not connected by a directed 
path (courses that are not indirect prerequisites for each other) (Zinoviev 2018). This 
drawback stems from the non-uniqueness of topological ordering. For example, the first 
topological ordering in (22) ranks D higher than A, and the second ordering ranks A 
higher than D, although A and D are topologically equivalent.

The arbitrariness of ranking can be remedied as follows. Instead of imposing a total 
order on CPN nodes, we can partition the nodes into disjoint subsets, or strata, of topo-
logically equivalent nodes. The last stratum ST is a subset of nodes with zero out-degree, 
i.e. the most advanced courses without any postrequisites (sinks or dead ends). The sec-
ond to last stratum ST−1 is obtained by first removing ST together with their incoming 
links and then finding nodes with zero out-degree in the remaining network. This pro-
cess continues until all nodes are assign to their strata and the CPN is partitioned into T 
strata,

We refer to this ordered partition S(G) as the topological stratification of CPN G . Each 
stratum St consists of topologically equivalent and unordered nodes, but the partition 
itself is ordered. For the network in Fig. 12, the topological stratification looks as follows:

(23)S(G) = {S1,S2, . . . ,ST }.

(24)

S3 = {C, F, I},

S2 = {B, E, H, G},

S1 = {A, D},

S(G) = {{A, D}, {B, E, H, G}, {C, F, I}}.

A B C

D E F

G H I
Fig. 12 An example of a directed acyclic graph (DAG)
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The process of finding the topological stratification of a CPN resembles a slicing process: 
the nodes are “sliced”, stratum-by-stratum, starting from the most advanced courses at 
the “top” of the network to the most elementary courses at the “bottom”. There is also an 
alternative way S̃ of partitioning CPN nodes into disjoint subsets of topologically equiv-
alent nodes, which is, in some sense, the reverse of the process described above. Namely, 
the first subset is a set of nodes with zero in-degree. The second subset is obtained by 
removing the first subset of nodes together with their outgoing links and then finding 
nodes with zero in-degree in the remaining network, and so on. Note that, in general, 
the partition S̃(G) obtained by this method is different form the partition (23) obtained 
via topological stratification. For example, for the network in Fig.  12, this alternative 
method leads to

which is different from (24).
The relationship between the method of topological stratification S and the alternative 

partitioning method S̃ is straightforward. Let G′ denote the reverse of G , i.e. a network 
obtained from G by reversing the directions of all its links. Furthermore, let ←− be the 
operation of reversing the order of a partition, i.e.

then

The reason why the topological stratification of G is defined as S(G) and not as S̃(G) , that 
is, why we start from nodes with zero out-degree rather than nodes with zero in-degree 
is the following. While nodes with zero out-degree are indeed advanced courses (all have 
at least one direct prerequisite and most have many indirect prerequisites), nodes with 
zero in-degree are not necessarily elementary. For example, first-year graduate courses 
are quite advanced, but they can have zero in-degree in the CPN, since they may not 
have any formal prerequisites (only informal ones, i.e. “knowledge of quantum mechan-
ics and probability theory at the undergraduate level is assumed”). As it follows from 
the subsequent discussion, combining those advanced zero in-degree courses with truly 
elementary courses (this is exactly what S̃ does) is undesirable.

Topological stratification (23) induces a hierarchical structure on a CPN

where relation Si ≺ Si+1 means that any course in Si+1 can be taken after all courses in 
Si have been taken. All courses in stratum Si have approximately the same level of dif-
ficulty, and they are more advanced than courses in the previous stratum Si−1 and less 
advanced than courses in the next stratum Si+1 . So, topological stratification of a CPN 
allows to view the hierarchy of the whole university curriculum with respect to the level 
of advancement.

Topological stratification describes the “meso-scale” (intermediate-scale) organization 
of course-prerequisite networks or, more generally, directed acyclic graphs. Other types 

(25)S̃(G) = {{A, D, G, E}, {B, H, C}, {F, I}},

(26)←−−−−−−−−
{S1, . . . ,ST } = {ST , . . . ,S1},

(27)S̃(G) =
←−−
S(G′).

