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In Bayesian inference, many problems can be expressed as the evaluation of the expectation of an uncertain quantity
of interest with respect to the posterior distribution based on relevant data. Standard Monte Carlo method is often not
applicable because the encountered posterior distributions cannot be sampled directly. In this case, the most popular
strategies are the importance sampling method, Markov chain Monte Carlo, and annealing. In this paper, we introduce
a new scheme for Bayesian inference, called asymptotically independent Markov sampling (AIMS), which is based on
the above methods. We derive important ergodic properties of AIMS. In particular, it is shown that, under certain
conditions, the AIMS algorithm produces a uniformly ergodic Markov chain. The choice of the free parameters of the
algorithm is discussed and recommendations are provided for this choice, both theoretically and heuristically based.
The efficiency of AIMS is demonstrated with three numerical examples, which include both multimodal and higher-
dimensional target posterior distributions.

KEY WORDS: Bayesian inference, uncertainty quantification, Markov chain Monte Carlo, importance
sampling, simulated annealing

1. THREE CORNERSTONES OF COMPUTATIONAL BAYESIAN INFERENCE

In Bayesian statistics, many problems can be expressed as the evaluation of the expectation of a quantity of interest
with respect to the posterior distribution. Standard Monte Carlo simulation [1], where expectations are estimated by
sample averages based on samples drawn independently from the posterior, is often not applicable because the encoun-
tered posterior distributions are multidimensional non-Gaussian distributions that cannot be explicitly normalized. In
this case, the most popular strategies are importance sampling and Markov chain Monte Carlo (MCMC) methods. We
briefly review these two methods first because they play an important role in the new MCMC method introduced in
this paper.

1.1 Importance Sampling

This is nearly as old as the Monte Carlo method (see, for instance, [2]), and works as follows. Suppose we want to
evaluateEπ[h], which is an expectation of a function of interesth : Θ → R under distributionπ(·) defined on a
parameter spaceΘ ⊆ Rd,

Eπ[h] =
∫

Θ

h(θ)π(θ)dθ. (1)

Unless otherwise stated, all probability distributions are assumed to have densities with respect to Lebesgue measure,
π(dθ) = π(θ)dθ. For simplicity, the same symbol will be used to denote both the distribution and its density, and we
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write θ ∼ π(·) to denote thatθ is distributed according toπ(·). Suppose also that we are not able to sample directly
from π(·), although we can computeπ(θ) for anyθ ∈ Θ to within a proportionality constant. Instead, we sample from
some other distributionq(·) on Θ which is readily computable for anyθ ∈ Θ. Let θ(1), . . . , θ(N) beN independent
and identically distributed (i.i.d.) samples fromq(·), andw(i) = π(θ(i))/q(θ(i)) denote theimportance weightof the
ith sample, then we can estimateEπ[h] by

ĥN =
∑N

i=1 w(i)h(θ(i))∑N
i=1 w(i)

. (2)

The estimator̂hN converges almost surely asN → ∞ to Eπ[h] by the strong law of large numbers for any choice
of distribution q(·), providedsupp(π) ⊆ supp(q). Note that the latter condition automatically holds in Bayesian
updating using dataD, whereq(θ) = π0(θ) is the prior density andπ(θ) ∝ π0(θ)L(θ) is the posteriorp(θ|D), where
L stands for the likelihood functionp(D|θ).

The estimator̂hN in (2) generally has a smaller mean square error than a more straightforward unbiased impor-
tance sampling estimator:

ĥ′N =
1
N

N∑

i=1

w(i)h(θ(i)). (3)

This is especially clear whenh is nearly a constant: ifh ≈ c, thenĥN ≈ c, while ĥ′N has a larger variation. Although
ĥN is biased for any finiteN , the bias can be made small by taking sufficiently largeN , and the improvement in
variance makes it a preferred alternative toĥ′N [3, 4]. Another major advantage of usinĝhN instead of̂h′N , which
is especially important for Bayesian applications, is that in using the former we need to knowπ(θ) only up to a
multiplicative normalizing constant, whereas in the latter, this constant must be known exactly.

The accuracy of̂hN depends critically on the choice of theimportance sampling distribution(ISD) q(·), which is
also called theinstrumentalor trial distribution. Ifq(·) is chosen carelessly such that the the importance weightsw(i)

have a large variation, then̂hN is essentially based only on the few samplesθ(i) with the largest weights, yielding
generally a very poor estimate. Hence, for importance sampling to work efficiently,q(·) must be a good approximation
of π(·)—“the importance sampling density should mimic the posterior density” [5]—so that the variancevarq[w] is
not large. Since usually the prior and posterior are quite different, it is therefore highly inefficient to use the prior as
the importance sampling distribution. WhenΘ is high-dimensional andπ(·) is complex, finding a good importance
sampling distribution can be very challenging, limiting the applicability of the method [6].

For the estimator̂h′N in (3), it is not difficult to show that the optimal importance sampling density, i.e.,q∗(·) that
minimizes the variance of̂h′N , is q∗(θ) ∝ |h(θ)|π(θ). This result is sometimes attributed to Rubinstein [7], although
it was proved earlier by Kahn and Marshall [2]. It is not true, however, thatq∗(·) is optimal for the estimator̂hN . Note
also that this optimality result is not useful in practice, since whenh(θ) ≥ 0, the required normalizing constant of
q∗(·) is

∫
Θ

h(θ)π(θ)dθ, the integral of interest.

1.2 MCMC Sampling

Instead of generating independent samples from an ISD, we could generate dependent samples by simulating a Markov
chain whose state distribution converges to the posterior distributionπ(·) as its stationary distribution. MCMC sam-
pling originated in statistical physics, and now is widely used in solving statistical problems [3, 4, 8, 9].

