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Estimation of the failure probability, that is, the probability of unacceptable system
performance, is an important and computationally challenging problem in reliability
engineering. In cases of practical interest, the failure probability is given by an inte-
gral over a high-dimensional uncertain parameter space. Over the past decade, the
engineering research community has realized the importance of advanced stochastic
simulation methods for solving reliability problems. Subset Simulation, proposed by
Au and Beck, provides an efficient algorithm for computing failure probabilities for
general high-dimensional reliability problems. Here, a Bayesian post-processor for
the original Subset Simulation method is presented that produces the posterior PDF
of the failure probability which can be used in risk analyses for life-cycle cost analysis,
decision making under risk, etc.
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1. Introduction

One of the most important and challenging problems in reliability engineering is to
estimate the failure probability pF, that is, the probability of unacceptable system
performance. This is usually expressed as an integral over a high-dimensional
uncertain parameter space:

pF =
∫

IF(θ)π(θ)dθ = Eπ [IF(θ)], (1)

where θ ∈ Rd represents the uncertain parameters needed to specify completely the
excitation and dynamic model of the system; π(θ) is the joint probability density
function (PDF) for θ; F ⊂ Rd is the failure domain in the parameter space (i.e. the
set of parameters that lead to performance of the system that is considered to be
unacceptable); and IF(θ) stands for the indicator function, i.e. IF(θ) = 1 if θ ∈ F
and IF(θ) = 0 if θ /∈ F.

Over the past decade, the engineering research community has realized the im-
portance of advanced stochastic simulation methods for solving reliability problems
because of the inefficiency of ordinary Monte Carlo simulation for highly reliable
systems. As a result, many more efficient algorithms have been recently developed,
e.g. Subset Simulation 1, Importance Sampling using Elementary Events 2, Line
Sampling 9, Auxiliary domain method 8, Spherical Subset Simulation 7, Horseracing
Simulation 10, to name but a few.

The usual interpretation of Monte Carlo methods is consistent with a purely fre-
quentist approach, meaning that they can be interpreted in terms of the frequentist
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definition of probability which identifies it with the long-run relative frequency of oc-
currence of an event. An alternative interpretation can be made based on the Bayesian
approach which views probability as a measure of the plausibility of a proposition
conditional on incomplete information that does not allow us to establish the truth
or falsehood of the proposition with certainty 6,3. Although the Bayesian approach
usually leads to high-dimensional integrals that often cannot be evaluated analytically
nor numerically by straightforward quadrature, the development of Markov chain
Monte Carlo algorithms and increasing computing power have led, over the past few
decades, to an explosive growth of Bayesian papers in all research disciplines.

In Section 3 of this paper, a Bayesian post-processor (SS+) for the original Subset
Simulation method is developed. In SS+, the uncertain failure probability that one is
estimating is modeled as a stochastic variable whose possible values belong to the unit
interval. Instead of a single real number as an estimate, SS+ produces the posterior
PDF of the failure probability, which takes into account both prior information and
the information from the generated samples. This PDF can be used to give a point
estimate such as the most probable value based on the available information or,
alternatively, can be fully used in risk analyses for life-cycle cost analysis, decision
making under risk, etc.

The rest of the paper is organized as follows. In Section 2, the original SS method
is described; in Section 3 the Bayesian post-processor SS+ is developed and the
relationship between SS and SS+ is discussed. Conclusions are given in Section 5.

2. Subset Simulation

The basic idea of Subset Simulation 1 is the following: represent a very small failure
probability pF as a product of larger probabilities so pF = ∏m

j=1 pj, where the factors pj

are estimated sequentially, pj ≈ p̂j, to obtain an estimate p̂SS
F for pF as p̂SS

F = ∏m
j=1 p̂j.

To reach this goal, let us consider a decreasing sequence of nested subsets of the
parameter space, starting from the entire space and shrinking to the failure domain F:

Rd = F0 ⊃ F1 ⊃ . . . ⊃ Fm−1 ⊃ Fm = F. (2)

Subsets F1, . . . , Fm−1 are called intermediate failure domains. As a result, the failure
probability pF = P(F) can be rewritten in terms of conditional probabilities as follows:

pF =
m

∏
j=1

P(Fj|Fj−1) =
m

∏
j=1

pj, (3)

where pj = P(Fj|Fj−1) is the conditional probability at the (j − 1)th conditional level.
Clearly, by choosing the intermediate failure domains appropriately, all conditional
probabilities pj can be made large. Furthermore, they can be estimated, in principle,
by the fraction of independent conditional samples that cause failure at the interme-
diate level:

pj ≈ p̂MC
j =

1
N

N

∑
i=1

IFj(θ
(i)
j−1), θ

(i)
j−1 ∼ π(·|Fj−1). (4)

Hence, the original problem (estimation of the small failure probability pF) is replaced
by a sequence of m intermediate problems (estimation of the larger failure probabili-
ties pj).
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The first probability p1 = P(F1|F0) = P(F1) is straightforward to estimate by Monte
Carlo Simulation (MCS), since (4) requires sampling from π(·) that is assumed to be
readily sampled. However, if j ≥ 2, to estimate pj using (4) one needs to generate
independent samples from conditional distribution π(·|Fj−1), which, in general, is not
a trivial task. It is not efficient to use MCS for this purpose, especially at higher levels,
but it can be done by a specifically tailored Markov chain Monte Carlo technique
at the expense of generating dependent samples. In Subset Simulation, the Modified
Metropolis algorithm (MMA) 1 is used for sampling from the conditional distributions
π(·|Fj−1) for j ≥ 2. For more details, please see the original paper 1.