(28)S1 ≺ S2 ≺ . . . ≺ ST ,
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of meso-scale structures in complex networks include community structure (Girvan and 
Newman 2002; Porter et al. 2009; Fortunato 2010) that identifies densely connected groups 
of nodes (“communities”) that are sparsely connected between each other, core-periphery 
structure (Holme 2005; Csermely et al. 2013; Rombach et al. 2014) that divides a network 
into a densely connected core and a sparser periphery that is well connected to the core, 
and the k-core decomposition (Alvarez-Hamelin et al. 2005) together with its refinement, 
the onion decomposition (Hébert-Dufresne et  al. 2016), that partition a network into a 
sequence of nested cores. A common feature of all these meso-scale structures is that they 
partition the network nodes into a collection of subsets with respect to a certain criterion. 
For the aforementioned structures, this criterion quantifies the density/sparsity of links 
between nodes or the “coreness” of the nodes. For the topological stratification, which is 
defined only for DAGs, this criterion is the topological equivalence of nodes, that is, the 
absence of directed paths between them. In the context of CPNs, the topological stratifica-
tion yields subsets of courses of approximately the same level of difficulty that are not indi-
rect prerequisites of each other.

Table 10 in the “Appendix” shows the topological stratification of the LLC G of Caltech’s 
CPN obtained by using Python module (https:// pypi. org/ proje ct/ topos ort/). The resulting 
stratification has T = 7 strata, starting with the most elementary undergraduate courses 
and building up to the most advanced courses, often at the graduate level.

The topological stratification provides a hierarchical representation of the curriculum, 
which can be used by students for making more informed choices about what courses they 
can and should take to move up a level in the hierarchy. Moreover, the topological stratifica-
tion unveils hidden prerequisites, i.e. courses that are not explicitly listed as official prereq-
uisites for a given course, but would be beneficial if completed before taking the course. For 
example, ACM 104 (Applied Linear Algebra) is placed in the stratum below ACM 95/100 
(Methods of Applied Math),

The list of official prerequisites for ACM 95/100 does not contain ACM 104. However, 
relation (29) suggests that ACM 104 should be taken before ACM 95/100. This makes 
sense because ACM 95/100 covers ordinary and partial differential equations, and being 
familiar with the fundamental concepts of linear algebra such as linear dependence and 
independence, span, basis, eigenvalues, eigenvectors, and matrix theory is extremely 
helpful. These topics are covered to some degree in Ma 1 abc ∈ S1 , which is an official 
prerequisite for ACM 95/100, but in ACM 104 they are discussed at a deeper level. The 
first author, who took both courses, and the second author, who teaches both courses, 
confirm that ACM 95/100 is a more advanced course, and it would indeed be beneficial 
to take ACM 104 before taking ACM 95/100.

The hierarchical structure (28) induces a comprehensive schedule in which students can 
take courses offered by their major department. Let M ⊂ G be a subset of courses offered 
by a specific major, such as “ACM” (Applied and Computational Mathematics) or “IDS” 
(Information and Data Sciences). Then (28) reduced on M gives

(29)ACM 104 ∈ S3 ≺ S4 ∋ ACM 95/100.

(30)(S1 ∩M) ≺ (S2 ∩M) ≺ . . . ≺ (ST ∩M).

https://pypi.org/project/toposort/
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This reduced hierarchy suggests that students interested in a deep and thorough under-
standing of their major should first take courses from S1 ∩M , then courses from 
S2 ∩M , etc. Courses from St ∩M can be taken in any available order and, perhaps, 
complemented with other relevant courses from St . This schedule guarantees that all 
prerequisites from M are satisfied before taking a course that is higher in the hierarchy. 
Furthermore, as demonstrated above, the comprehensive schedule can recommend hid-
den prerequisites and provide students who adopt it with confidence that they are as 
prepared as possible for taking more advanced courses.

Courses that belong to the same stratum St are topologically equivalent and generally 
offered by different university departments. They can be viewed as the building blocks 
for all courses in St ′ for all t ′ > t , which are also offered by different departments. This 
creates an intriguing interdependence between departments, which is investigated in the 
next section.