The Metropolis-Hastings algorithm [10, 11], the most popular MCMC technique, works as follows. Letq(·|θ) be
a distribution onΘ, which may or may not depend onθ ∈ Θ. Assume thatq(·|θ) is easy to sample from and it is
either computable (up to a multiplicative constant) or symmetric, i.e.,q(ξ|θ) = q(θ|ξ). The sampling distribution
q(·|θ) is called theproposal distribution. Starting from essentially anyθ(1) ∈ supp(π), the Metropolis-Hastings al-
gorithm proceeds by iterating the following two steps. First, generate acandidatestateξ from the proposal density
q(·|θ(n)). Second, either acceptξ as the next state of the Markov chain,θ(n+1) = ξ, with probabilityα(ξ|θ(n)) =
min

{
1, [π(ξ)q(θ(n)|ξ)]/[π(θ(n))q(ξ|θ(n))]

}
; or rejectξ and setθ(n+1) = θ(n) with the remaining probability
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1 − α(ξ|θ(n)). It can be shown (see, for example, [4]), that under fairly weak conditions,π(·) is the stationary
distribution of the Markov chainθ(1), θ(2), . . . , and

lim
N→∞

1
N

N∑

i=1

h(θ(i)) =
∫

Θ

h(θ)π(θ)dθ. (4)

Since the chain needs some time (so called “burn-in” period) to converge to stationarity, in practice an initial portion
of, say,N0 states is usually discarded and

h̃N =
1

N −N0

N∑

i=N0+1

h(θ(i)) (5)

is used as an estimator forEπ[h].
The two main special cases of the Metropolis-Hastings algorithm are independent Metropolis-Hastings (IMH),

where the proposal distributionq(ξ|θ) = qg(ξ) is independent ofθ (so qg is a global proposal), and random walk
Metropolis-Hastings (RWMH), where the proposal distribution is of the formq(ξ|θ) = ql(ξ − θ), i.e., a candidate
state is proposed asξ = θ(n) + εn, whereεn ∼ ql(·) is a random perturbation (soql is a local proposal). In both
cases, the choice of the proposal distribution strongly affects the efficiency of the algorithms. For IMH to work well,
as with importance sampling, the proposal distribution must be a good approximation of thetarget distributionπ(·),
otherwise a large fraction of the candidate samples will be rejected and the Markov chain will be too slow in covering
the important regions forπ(·). When, however, it is possible to find a proposalqg(·), such thatqg(·) ≈ π(·), IMH
should always be preferred to RWMH because of better efficiency, i.e., better approximations ofEπ[h] for a given
number of samplesN . Unfortunately, such a proposal is difficult to construct in the context of Bayesian inference
where the posteriorπ(·) is often complex and high-dimensional. This limits the applicability of IMH.

Since the random walk proposalql(·) is local, it is less sensitive to the target distribution. That is why, in practice,
RWMH is more robust and used more frequently than IMH. Nonetheless, there are settings where RWMH also does
not work well because of the complexity of the posterior distribution. Although (4) is true in theory, a potential
problem with RWMH (and, in fact, with any MCMC algorithm) is that the generated samplesθ(1), . . . , θ(N) often
consist of highly correlated samples. Therefore, the estimatorh̃N in (5) obtained from these samples tends to have a
large variance for a modest amount of samples. This is especially true when the posterior distribution contains several
widely separated modes: a chain will move between modes only rarely and it will take a long time before it reaches
stationarity. If this is the case, an estimate produced byh̃N will be very inaccurate. At first glance, it seems natural
to generate several independent Markov chains, starting from different random seeds, and hope that different chains
will get trapped by different modes. However, multiple runs will not in general generate a sample in which each
mode is correctly represented, since the probability of a chain reaching a mode depends more on the mode’s “basin of
attraction” than on the probability concentrated in the mode [12].

1.3 Annealing

The concept ofannealing(or tempering), which involves moving from an easy-to-sample distribution to the target
distribution via a sequence of intermediate distributions, is one of the most effective methods of handling multiple
isolated modes. Together with importance sampling and MCMC, annealing constitutes the third cornerstone of com-
putational Bayesian inference.

The idea of using the RWMH algorithm in conjunction with annealing was introduced independently in [13]
and [14] for solving difficult optimization problems. The resulting algorithm, calledsimulated annealing, works as
follows. Suppose we want to find the global minimum of a function of interesth : Θ → R. This is equivalent to
finding the global maximum offT (θ) = exp[−h(θ)/T ] for any givenT > 0. By analogy with the Gibbs distribution
in statistical mechanics,T is called thetemperature parameter. Let T0 > T1 > ... be a sequence of monotonically
decreasing temperatures, in whichT0 is large enough so that the probability distributionπ0(θ) ∝ fT0(θ) is close to
uniform, andlimj→∞ Tj = 0. At each temperatureTj , the simulated annealing method generates a Markov chain
with πj(θ) ∝ exp[−h(θ)/Tj ] as its stationary distribution. The final state of the Markov chain at simulation level
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j is used as the initial state for the chain at levelj + 1. The key observation is that for any functionh such that∫
Θ

exp[−h(θ)/T ]dθ < ∞ for all T > 0, distributionπj(·), asj increases, puts more and more of its probability
mass (converging to1) into a neighborhood of the global minimum ofh. Therefore, a sample drawn fromπj(·) would
almost surely be in a vicinity of the global minimum ofh whenTj is close to zero.

The success of simulated annealing in finding the global minimum crucially depends on the schedule of temper-
atures used in the simulation. It was proved in [15] that if a logarithmic scheduleTj = T0/ log(j + 1) is used, then,
under certain conditions, there exists a value forT0 such that use of this schedule guarantees that the global minimum
of h will be reached almost surely. In practice, however, such a slow annealing schedule is not computationally effi-
cient. It is more common to use either a geometric schedule,Tj+1 = γTj with 0 < γ < 1, or some adaptive schedule,
which defines the temperature for the next annealing level based on characteristics of the samples observed at earlier
levels. For examples of adaptive annealing schedules, see, for instance, [9].