3. Bayesian Post-Processor for Subset Simulation

In this section we develop a Bayesian post-processor for the original Subset Simula-
tion algorithm described in Section 2.

Recall that in SS the failure probability pF is represented as a product of conditional
probabilities pj = P(Fj|Fj−1), each of which is estimated using (4). Let nj denote the

number of samples θ
(1)
j−1, . . . , θ

(N)
j−1 that belong to subset Fj. Then

p̂j =
nj

N
and p̂SS

F =
m

∏
j=1

p̂j =
m

∏
j=1

nj

N
. (5)

Note that estimates (5) are purely frequentist. In fact, they are the maximum
likelihood estimates for a binomial distribution for the number of failure events
(θj−1 ∈ Fj), given θj−1 ∈ Fj−1. In order to construct a Bayesian post-processor for
SS, we replace the maximum likelihood estimates in (5) by their Bayesian analogs. In
other words, we treat all p1, . . . , pm and pF as stochastic variables and, following the
Bayesian approach, proceed as follows:

(1) Specify prior PDFs p(pj) for all pj = P(Fj|Fj−1);

(2) Update each prior PDF, using new data Dj−1 = {θ
(1)
j−1, . . . , θ

(N)
j−1 ∼ π(·|Fj−1)}, i.e.

find the posterior PDFs p(pj|Dj−1) via Bayes’ theorem;
(3) Obtain the posterior PDF p(pF| ∪m−1

j=0 Dj) of pF = ∏m
j=1 pj from

p(p1|D0), . . . , p(pm|Dm−1).

To choose the prior distribution for each pj, we use the Principle of Maximum
Entropy (PME), introduced by Jaynes 5. The PME postulates that, subject to specified
constraints, the prior PDF p which should be taken to represent the current state of
knowledge is the one that gives the largest measure of uncertainty, i.e. maximizes
Shannon’s entropy H(p) = −

∫ ∞
−∞ p(x) log p(x)dx. Since the set of all possible values

for each stochastic variable pj is the unit interval, we impose this as the only constraint
for p(pj), i.e. supp p(pj) = [0, 1]. It is well known that the uniform distribution is the
maximum entropy distribution among all continuous distributions on [0, 1], so

p(pj) = 1, 0 ≤ pj ≤ 1. (6)

Since initial samples θ
(1)
0 , . . . , θ

(N)
0 are i.i.d. according to π, the sequence of zeros

and ones, IF1(θ
(1)
0 ), . . . , IF1(θ

(N)
0 ), can be considered as Bernoulli trials and, therefore,

the likelihood function p(D0|p1) is a binomial distribution where D0 consists of the



February 26, 2012 17:35 RPS/Trim Size: 24cm x 17cm for Proceedings/Edited Book BSS-paper-APSSRA12

4 K. M. Zuev and J. L. Beck

number of F1-failure samples n1 = ∑N
k=1 IF1(θ

(k)
0 ) and the total number of samples is

N. Hence, the posterior distribution of p1 is the beta distribution Be(n1 + 1, N − n1 +
1) with parameters (n1 + 1) and (N − n1 + 1), i.e.

p(p1|D0) =
pn1

1 (1 − p1)
N−n1

B(n1 + 1, N − n1 + 1)
, (7)

The beta function B in (7) is a normalizing constant. If j ≥ 2, all MCMC samples
θ
(1)
j−1, . . . , θ

(N)
j−1 are distributed according to π(·|Fj−1), however, they are not indepen-

dent. Nevertheless, we can use an expression similar to (7) as a good approximation
for the posterior PDF p(pj|Dj−1) for j ≥ 2, so:

p(pj|Dj−1) ≈
p

nj
j (1 − pj)

N−nj

B(nj + 1, N − nj + 1)
, j ≥ 1, (8)

where nj = ∑N
k=1 IFj(θ

(k)
j−1) is the number of Fj-failure samples. Note that the MCMC

samples θ
(1)
j−1, . . . , θ

(N)
j−1 consist of the states of multiple Markov chains with different

initial seeds obtained from previous conditional levels. This makes the approximation
(8) more accurate in comparison with the case of a single chain.

The last step is to find the PDF of the product of stochastic variables pF = ∏m
j=1 pj,

given the distributions of all factors pj by (8).
In general, the product of beta variables does not follow the beta distribution,

nevertheless, it can be accurately approximated by a beta variable.