Interdependence analysis
The term interdisciplinary has become almost synonymous with contemporary research. 
New research areas constantly emerge through the interaction between two or more 
academic fields. For example, the recent development of computational, information, 
and data sciences has allowed for computational thinking and methods to be integrated 
with numerous traditional academic disciplines, giving rise to new, interdisciplinary 
fields. To successfully work in the emerging interdisciplinary areas, scientists need to 
have a broad skill-set and should be able to collaborate with colleagues from different 
departments. Since one of the main goals of modern universities is to prepare the new 
generation of scientists, we expect this trend to manifest itself in university curricula as 
well, reflecting the interdisciplinary nature of contemporary science, engineering, and 
technology. To quantify the degree to which this is the case, we turn to what we refer to 
as an interdependence analysis.

Interdependence encapsulates whether, and to what extent, courses in one area of 
study have prerequisites from other areas. For example, a course on algorithms offered 
by the computer science department may have a discrete math prerequisite offered by 
the mathematics department. Interdependence also demonstrates the flow of knowledge 
from one area of study to another, and shows what “external” areas a student is expected 
to be familiar with in order to study a chosen academic discipline. To formalize this 
in the context of CPNs, we first need to identify the existing areas of study within the 
university. For the Caltech CPN, we consider 6 academic divisions (Table 7) that offer 
courses in 25 areas of study, formalized in the corresponding degree options, (Table 8).

Two important remarks regarding the divisions listed in  Table  7 are in order. First, 
although CMS-div is officially a department in the EAS division, we consider it as a separate 
standalone division for the purposes of interdependence analysis. The reason is twofold: (a) 
while other EAS departments focus on applied science and engineering, CMS-div revolves 
around computational and mathematical sciences, and (b) EAS considered together with 
CMS-div would be too large, making the interdependence analysis at the division level 
meaningless. It is also important to distinguish between CMS-div and CMS: CMS-div is 
a division and CMS is one of the areas of studies offered by CMS-div. Second, Caltech has 
an additional division, HSS (Humanities & Social Sciences), which is excluded from the 
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interdependence analysis because almost all its courses have no prerequisites and postreq-
uisites, i.e. they are isolated nodes in the Caltech CPN and are not in the LCC G.

We define the interdependence between areas of study and between academic divisions 
as follows. Let D be the set of all divisions and A be the set of all areas of study within the 
university. For every area of study a ∈ A there exists a division d ∈ D that offers courses in 
that area, denoted a ∈ d . For example, Ma ∈ PMA and Bi ∈ BBE . Let Ca ⊂ G be the set of 
all courses in area a ∈ A . In terms of the CPN nodes,

where ai is the area of node (course) i, e.g. the areas of ACM 104 and IDS 157 are ACM 
and IDS, respectively. The number of courses in Ca is denoted by |Ca|.

Furthermore, let C+a ⊂ G be the multiset of all postrequisites of Ca . That is, C+a  consists 
of all courses that are pointed-to by the courses in Ca , and (this is the difference between a 
“set” and a “multiset”) each course can occur more than once. As an example, consider the 
toy CPN in Fig. 1, and let the top row of courses represent the area of study a = {A, B, C} . 
Then, C+a = {X,X, Y, Y} . Defining C+a  as a multiset allows to capture the number of times 
other areas ask for knowledge from area a.

Finally, let C+aa′ ⊂ C+a  be a multisubset consisting of courses in C+a  whose area of study is 
a′ ∈ A . To measure the dependence of area a′ on area a, we define

(31)Ca = {i ∈ G : ai = a},

(32)RA
aa′ =

(
− log

|C+aa′ |

|Ca||Ca′ |

)−1

=

(
− log

∑
i,j∈G Aijδ(ai, a)δ(aj , a

′)
∑

i∈G δ(ai, a)
∑

j∈G δ(aj , a′)

)−1

,

Table 7 Caltech academic divisions in the CPN

Division Name

PMA Physics, Mathematics, Astronomy

EAS Engineering & Applied Science

CMS-div Computing & Mathematical Sciences

CHCHE Chemistry & Chemical Engineering

BBE Biology & Biological Engineering

GPS Geology & Planetary Sciences

Table 8 Areas of study arranged by their respective division. The full names and descriptions of 
all listed areas are available in the 2021–2022 Caltech Catalog (https:// catal og. calte ch. edu/ archi ve/ 
2021- 22/)