In Bayesian inference problems, the idea of annealing is typically employed in the following way. First, we con-
struct (in advance or adaptively), a sequence of distributionsπ0(·), . . . , πm(·) interpolating between the prior distri-
bution π0(·) and the posterior distributionπ(·) ≡ πm(·). Next, we generate i.i.d. samplesθ

(1)
0 , . . . , θ

(N)
0 from the

prior, which is assumed to be readily sampled. Then, at each annealing levelj, using some MCMC algorithm and
samplesθ(1)

j−1, . . . , θ
(N)
j−1 from the previous levelj − 1, we generate samplesθ(1)

j , . . . , θ
(N)
j which are approximately

distributed according toπj(·). We proceed sequentially in this way, until the posterior distribution has been sampled.
The rationale behind this strategy is that sampling from the multimodal and, perhaps, high-dimensional posterior in
such a way is likely to be more efficient than a straightforward MCMC sampling of the posterior.

The problem of sampling a complex probability distribution is encountered in statistical mechanics, molecular
dynamics, computational Bayesian inference, scientific computing, machine learning, and other fields. As a result,
many different efficient algorithms have been recently developed, e.g., hybrid (Hamiltonian) Monte Carlo [16–18],
the method of simulated tempering [19, 20], the tempered transition method [12], annealed importance sampling [21],
the adaptive Metropolis-Hastings algorithm [22], sequential Monte Carlo sampler [23, 24], transitional Markov chain
Monte Carlo method [25], to name a few.

In this paper we introduce a new MCMC scheme for Bayesian inference, calledasymptotically independent
Markov sampling(AIMS), which combines the three approaches described above—importance sampling, MCMC,
and annealing—in the following way. Importance sampling withπj−1(·) as the ISD is used for a construction of an

approximation̂πN
j (·) of πj(·), which is based on samplesθ

(1)
j−1, . . . , θ

(N)
j−1 ∼ πj−1(·). This approximation is then em-

ployed as the independent (global) proposal distribution for sampling fromπj(·) by the IMH algorithm. Intermediate
distributionsπ0(·), . . . , πm(·) interpolating between prior and posterior are constructed adaptively, using the essential
sample size (ESS) to measure how muchπj−1(·) differs from πj(·). When the number of samplesN → ∞, the
approximation̂πN

j (·) converges toπj(·), providing the optimal proposal distribution. In other words, whenN →∞,
the corresponding MCMC sampler produces independent samples, hence the name of the algorithm.

Remark 1. The term “Markov sampling” has several different meanings. In this paper it is used as synonymous to
“MCMC sampling.”

In this introductory section, we have described all the main ingredients that we will need in the subsequent sections.
The rest of the paper is organized as follows. In Section 2, the AIMS algorithm is described. The efficiency of AIMS
is illustrated in Section 3 with three numerical examples that include both multimodal and high-dimensional posterior
distributions. Concluding remarks are made in Section 4. The ergodic properties of AIMS are derived in the Appendix.

2. ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING

Let π0(·) andπ(·) be the prior and the posterior distributions defined on a parameter spaceΘ, respectively, so that,
according to Bayes’ Theorem,π(θ) ∝ π0(θ)L(θ), whereL denotes the likelihood function for dataD. Our ultimate
goal is to draw samples that are distributed according toπ(·).

In AIMS, we sequentially generate samples from intermediate distributionsπ0(·), . . . , πm(·) interpolating be-
tween the priorπ0(·) and the posteriorπ(·) ≡ πm(·). The sequence of distributions could be specially constructed for
a given problem but the following scheme [21, 25] generally yields good efficiency:
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πj(θ) ∝ π0(θ)L(θ)βj , (6)

where0 = β0 < β1 < ... < βm = 1. We will refer toj andβj as theannealing leveland theannealing parameter
at levelj, respectively. In the next subsection, we assume thatβj is given and therefore the intermediate distribution
πj(·) is also known. In Section 2.2, we describe how to choose the annealing parameters adaptively.

2.1 AIMS at Annealing Level j

Our first goal is to describe how AIMS generates sampleθ
(1)
j , . . . , θ

(Nj)
j from πj(·) based on the sampleθ(1)

j−1, . . . ,

θ
(Nj−1)
j−1 ∼ πj−1(·) obtained at the previous annealing level. We start with an informal motivating discussion that leads

to the simulation algorithm. In the Appendix, we rigorously prove that the corresponding algorithm indeed generates
samples which are asymptotically distributed according toπj(·), as the sample sizeNj → ∞. Moreover, the larger

Nj−1, the less correlated generated samplesθ
(1)
j , . . . , θ

(Nj)
j are—a very desirable, yet rarely affordable, property for

any MCMC algorithm.
LetKj(·|·) be any transition kernel such thatπj(·) is a stationary distribution with respect toKj(·|·). By definition,

this means that

πj(θ)dθ =
∫

Θ

Kj(dθ|ξ)πj(ξ)dξ. (7)

Applying importance sampling with the sampling densityπj−1(·) to integral (7), we have

πj(θ)dθ =
∫

Θ

Kj(dθ|ξ)
πj(ξ)

πj−1(ξ)
πj−1(ξ)dξ ≈

Nj−1∑

i=1

Kj

(
dθ|θ(i)

j−1

)
w̄

(i)
j−1

def= π̂
Nj−1
j (dθ), (8)

whereπ̂
Nj−1
j (·) will be used as theglobal proposaldistribution in the independent Metropolis-Hastings algorithm,

and

w
(i)
j−1 =

πj

(
θ

(i)
j−1

)

πj−1

(
θ

(i)
j−1

) ∝ L
(
θ

(i)
j−1

)βj−βj−1

and w̄
(i)
j−1 =

w
(i)
j−1∑Nj−1

k=1 w
(k)
j−1

(9)

are the importance weights and normalized importance weights, respectively. Note that to calculatew̄
(i)
j−1, we do not

need to know the normalizing constants ofπj−1(·) andπj(·). If adjacent intermediate distributionsπj−1(·) andπj(·)
are sufficiently close (in other words, if∆βj = βj −βj−1 is small enough), then the importance weights (9) will not
vary wildly, and therefore we can expect that for reasonably largeNj−1, approximation(8) is accurate.