Theorem 3.1 (Fan 4). Let X1, . . . , Xm be independent beta variables, Xj ∼ Be(aj, bj), and
Y = X1X2 . . . Xm. Then Y is approximately distributed as Ỹ ∼ Be(a, b), where

a = µ1
µ1 − µ2

µ2 − µ2
1

, b = (1 − µ1)
µ1 − µ2

µ2 − µ2
1

, (9)

and

µ1 = E[Y] =
m

∏
j=1

aj

aj + bj
, µ2 = E[Y2] =

m

∏
j=1

aj(aj + 1)
(aj + bj)(aj + bj + 1)

. (10)

It is easy to check that if Ỹ ∼ Be(a, b) with a and b given by (9), then the first two
moments of stochastic variables Y and Ỹ coincide, i.e. E[Ỹ] = E[Y] and E[Ỹ2] =
E[Y2]. The accuracy of approximation Y∼̇Be(a, b) is discussed by Fan 4.

Using this theorem, we can therefore approximate the posterior distribution pSS+

of stochastic variable pF by the beta distribution as follows:

pSS+(pF| ∪m−1
j=0 Dj) ≈ p̃SS+(pF| ∪m−1

j=0 Dj) = Be(pF|a, b), (11)

i.e. pF∼̇Be(a, b), where

a =
∏m

j=1
nj+1
N+2

(
1 − ∏m

j=1
nj+2
N+3

)
∏m

j=1
nj+2
N+3 − ∏m

j=1
nj+1
N+2

, b =

(
1 − ∏m

j=1
nj+1
N+2

) (
1 − ∏m

j=1
nj+2
N+3

)
∏m

j=1
nj+2
N+3 − ∏m

j=1
nj+1
N+2

. (12)
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Since the first two moments of pSS+ and p̃SS+ are equal, we have:

Ep̃SS+ [pF] = EpSS+ [pF] =
m

∏
j=1

Ep(pj |Dj−1)
[pj] =

m

∏
j=1

nj + 1
N + 2

, (13)

and therefore

lim
N→∞

Ep̃SS+ [pF] = lim
N→∞

p̂SS
F so Ep̃SS+ [pF] ≈ p̂SS

F , when N is large. (14)

Therefore, the mean value of the approximation p̃SS+ to the posterior PDF pSS+ is ac-
curately approximated by the frequentist point estimate p̂SS

F of the failure probability.
From the algorithmic point of view, SS+ differs from SS only in the produced output.

Instead of a single real number as an estimate as in SS, SS+ produces p̃SS+(pF| ∪m−1
j=0

Dj), an approximation of the posterior PDF of pF, which takes into account both prior
information and the sampled data ∪m−1

j=0 Dj. The frequentist estimate p̂SS
F of failure

probability obtained in the original SS algorithm is accurately approximated by the
mean of p̃SS+ as in (14).

Note that one can use the full PDF p̃SS+ for risk analyses, including life-cycle cost
analysis and decision making under risk. For instance, a performance loss function
L often depends on the failure probability. In this case one can calculate an expected
loss given by the following integral:

E[L(pF)] =
∫ 1

0
L(pF) p̃SS+(pF)dpF, (15)

which takes into account the uncertainty in the value of the failure probability.

4. Illustrative Example

As an example, consider a linear failure domain. Let d = 103 be the dimension of
the linear problem and suppose pF = 10−3 is the exact failure probability. The failure
domain F is defined as

F = {θ ∈ Rd : ⟨θ, e⟩ ≥ β}, (16)

where e is a unit vector drawn from a uniform distribution over the surface of a unit
sphere, and β = Φ−1(1 − pF) ≈ 3.09 is the reliability index. This example is one
where FORM gives the exact failure probability in terms of β. Note that θ∗ = βe
is the design point of the failure domain F. In the application of Subset Simulation,
two implementation scenarios are considered: N = 250 and N = 1000 samples are
simulated at each conditional level. The failure probability estimates p̂SS

F obtained
by SS for these scenarios and the approximation of the corresponding posterior PDFs
p̃SS+ obtained by SS+ are given in Fig. 1. Observe that the more samples used (i.e.
the more information about the system that is extracted), the more narrowly p̃SS+ is
focused around p̂SS

F , as expected. The coefficients of variation are δp̃SS+ = 0.32 and
δp̃SS+ = 0.16 for N = 250 and N = 1000, respectively. In SS+, the COV δp̃SS+ can be
considered as a measure of uncertainty, based on the generated samples.
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Fig. 1. The failure probability point estimates p̂SS
F obtained by SS and p̃SS+ obtained by SS+.

5. Conclusions

In this paper a Bayesian post-processor (SS+) for the original Subset Simulation
method 1 is developed. In SS+, the uncertain failure probability that one is estimating
is modeled as a stochastic variable whose possible values belong to the unit interval.
Instead of a single real number as an estimate, SS+ produces an accurate approxima-
tion p̃SS+ of the posterior PDF of the failure probability, which takes into account both
prior information and the sampled data. This PDF can be fully used in risk analyses,
including life-cycle cost analysis and decision making under risk.
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