Division Areas of study

PMA Ph, Ma, Ay

EAS Ae, APh, MS, EE, ME, MedE, CE, AM

CMS-div CMS, ACM, CS, IDS, CDS

CHCHE Ch, ChE

BBE BMB, BE, Bi, CNS, NB

GPS ESE, Ge

https://catalog.caltech.edu/archive/2021-22/
https://catalog.caltech.edu/archive/2021-22/
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where δ is the Kronecker delta: δ(x, y) = 1 if x = y and δ(x, y) = 0 if x  = y . The quantity 
under the logarithm has a probabilistic interpretation. The numerator is the total num-
ber of existing links from courses in area a to courses in area a′ , and the denominator is 
the maximum possible number of such links. So, if a course Xa in area a and a course Xa′ 
in area a′ are chosen at random, then exp(−1/RA

aa′) is the the probability that there exists 
a link from Xa to Xa′ in the CPN.

From an information-theoretic point of view, the non-negative measure RA
aa′ ≥ 0 is 

the inverse of the surprisal (MacKay 2003) (also called the Shannon information) of the 
random event of observing a link from a randomly chosen Xa ∈ Ca to a randomly cho-
sen Xa′ ∈ Ca′ . The surprisal measures the level of “surprise” of occurring of that random 
event (existence of the link). As a result, the stronger the dependence of area a′ on area a 
is, the smaller the surprisal (the larger the number of links from a to a′ ), or, equivalently, 
the larger the measure RA

aa′.
The dependence between academic divisions can be defined by analogy with (32). 

Namely, if d, d′ ∈ D are two divisions, then the dependence of division d′ on division d 
can be quantified by

which is the inverse of the information content of the event of observing a link from a 
random course offered by division d to a random course offered by division d′ . As with 
the areas of study, RD

dd′ ≥ 0 , and the larger RD
dd′ is, the stronger the dependence of d′ on 

d.
Figure 13 shows a heatmap visualization and a network representation of the division 

interdependence matrix RD for the LCC of the Caltech CPN.
As expected, the diagonal elements RD

dd have relatively large values for all d ∈ D . This 
reflects the fact that courses offered by each division are built on top of each other, and 
more elementary division courses serve as prerequisites for more advanced division 
courses. The largest value of RD

dd is for BBE, whose courses are all on biological subjects 
and are strongly intradependent.

The two most influential divisions, in the sense that all other divisions depend on 
them, are PMA and CMS-div. These divisions offer courses on mathematics, physics, 
and computer science, which serve as crucial prerequisites for science and engineering 
courses offered by other divisions. Interestingly, the dependence of CMS-div on PMA is 
stronger than the dependence of PMA on CMS-div, which indicates that applied mathe-
matics draws from pure mathematics more than the other way around. The largest clique 
in the division interdependence network in Fig. 13, i.e. the largest subset of fully inter-
connected nodes, is PMA, CMS-div, EAS. There is a great flow of knowledge between 
these three divisions, especially from PMA to CMS-div and EAS, and from CMS-div to 
EAS.

The most interdisciplinary divisions, in the sense that they require knowledge from 
and depend on most other divisions, are CHCHE, BBE, and GPS. These divisions have 
a large number of incoming links, contrary to the most influential divisions that have 
a large number of outgoing links. Being centered around biological, chemical, and 

(33)RD
dd′ =

(
− log

|C+dd′ |

|Cd ||Cd′ |

)−1

=

(
− log

∑
i,j∈G Aijδ(di, d)δ(dj , d

′)
∑

i∈G δ(di, d)
∑

j∈G δ(dj , d′)

)−1

,
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geological sciences, CHCHE, BBE, and GPS depend on mathematical methods, com-
putational tools, and physical theories taught in courses offered by other divisions. The 
converse, however, is not true: PMA and CMS-div do not have incoming links from 
CHCHE, GPS or BBE.

Extending the interdependence analysis from the division level to the level of areas of 
study, Fig. 14 shows a heatmap visualization and a network representation of matrix RA 
for the LCC of the Caltech CPN. It can be viewed as a fine-grained version of Fig. 13.