Remark 2. In [26], the stationary condition (7) was used for an analytical approximation of the target PDF to
evaluate the evidence (marginal likelihood) for a model.

Remark 3. Note that for any finiteNj−1, distributionπ̂
Nj−1
j (·) will usually have both continuous and discrete parts.

This follows from the fact that the transition kernel in Markov chain simulation usually has the following form:
K(dθ|ξ) = k(θ|ξ)dθ+r(ξ)δξ(dθ), wherek(·|·) describes the continuous part of the transition kernel,δξ(·) denotes
the Dirac mass atξ, andr(ξ) = 1−∫

Θ
k(θ|ξ)dθ. This is the form, for example, for the Metropolis-Hastings algorithm.

Therefore, (8) must be understood as the approximate equality of distributions, not densities. In other words, (8)
means thatE

π̂
Nj−1
j

[h] ≈ Eπj [h] andE
π̂

Nj−1
j

[h] → Eπj [h], whenNj−1 →∞, for all integrable functionsh. See also

Example 2.1 below.

From now on, we consider a special case whereKj(·|·) is the random walk Metropolis-Hastings (RWMH) transi-
tion kernel. In this case, it can be written as follows:

Kj(dθ|ξ) = qj(θ|ξ)min
{

1,
πj(θ)
πj(ξ)

}
dθ + [1− aj(ξ)]δξ(dθ), (10)
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whereqj(·|ξ) is a symmetriclocal proposal density, andaj(ξ) is the probability of having a proper transitionξ to
Θ \ {ξ}:

aj(ξ) =
∫

Θ

qj(θ|ξ) min
{

1,
πj(θ)
πj(ξ)

}
dθ. (11)

Example 2.1.As a simple illustration of (8), consider the case whenπj(·) = N (·|0, 1), πj−1(·) = N (·|0, 2), and
qj(·|ξ) = N (·|ξ, 1/2), whereN (·|µ, σ2) denotes the Gaussian density with meanµ and varianceσ2. The approxima-

tion π̂
Nj−1
j (·) based on the samplesθ

(1)
j−1, . . . , θ

(Nj−1)
j−1 ∼ N (·|0, 2) is shown in the top panels of Fig. 1, forNj−1 = 5

andNj−1 = 50. Suppose thath1(θ) = θ andh2(θ) = θ2 are the functions of interest. ThenEπj [h1] = 0 and
Eπj [h2] = 1. The convergence ofh∗1(Nj−1) = E

π̂
Nj−1
j

[h1] andh∗2(Nj−1) = E
π̂

Nj−1
j

[h2] is shown in the bottom

panel of Fig. 1.
For sampling fromπj(·), we will use the IMH algorithm with theglobalproposal distribution̂πNj−1

j (·). To accom-

plish this, we have to be able to calculate the ratioπ̂
Nj−1
j (θ)/π̂

Nj−1
j (ξ) for anyθ, ξ ∈ Θ as a part of the expression for

the acceptance probabilityαj(ξ|θ) = min
{

1, [πj(ξ)π̂Nj−1
j (θ)]/[πj(θ)π̂Nj−1

j (ξ)]
}

. However, as already mentioned,

the distribution̂πNj−1
j (·) does not have a density since it has both continuous and discrete components, and therefore

the ratioπ̂
Nj−1
j (θ)/π̂

Nj−1
j (ξ) makes no sense. To overcome this “lack-of continuity problem,” taking into account (8)

and (10), let usformallydefine the global proposal distribution overΘ as

π̂
Nj−1
j (θ) def=

Nj−1∑

i=1

w̄
(i)
j−1qj

(
θ|θ(i)

j−1

)
min



1,

πj(θ)

πj

(
θ

(i)
j−1

)


 , (12)
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FIG. 1: The top panels show the distributionπj(·) (solid lines) and its approximation̂πNj−1
j (·), for Nj−1 = 5

(left) andNj−1 = 50 (right). Dashed lines and bars correspond to the continuous and discrete parts ofπ̂
Nj−1
j (·),

respectively. The bottom panel shows the convergence ofh∗1(Nj−1) = E
π̂

Nj−1
j

[h1] andh∗2(Nj−1) = E
π̂

Nj−1
j

[h2] to

the true values,0 and1, respectively [Example 2.1].
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if θ /∈
{
θ

(1)
j−1, . . . , θ

(Nj−1)
j−1

}
, and

π̂
Nj−1
j

(
θ

(k)
j−1

)
def= ∞ (13)

Note that̂πNj−1
j (·) is a distribution onΘ, but it does not have a density. However,π̂

Nj−1
j (·) induces another distribution

onΘ \
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
which does have a density, given by the right-hand side of (12). This motivates (12).

Now, using (12) and (13), we can calculate the ratioπ̂
Nj−1
j (θ)/π̂

Nj−1
j (ξ) as follows:

I. If θ, ξ /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
, then

π̂
Nj−1
j (θ)

π̂
Nj−1
j (ξ)

=

∑Nj−1
i=1 w̄

(i)
j−1qj

(
θ|θ(i)

j−1

)
min

{
1, πj(θ)/πj [θ

(i)
j−1]

}

∑Nj−1
i=1 w̄

(i)
j−1qj

(
ξ|θ(i)

j−1

)
min

{
1, πj(ξ)/πj [θ

(i)
j−1]

} (14)

II. If θ /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
andξ = θ

(k)
j−1, then

π̂
Nj−1
j (θ)

π̂
Nj−1
j (ξ)

= 0 and αj(ξ|θ) = 0 (15)

III. If θ = θ
(k)
j−1 andξ /∈

{
θ

(1)
j−1, . . . , θ

(Nj−1)
j−1

}
, then

π̂
Nj−1
j (θ)

π̂
Nj−1
j (ξ)

= ∞ and αj(ξ|θ) = 1 (16)

IV. If θ = θ
(k)
j−1 andξ = θ

(l)
j−1, then[π̂Nj−1

j (θ)]/[π̂Nj−1
j (ξ)] is not defined.