As in the case of divisions, the diagonal elements RA
aa have relatively large values 

for most a ∈ A for a similar reason. Namely, all courses offered in a certain area of 
study naturally form sequences, where more advanced courses have more elementary 
courses as prerequisites; this makes the intra-dependence of the area of study strong. 
The largest value of RA

aa is for IDS (Information and Data Sciences), the newest option 
introduced at Caltech in 2018, which has a small number of interconnected courses. 
On the other extreme, a few areas of study, such as Medical Engineering (MedE) 

PMA

CMS-div

GPS

CHCHE

EAS

BBE

Fig. 13 A heatmap visualization (left) and a network representation (right) of the division interdependence 
matrix RD for the LCC G of the Caltech CPN. In the network representation, nodes represent divisions, each 
link is directed and starts from the node of the same color. The thickness of a link from d to d′ is proportional 
to the value of RD

dd′
 . Self-links (from d to d) are not shown

Ma

Ph

Ay

CMS

ACM

IDS

CS

CDS

ESE

Ge

Ch

ChE

APh

EE

ME

BE

Bi

Ae

MS

CE

AM

BMB

MedE

CNS

NB

Fig. 14 A heatmap visualization (left) and a network representation (right) of the area-of-study 
interdependence matrix RA for the LCC G of the Caltech CPN. In the network representation, nodes represent 
areas of study, each link is directed and starts from the node of the same color. The thickness if a link from a 
to a′ is proportional to the value of RA

aa′
 . Self-links (from a to a) are not shown. For visual clarity, a large scale 

visualization of this network is shown in Fig. 20 in the “Appendix”
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and Biochemistry and Molecular Biophysics (BMB), have zero RA
aa . These areas are 

originated at the intersection of more traditional areas, and have a small number of 
courses, whose prerequisites come from the said traditional areas.

The most influential areas of study in the Caltech CPN with the biggest impact on 
other areas are Mathematics (Ma), Applied and Computational Mathematics (ACM), 
Physics (Ph), and Computer Science (CS). All these areas belong to the two most 
influential divisions, PMA and CMS-div. Outgoing links from the nodes represent-
ing these areas reach out to almost all other nodes and form the backbone of the 
area network in Fig. 14. The Ma node plays a unique role in the network: it has the 
largest number of outgoing links, and yet it is the only node that does not have any 
incoming links. This reflects the fact that many areas depend on mathematics, but 
mathematics itself does not depend on other areas, at least in the curriculum. The 
ACM node, an “applied cousin” of Ma, is also very important for other areas, espe-
cially for engineering and physical sciences, but, unlike its “pure cousin,” does have a 
few incoming links. Of particular interest is the interaction between Ph and CS. The 
main reason behind this interaction is the recent rise of quantum computing, which 
led to new physics and computer science courses. We expect that, as quantum com-
puting becomes more developed and accessible, the interaction between Ph and CS 
will become even stronger. The largest clique in the area interdependence network is 
ACM, CMS and CS, which all belong to CMS-div.

Among the most interdisciplinary areas of study, i.e. areas with a large number of incom-
ing links, are Aerospace (Ae), Chemical Engineering (ChE), and Geology (Ge). Interest-
ingly, while Ae and ChE also have outgoing links and, thus, have influence on other areas 
of study, Ge, one of the largest areas at Caltech, has no influence on any other areas.

It is worth mentioning several strong interactions between specialized but related 
areas. For example, Aerospace (Ae) has a strong impact on Civil Engineering (CE), 
Mechanical Engineering (ME), Applied Mechanics (AM), and Medical Engineering 
(MedE). The engineering areas have a significant dependence on Ae because the latter 
offers important courses on theoretical and computational fluid mechanics which serve 
as prerequisites for CE, ME, AM, and MedE courses. Other notable interactions include 
a very strong dependence of Computation & Neural Systems (CNS) on Neurobiology 
(NB) and the impact of Biology (Bi) on Biological Engineering (BE), CNS and NB.

Table 9 lists the top areas of study with respect to the out-degree, in-degree, PageRank 
and betweenness centralities computed for the area network in Fig. 14 with adjacency 
matrix AA defined as follows:

Table 9 The top 5 areas of study with respect to the in-degree, ot-degree, PageRank and 
betweenness

Top 5 Areas of Study

In-Degree Out-Degree PageRank Betweenness

1 Ae Ma Ma Bi

2 ChE ACM ACM ACM

3 Ge Ph CS Ae

4 ME CS Ph ChE

5 BE Ch CMS Ch
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Interdisciplinary engineering areas dominate the in-degree ranking. The out-degree and 
PageRank rankings are very similar (like in “Centrality measures” section) and are domi-
nated by mathematical and computational areas, the most influential areas in the net-
work. The top five betweenness areas come from four different divisions and they serve 
as critical bridges in transferring knowledge between various areas of study. The fact that 
ACM is the only area that appears in the top PageRank and betweenness rankings high-
lights its prominent role in the entire curriculum.

The interdependence analysis shows that there is a strong flow of knowledge from math-
ematical, physical, and computational sciences to applied and engineering sciences, or 
more generally, from more theoretical to more applied fields. On the other hand, the flow 
of knowledge in the reverse direction is rather weak at both division and area-of-study 
levels. This observation manifests itself in the fact that the interdependence matrices RD 
and RA visualized in Fig.  13 and Fig.  14 are approximately upper triangular. Although 
there are important “feedback” links, such as APh → Ph, EE → ACM, where more theo-
retical areas draw knowledge form more applied areas, the number of such links is rather 
small. This suggests that to increase the interdependence of the Caltech curriculum, to 
make it more balanced and interdisciplinary, new theoretical courses with applied pre-
requisites are needed. These applied prerequisites could provide important application 
domains for concepts and methods taught in theoretical courses, thereby giving rise to a 
healthy interaction between theory and applications in the university curriculum.

Summary and discussion
In this paper, we introduced course-prerequisite networks (CPNs), proposed a general 
network-science-based framework for their analysis, and illustrated it with a CPN con-
structed from courses taught at the California Institute of Technology. Conceptually, a 
CPN represents the flow of knowledge in a university curriculum. This network can be 
used for curriculum visualization, finding important insights about courses, helping stu-
dents to navigate the curriculum, and helping faculty and administrators to optimize it.

First, we focused on the identification of important courses in a given CPN. Since “impor-
tance” can be defined differently, we considered four different centrality metrics that measure 
different aspects of importance. The in-degree measures how specialized a course is: the larger 
the in-degree, the more prerequisites the course has, and the more specialized it is. The top 
in-degree courses require a lot of preparation, and students should be advised to take these 
courses towards the end of their studies. The out-degree measures how fundamental a course 
is: the larger the out-degree, the more postrequisites the course has, and the more fundamen-
tal it is. The top out-degree courses are usually the most fundamental courses in mathematics, 
natural sciences, and computer science, and students should aim at taking these courses as 
soon as possible. The in- and out-degrees are negatively correlated, and the absolute value of 
the Pearson correlation coefficient between in- and out-degrees of nodes can be used a meas-
ure of the structural “gap” between fundamental and specialized courses in the CPN.

(34)AA
aa′ =





0, if a = a′(no self-loops) ,
0, if RA

aa′ = 0,
1, if a �= a′ and RA

aa′ > 0.
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The out-degree is a more suitable measure of course importance than the in-degree, 
since the out-degree of a course is determined by other courses, while its in-degree is 
determined by the course itself. Similar to the out-degree, the PageRank centrality meas-
ures how fundamental a course is, but it favors more introductory courses. Unlike the 
out-degree, PageRank takes into account not only the number of postrequisites, but also 
their importance. Finally, betweenness identifies intermediate-level courses that serve is 
critical bridges between less and more advanced courses. For the Caltech CPN, we found 
that PageRank and betweenness are positively correlated, and courses which are impor-
tant with respect to one of the measures tend to be also important with respect to the 
other. Courses that are ranked highly by both PageRank and betweenness play a vital role 
in the university curriculum. Students should be advised to pay special attention to these 
courses. Maximizing the quality of these courses is the key step in improving the whole 
curriculum. Administrators should, therefore, prioritize enhancing the quality of courses 
with high PageRank and betweenness scores by ensuring that these courses are taught 
well (for example, by hiring dedicated teaching faculty) and students are provided with all 
necessary resources, such as office hours, recitation sessions, and tutoring support.