Notice that in the first three cases the ratioπ̂
Nj−1
j (θ)/π̂

Nj−1
j (ξ) is readily computable, while in case IV it is

not even defined. Therefore, it is very desirable to avoid case IV. The key observation that allows us to do this is

the following: suppose that the initial stateθ(1)
j of the Markov chain that is generated is such thatθ

(1)
j ∈ Θ∗j

def=

Θ \
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
, then θ

(i)
j ∈ Θ∗j for all i ≥ 1. Indeed, the only way for the chain to enter the set{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
is to generate a candidate stateξ ∈

{
θ

(1)
j−1, . . . , θ

(Nj−1)
j−1

}
; however, according to case II, such

a candidate will always be rejected. Thus, by replacing the state spaceΘ by Θ∗j and using (14) and (15) for evalua-

tion of π̂Nj−1
j (θ)/π̂

Nj−1
j (ξ), we are able to calculate the acceptance probabilityαj(ξ|θ) = min{1, [πj(ξ)π̂Nj−1

j (θ)]/

[πj(θ)π̂Nj−1
j (ξ)]} involved in the IMH algorithm. It is clear that the replacement ofΘ by Θ∗j is harmless for the

ergodic properties of the Markov chain whenΘ ⊆ Rd.

Remark 4. One may wonder why not just use the continuous part ofπ̂
Nj−1
j (·) as the global proposal density within

the IMH algorithm. In other words, why not use the densityπ̂
Nj−1
j,cont(·), which is proportional to the function de-

fined by (12), as the proposal density. Indeed, in this case we would not have any difficulties with calculating the
ratio π̂

Nj−1
j (θ)/π̂

Nj−1
j (ξ). The problem is that it is not clear how to sample fromπ̂Nj−1

j,cont(·), while sampling from

π̂
Nj−1
j (dθ) =

∑Nj−1
i=1 w̄

(i)
j−1Kj(dθ|θ(i)

j−1) is straightforward.

The above discussion leads to the following algorithm for sampling from the distributionπj(·):
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AIMS at annealing level j

Input:

B θ
(1)
j−1, . . . , θ

(Nj−1)
j−1 ∼ πj−1(·), samples generated at annealing levelj − 1;

B θ
(1)
j ∈ Θ∗j = Θ \

{
θ

(1)
j−1, . . . , θ

(Nj−1)
j−1

}
, initial state of a Markov chain;

B qj(·|ξ), symmetric proposal density associated with the RWMH kernel;
B Nj , total number of Markov chain states to be generated.

Algorithm:
for i = 1, . . . , Nj − 1 do

1) Generate a global candidate stateξg ∼ π̂
Nj−1
j (·) as follows:

a. Selectk from {1, . . . , Nj−1} with probabilitiesw̄(i)
j−1 given by (9).

b. Generate a local candidateξl ∼ qj(·|θ(k)
j−1).

c. Accept or rejectξl by setting

ξg =





ξl, with probability min



1,

πj(ξl)

πj

(
θ

(k)
j−1

)


 ;

θ
(k)
j−1, with the remaining probability.

(17)

2) Updateθ(i)
j → θ

(i+1)
j by accepting or rejectingξg as follows:

if ξg = θ
(k)
j−1

Setθ(i+1)
j = θ

(i)
j

else
Set

θ
(i+1)
j =





ξg, with probability min



1,

πj(ξg)π̂
Nj−1
j

(
θ

(i)
j

)

πj

(
θ

(i)
j

)
π̂

Nj−1
j (ξg)



 ;

θ
(i)
j , with the remaining probability.

(18)

end if
end for

Output:

I θ
(1)
j , . . . , θ

(Nj)
j , Nj states of a Markov chain with a stationary distributionπj(·)

Schematically, the AIMS algorithm at annealing levelj is shown in Fig. 2. The proof thatπj(·) is indeed a
stationary distribution for the Markov chain generated by AIMS is given in the Appendix.

It is important to highlight the low computational complexity of the described algorithm. In the Bayesian inference
problems of interest to us, the major calculations are the evaluations of the likelihood functionL(θ) (e.g., computing
responses of a dynamic system). Since these evaluations ofL(θ) are “expensive” for anyθ, they dominate the total
computational complexity. All other arithmetic operations are relatively “cheap” when compared with likelihood
evaluations. To generate a new sample in AIMS, we need to evaluate the likelihood just once, which is the minimal
number one can have. Indeed, to update the Markov chain fromθ

(i)
j to θ

(i+1)
j , we only need to computeL(ξl),

which is a part ofπj(ξl) in (17). All other likelihoods are already computed either at the previous annealing level

[L(θ(i)
j−1), wherei = 1, . . . , Nj−1] or at the previous Markov chain update at the current annealing level [L(θ(i)

j )]. As
a result, calculation of the acceptance probability in (18) does not involve any new likelihood evaluations [note that
we compute (18) only whenξg = ξl]. Thus, the computational complexity of obtainingNj samples approximately
distributed according toπj(·) isO(Nj).
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(i−1)

θ
j
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FIG. 2: AIMS at annealing levelj: disks• and circles◦ representθ(1)
j−1, . . . , θ

(Nj−1)
j−1 andθ

(1)
j , . . . , θ

(Nj)
j , respectively;

concentric circles show the correspondence betweenθ
(k)
j−1 that has been chosen in step 1a and the corresponding local

candidateξl ∼ q(·|θ(k)
j−1) that has been generated in step 1b. In this schematic picture, all shown candidate states are

accepted as new states of the Markov chain.

Remark 5. As usual for MCMC algorithms, the fact of convergence of a Markov chain to its stationary distribution
does not depend on the initial state; however, the speed of convergence does. One reasonable way to chose the initial
stateθ

(1)
j ∈ Θ∗j in practical applications is the following: generateθ(1)

j ∼ qj(·|θ(k∗)
j−1 ), wherek∗ = arg maxk w̄

(k)
j−1,

i.e.θ(k∗)
j−1 has the largest normalized importance weight.

Remark 6. From a computer implementation perspective, it is important to highlight that the accept/reject steps in
(17) and (18) can be combined; namely, after step 1) b, set

θ
(i+1)
j =





ξl, with probability min



1,

πj(ξl)

πj

(
θ

(k)
j−1

)


 min



1,

πj(ξl)π̂
Nj−1
j

(
θ

(i)
j

)

πj

(
θ

(i)
j

)
π̂

Nj−1
j (ξl)



 ;

θ
(i)
j , with the remaining probability.

(19)

2.2 The Full AIMS Procedure

At the zeroth annealing levelj = 0, we generate prior samplesθ(1)
0 , . . . , θ

(N0)
0 , which usually can be readily drawn

directly by a suitable choice of the prior distributionπ0(·). Then, using the algorithm described in the previous subsec-
tion, we generate samplesθ

(1)
1 , . . . , θ

(N1)
1 , which are approximately distributed according to intermediate distribution

π1(θ) ∝ π0(θ)L(θ)β1 . We proceed like this until the posterior distributionπm(θ) ∝ π0(θ)L(θ)βm (βm = 1) has
been sampled. To make the description of AIMS complete, we have to explain how to choose the annealing parameters
βj , for j = 2, . . . ,m− 1.

It is clear that the choice of the annealing parameters is very important, since, for instance, it affects the accuracy
of the importance sampling approximation (8) and therefore the efficiency of the whole AIMS procedure. At the same
time, it is difficult to make a rational choice of theβj values in advance, since this requires some prior knowledge
about the posterior distribution, which is often not available. For this reason, we propose an adaptive way of choosing
the annealing scheme.
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In importance sampling, a useful measure of degeneracy of the method is theeffective sample size(ESS)N eff

introduced in [27] and [28]. The ESS measures how similar the importance sampling distributionπj−1(·) is to the

target distributionπj(·). SupposeNj−1 independent samplesθ(1)
j−1, . . . , θ

(Nj−1)
j−1 are generated fromπj−1(·), then the

ESS of these samples is defined as

N eff
j−1 =

Nj−1

1 + varπj−1 [w]
=

Nj−1

Eπj−1 [w2]
, (20)

wherew(θ) = πj(θ)/πj−1(θ). The ESS can be interpreted as implying thatNj−1 weighted samples(θ(1)
j−1, w

(1)
j−1), . . . ,

(θ(Nj−1)
j−1 , w

(Nj−1)
j−1 ) are worthN eff

j−1(≤ Nj−1) i.i.d. samples drawn from the target distributionπj(·). One cannot eval-

uate the ESS exactly but an estimateN̂ eff
j−1 of N eff

j−1 is given by

N̂ eff
j−1(w̄j−1) =

1
∑Nj−1

i=1

(
w̄

(i)
j−1

)2 , (21)

wherew̄j−1 = (w̄(1)
j−1, . . . , w̄

(Nj−1)
j−1 ) andw̄

(i)
j−1 is the normalized importance weight ofθ

(i)
j−1.

At annealing levelj, whenβj−1 is already known, the problem is to defineβj . Letγ = N̂ eff
j−1/Nj−1 ∈ (0, 1) be a

prescribed threshold that characterizes the “quality” of the weighted sample (the largerγ is, the “better” the weighted
sample is). Then we obtain the following equation:

Nj−1∑

i=1

(
w̄

(i)
j−1

)2

=
1

γNj−1
(22)

Observe that this equation can be expressed as an equation forβj by using (9):

∑Nj−1
i=1 L

(
θ

(i)
j−1

)2(βj−βj−1)

[∑Nj−1
i=1 L

(
θ

(i)
j−1

)βj−βj−1
]2 =

1
γNj−1

(23)

Solving this equation forβj gives us the value of the annealing parameter at levelj.

Remark 7. Note that whenj ≥ 2, theθ
(1)
j−1, . . . , θ

(Nj−1)
j−1 are generated by the Markov chain sampler described in

the previous subsection and therefore are not independent. This means that because of the autocorrelations produced
by the Markov chain used, the “true” ESS of this sample is, in fact, smaller than the one given by (20). This is useful
to remember when choosingγ. Also, this is another reason to select the prior distributionπ0(·) so that samples can
be generated independently at the start of each AIMS run.

Combining the AIMS algorithm at a given annealing level with the described adaptive annealing scheme gives
rise to the following procedure:

The AIMS procedure

Input:
B γ, threshold for the ESS;
B N0, N1, . . ., whereNj is the total number of Markov chain states to be generated

at annealing levelj;
B q1(·|ξ), q2(·|ξ), . . ., whereqj(·|ξ) is the symmetric proposal density associated with

the RWMH kernel at annealing levelj.
Algorithm:
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Setj = 0, current annealing level.
Setβ0 = 0, current annealing parameter.

Sampleθ(1)
0 , . . . , θ

(N0)
0

i.i.d∼ π0(·).
CalculateW̄ (i)

0 = [L(θ(i)
0 )1−β0 ]/[

∑N0
i=1 L(θ(i)

0 )1−β0 ], i = 1, . . . , N0.
Calculate the ESŜN eff

0 = N̂ eff
0 (W̄0) using (21), which measures how similar the

prior distributionπ0(·) is to the target posterior distributionπ(·).
while N̂ eff

j /Nj < γ do
Findβj+1 from Eq. (23).

Calculate normalized importance weightsw̄
(i)
j , i = 1, . . . , Nj using (9).