Next, we introduced the topological stratification of a CPN, which is the ordered 
partition of the CPN nodes into disjoint subsets, or strata, of topologically equivalent 
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Fig. 15 The 2021–2022 Caltech CPN with course names as node labels. Gray nodes are isolated. Nodes in 
color other than gray represent connected components. The network has 771 nodes and 772 links



Page 29 of 37Stavrinides and Zuev  Applied Network Science            (2023) 8:19  

nodes. The topological stratification of a CPN allows to view the hierarchy of the whole 
university curriculum with respect to the level of advancement, starting from the most 
elementary undergraduate courses and building up to the most advanced courses at the 
graduate level. Students can use these strata to make more informed choices about what 
courses to take in order to obtain a deeper understanding of their area of study. Fur-
thermore, topological stratification unveils hidden prerequisites, i.e. courses that are not 
formal prerequisites for a given course, but would be beneficial if completed before tak-
ing the course. For each course in the curriculum, a group of faculty and students can 
examine the list of its identified hidden prerequisites and make a decision on whether to 
make them formal prerequisites (or list them as highly recommended).

A hierarchical structure (28) on a CPN induced by its topological stratification can 
be reduced on any specific major or area of study. A group of faculty and students can 
examine the resulting reduced hierarchy (30) and decide whether it indeed provides an 
comprehensive learning path for obtaining a thorough understanding of the major. The 
reduced hierarchy can be also used by undergraduate students as a navigation tool and 
by their academic advisors as a trusted reference for helping students to choose courses.

Finally, the interdependence analysis provides a bird’s eye view of the whole CPN at 
the division level (crane’s eye view) and the area-of-study level (owl’s eye view). It allows 
to quantify the strength of flow of knowledge from one university division or area of 
study to another and identify the most intradependent, influential, and interdisciplinary 
divisions and areas of study. The university administration can use the results of inter-
dependence analysis for optimal allocation ot teaching resources to ensure that divi-
sions and departments, which offer courses that many other divisions and departments 
depend on, do have adequate means for providing their crucial teaching service. The 
interdependence networks can help faculty to assess their interactions with other divi-
sions and areas of study and increase these interactions by creating new interdisciplinary 
courses. Finally, students can also use the interdependence networks to discover how 
they can branch out into new areas of study. To this end, students should find areas that 
draw knowledge from their current area of study and take course in those areas. This 
may lead to the development of new academic interests and interdisciplinary studies.

It is important to highlight that although the proposed methodology for CPN data 
analysis was illustrated with the Caltech CPN, it is by no means specific to Caltech. In 
fact, it can be used—in a straightforward way and in a complete analogy with the consid-
ered example—for the curriculum analysis of essentially any university. To this end, the 
following CPN data is required: 

(a) List if nodes, representing course. Depending on the goals of the analysis, this list 
could be limited to only undergraduate courses, only graduate courses, or, like in 
the considered example, it could include all courses.

(b) List of directed links, representing prerequisite relationships. This list can be 
extracted from the university catalog that contains the description of courses.

(c) Partition of nodes into academic divisions (or other administrative units, such as 
departments, schools, and colleges).

(d) Partition of nodes into areas of study, defined by the degree options.
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Fig. 16 The largest connected component (LCC) G of the Caltech CPN shown in full in Fig. 15. The LCC has 
n = 436 nodes (57% of all nodes) and m = 747 links (97% of all links)

All real networks evolve with time, and so do course-prerequisite networks. Although 
the speed of evolution of CPNs is relatively low compared to many other networks, 
such as the world wide web, citation networks, and online social networks, adding new 
courses, removing old ones, and establishing new prerequisite relationships between 
courses may eventually change the structure and quantitative properties of a CPN. To 
keep up with the CPN evolution and have updated results, the described CPN analysis 
can be redone on a regular basis, for instance every three to five years, depending on 
how quickly the CPN changes.

To summarize, a CPN is an indispensable tool for summarizing, visualizing, and ana-
lyzing an academic curriculum. It can help to better understand and revamp the curricu-
lum, detect important courses, improve existing and create new courses, meaningfully 
allocate teaching resources, increase interdisciplinary interactions between various uni-
versity units, and enhance the overall student learning experience.