Generate a Markov chainθ(1)
j+1, . . . , θ

(Nj+1)
j+1 with the stationary distribution

πj+1(·) using the AIMS algorithm at annealing levelj + 1.

CalculateW̄ (i)
j+1 = [L(θ(i)

j+1)
1−βj+1 ]/[

∑Nj+1
i=1 L(θ(i)

j+1)
1−βj+1 ], i = 1, . . . , Nj+1.

Calculate the ESŜN eff
j+1 = N̂ eff

j+1(W̄j+1) using (21), which measures how
similar the intermediate distributionπj+1(·) is to the posteriorπ(·).
Incrementj to j + 1.

end while
Setβj+1 = 1, current annealing parameter.
Setm = j + 1, the total number of distributions in the annealing scheme.

Setw̄(i)
m−1 = W̄

(i)
m−1, i = 1, . . . , Nm−1.

Generate a Markov chainθ(1)
m , . . . , θ

(Nm)
m with the stationary distribution

πm(·) = π(·) using the AIMS algorithm at annealing levelm.
Output:

I θ
(1)
m , . . . , θ

(Nm)
m ∼̇π(·), samples that are approximately distributed according

to the posterior distribution.

Remark 8. Among all published algorithms we are aware of, the transitional Markov chain Monte Carlo (TMCMC)
method [25] is the one closest to AIMS. The main difference between AIMS and TMCMC is in how samples at a given
annealing level are generated. In AIMS,θ

(1)
j , . . . , θ

(Nj)
j are obtained by generating a single Markov chain using IMH

with the global proposal distribution̂πNj−1
j (·), which is constructed based on the samplesθ

(1)
j−1, . . . , θ

(Nj−1)
j−1 from the

previous annealing level. On the contrary, in TMCMC the resampling procedure is first performed:θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

are resampled with respect to the weights (9). After that, starting from eachθ
(i)
j−1, i = 1, . . . , Nj−1, a Markov chain

of lengthn
(i)
j is generated using RWMH with the local proposal distribution, wheren

(i)
j (possibly zero) is the number

of timesθ(i)
j−1 has been resampled, so

∑
i n

(i)
j = Nj . As a result, in TMCMCθ(1)

j , . . . , θ
(Nj)
j are obtained as samples

from multiple Markov chains, which are typically very short (then
(i)
j are small compared toNj). Therefore, they may

not settle down into the stationary state [for finiteNj−1, the resampledθ(i)
j−1 serving as initial seeds for multiple

Markov chains need not be distributed according to the stationary distributionπj(·)]. In Section 3, we compare the
performance of AIMS and TMCMC using high-dimensional examples.

2.3 Implementation Issues

As it follows from the description, the AIMS procedure has the following parameters:γ, the threshold for the effective
sample size;Nj , the length of a Markov chain generated at annealing levelj = 1, . . . , m; andqj(·|ξ), the symmetric
proposal density associated with the RWMH kernel at levelj = 1, . . . , m. Here, we discuss the choice of these
parameters and how this choice affects the efficiency of AIMS.
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First, it is absolutely clear that, as for any Monte Carlo method, the larger the number of generated samples
is, the more accurate the corresponding estimates of (1) are. However, we would like to highlight the difference
between the roles ofNj−1 andNj at annealing levelj. While Nj is directly related to the convergence of the chain

θ
(1)
j , . . . , θ

(Nj)
j to its stationary distributionπj(·), Nj−1 affects this convergence implicitly through the global proposal

distribution π̂
Nj−1
j (·): the largerNj−1, the more accurate approximation (8) is, and therefore the less correlated

θ
(1)
j , . . . , θ

(Nj)
j are. WhenNj−1 → ∞, samplesθ(1)

j , . . . , θ
(Nj)
j become independent draws fromπj(·), hence the

name of the algorithm. Thus, if we increaseN = Nj−1 = Nj , the effect is twofold: first, the sample size increases,
thereby increasing the effective number of independent samples at thejth level (typical for any Monte Carlo method);
second, the samples become less correlated (a useful feature of AIMS), again increasing the effective number of
independent samples. As a result of these two effects, increasingN has a strong influence on the effective number of
independent posterior samples and so strongly reduces the variance of the estimator for (1).

Suppose now that we are at the last annealing level and generating a Markov chainθ
(1)
m , . . . , θ

(Nm)
m with the sta-

tionary distributionπm(·) = π(·). We will refer to this chain as the posterior Markov chain. A critical question faced
by users of MCMC methods is how to determine when it is safe to stop sampling from the posterior distribution and
use samplesθ(1)

m , . . . , θ
(Nm)
m for estimation. In other words, how large shouldNm be? One possible solution of this

“convergence assessment problem” is to use one of the numerous published diagnostic techniques; for example, see
[29] for a comparative review of MCMC convergence diagnostics. Unfortunately, none of the published diagnostics
allows one to say with certainty that a finite sample from an MCMC algorithm is representative of an underlying sta-
tionary distribution. A more empirical approach for assessing convergence is to run several posterior Markov chains
θ

(1)
k,m, . . . , θ

(Nm)
k,m , k = 1, . . . , K, in parallel and monitor the corresponding estimatorsĥ1, . . . , ĥK of Eπ[h]. A stop-

ping rule for convergence is then
max

1≤i<j≤K
|ĥi − ĥj | < ε, (24)

whereε is a minimum precision requirement. Note that rule (24), although easy to understand and easy to implement,
does not assure convergence of the chains [especially ifπ(·) is multi-modal]: “the potential for problems with multiple
modes exists whenever there is no theoretical guarantee that the distribution is unimodal” [21].

The thresholdγ affects the speed of annealing. Ifγ is very small, i.e., close to zero, then AIMS will have very few
intermediate distributions interpolating between the prior and posterior distributions, and this will lead to inaccurate
results for a moderate number of samples. Ifγ is very large, i.e., close to 1, then AIMS will have too many intermediate
distributions, which will make the algorithm computationally very expensive.