Appendix: Caltech CPN visualizations
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Fig. 17 The LCC G of the Caltech CPN visualized with node size proportional to node’s PageRank centrality: 
the larger the node, the higher its PageRank
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Fig. 18 The LCC G of the Caltech CPN visualized with node size proportional to node’s betweenness 
centrality: the larger the node, the higher its betweenness
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Fig. 19 The LCC G of the Caltech CPN visualized with node size proportional to node’s betweenness and 
color intensity proportional to node’s PageRank. The larger and darker the node, the higher its betweenness 
and PageRank, the more important it is. Links are directed and start at the node of the same color
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Table 10 Topological stratification (23) of the LCC G of the Caltech CPN. Each stratum contains 
topologically equivalent courses, starting with the most fundamental (S1) and leading to the most 
advanced (S7)

Topological Stratification of the LCC G of the Caltech CPN

S1 CS 1, Ma 1

S2 ACM 11, Ch 1, ChE 15, Ma 2

S3 ACM 104, Bi 8, CS 2, ChE 62, ChE 63, Ge 11 ab, Ma 5, Ph 1

S4 ACM 95/100, APh 17, Ay 20, Bi 1, Bi 1 x, Bi 9, CDS 131, CMS 107, CMS 122, CS 21, CS 3, Ch 41, ChE 101,

EE 44, EE 55, ESE 101, ESE 102, Ge 106, Ge 114 a, ME 11, ME 12, Ma 108, Ma 121, Ma 3, Ma 6, Ph 12, Ph 2, Ph 3

S5 ACM 116, Ae 101, Ae 102, Ae 160, Ay 101, Ay 102, Ay 21, Be 103 a, Bi 122, Bi 195, CDS 110, CDS 231, CS 121,

CS 156, CS 171, CS 24, CS 38, Ch 102, Ch 110, Ch 21, Ch 3, ChE 103, ChE 105, EE 111, EE 45, ESE 130, ESE 142,

ESE 166, Ge 114 b, Ge 120 a, ME 13, Ma 109, Ma 120, NB 150, Ph 106, Ph 125, Ph 20, Ph 6

S6 ACM 101, ACM 106, APh 105, APh 114, APh 115, APh 23, Ae 104, Ae 105, Ae 118, Ay 121, Ay 123, Ay 124, Ay 
126,

Ay 127, BE 103 b, CDS 112, CDS 232, CE 108, CMS 117, CMS 144, CMS 155, CNS 187, CS 122, CS 142, CS 143,

CS 174, CS 4, Ch 111, Ch 112, Ch 125, Ch 14, Ch 145, Ch 146, Ch 242, Ch 4, ChE 126, ChE 141, ChE 151, ChE 
164,

EE 10, EE 112, EE 151, EE 153, EE 157, EE 160, EE 40, ESE 131, ESE 168, ESE 171, ESE 176, Ge 101, Ge 11 d,

Ge 112, Ge 115 ab, Ge 118, Ge 120 b, Ge 161, Ge 162, IDS 157, ME 119, ME 14, MS 115, MS 116, Ma 110, Ma 
130,

Ma 140, Ma 151, Ma 160, Ph 127, Ph 129, Ph 135, Ph 137, Ph 205, Ph 21, Ph 22, Ph 236, Ph 7
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Fig. 20 A network representation of the area-of-study interdependence matrix RA for the LCC G of the 
Caltech CPN. Nodes represent areas of study, each link is directed and starts from the node of the same color. 
The thickness if a link from a to a′ is proportional to the value of RA

aa′
 . Self-links (from a to a) are not shown
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Ge 116, Ge 117, Ge 121, Ge 122, Ge 124, Ge 125, Ge 136, Ge 137, Ge 139, Ge 143, Ge 149, Ge 150, Ge 155, Ge 
163,

Ge 164, Ge 166, Ge 177, Ge 178, Ge 212, Ge 214, Ge 215, Ge 264, Ge 270, IDS 126, IDS 158, ME 115, ME 117,

ME 146, ME 163, ME 174, ME 202, ME 224, ME 23, ME 260, ME 266, ME 40, ME 50, ME 72, MS 121, MS 133,

MS 161, MS 162, MS 166, MS 90, Ma 111, Ma 112, Ma 116, Ma 117, Ma 118, Ma 123, Ma 124, Ma 125, Ma 128,

Ma 132, Ma 135, Ma 142, Ma 145, Ma 147, Ma 157, Ma 162, MedE 243, NB 152, NB 154, NB 155, NB 162, NB 
163,

NB 164, NB 220, Ph 105, Ph 118, Ph 136, Ph 139, Ph 177, Ph 199, Ph 203, Ph 219, Ph 223, Ph 229, Ph 230, Ph 
232,

Ph 235, Ph 237, Ph 250, Ph 5, Ph 50, Ph 77, Ph 8

Table 10 (continued)
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