The proposed method for findingβj values is based on the ESS, andβj is defined from Eq. (22) [or, equivalently,
from (23)]. A similar adaptive approach for defining an annealing scheme was proposed in [25]. It is based on the
coefficient of variation (COV) of the importance weights (9). More precisely, the equation forβj is given by

√
1

Nj−1

∑Nj−1
i=1

(
w

(i)
j−1 − 1

Nj−1

∑Nj−1
i=1 w

(i)
j−1

)2

1
Nj−1

∑Nj−1
i=1 w

(i)
j−1

= δ, (25)

whereδ > 0 is a prescribed threshold. It is easy to show that the ESS criterion (22) and the COV criterion (25)
are mathematically equivalent; in fact,̂N eff

j−1 = Nj−1/(1 + δ2). We prefer to use the former criterion sinceγ has a
clear meaning: it is the factor by which the (essential) sample size of the weighted sample is reduced as a penalty for
sampling from the importance sampling density instead of the target distribution. It has been found in [25] thatδ = 1
is usually a reasonable choice of the threshold. This corresponds toγ = 1/2. Our simulation results (see Section 3)
also show that annealing schemes withγ around1/2 yield good efficiency.

The choice of the local proposal densityqj(·|ξ) associated with the RWMH kernel determines the ergodic prop-
erties of the Markov chain generated by AIMS at levelj; it also determines how efficiently the chain explores local
neighborhoods of samplesθ(1)

j−1, . . . , θ
(Nj−1)
j−1 generated at the previous level. This makes the choice ofqj(·|ξ) very

important.
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It has been observed by many researchers that the efficiency of Metropolis-Hastings-based MCMC methods is
not sensitive to the type of the proposal density; however, it strongly depends on its variance (e.g., [30, 31]). For this
reason, we suggest using a Gaussian density as the local proposal:

qj(θ|ξ) = N (θ|ξ, c2
j I), (26)

whereξ andc2
j I are the mean and diagonal covariance matrix, respectively. The scaling parameterc2

j determines the
“spread” of the local proposal distribution. In the Appendix, we prove (Theorem 3) that under certain conditions,
the acceptance ratēAj (i.e., the expected probability of having a proper Markov transitionθ

(i)
j to θ

(i+1)
j 6= θ

(i)
j )

satisfiesĀj ≥ 1/M , where constantM depends onqj(·|ξ) and therefore onc2
j . This result can be potentially used

for finding an optimalc2
j that would minimizeM . Alternatively, a more empirical way of choosing the scaling factor

consists of adjustingc2
j based on the estimated acceptance rate. This works as follows: first, choose an initial value

for the scaling factor,c2
j,0, and estimate the corresponding acceptance rateĀj(c2

j,0) based onNj generated Markov
states, then modifyc2

j,0 to obtain an increase in̄Aj . Whether this optimization inc2
j is useful depends on whether

the accuracy of the estimator that is achieved compensates for the additional computational cost. Finally, note that
our simulation results show (see Section 3) that asj increases, the corresponding optimal scaling factorc2

j decreases
slightly. This observation coincides with intuition, since whenj increases, the intermediate distributionsπj(·) become
more concentrated.

3. ILLUSTRATIVE EXAMPLES

In this section we illustrate the use of AIMS with three examples: (1) mixture of ten Gaussian distributions in two
dimensions (a multimodal case); (2) sum of two multivariate Gaussian distributions in higher dimensions; and (3)
Bayesian updating of a neural network model.

3.1 Multimodal Mixture of Gaussians in Two Dimensions

To demonstrate the efficiency of AIMS for sampling from multimodal distributions, consider simulation from a trun-
cated two-dimensional mixture ofM Gaussian densities:

π(θ) ∝ π0(θ)× L(θ) = U[0,a]×[0,a](θ)
M∑

i=1

wiN (θ|µi,σ
2I2), (27)

whereU[0,a]×[0,a](·) denotes the uniform distribution on the square[0, a] × [0, a]. In this example,a = 10, M =
10, σ = 0.1, w1 = ... = w10 = 0.1, and the mean vectorsµ1, . . . , µ10 are drawn uniformly from the square
[0, 10]× [0, 10]. Because of our interest in Bayesian updating, we refer toπ(·) in (27) as a posterior distribution.

Figure 3(a) displays the scatterplot of103 posterior samples obtained from AIMS. Notice there are two clusters
of samples that overlap significantly nearθ = (4, 4) that reflect two closely spaced Gaussian densities but the other
eight clusters are widely spaced. The parameters of the algorithm were chosen as follows: sample sizeN = 103

per annealing level; the threshold for the ESSγ = 1/2; the local proposal densityqj(·|ξ) = N (·|ξ, c2I2), with
c = 0.2. The trajectory of the corresponding posterior Markov chain, i.e., the chain generated at the last annealing
level with stationary distributionπ(·), is shown in Fig. 3(b). Black crosses× represent the mean vectorsµ1, . . . , µ10.
As expected, the chain does not exhibit a local random walk behavior and it moves freely between well-separated
modes of the posterior distribution. Figures 3(c) and 3(d) are discussed later.

The described implementation of AIMS leads to a total number ofm = 6 intermediate distributions in the an-
nealing scheme. Figure 4 shows how annealing parameterβj changes as a function ofj for 50 independent runs of
the algorithm. It is found that in all considered examples,βj grows like an exponential withj except for the last step
(becauseβm is set to 1 to get the posterior).

To demonstrate the asymptotic properties of AIMS, in Fig. 5 we plot the normalized sample autocorrelation
function (ACF) of three Markov chains generated by AIMS: two intermediate chains (j = 2, 4) and the posterior

Volume 3, Number 5, 2013



458 Beck & Zuev

0 5 10
0

2

4

6

8

10

(a)

0 5 10
0

2

4

6

8

10

(b)

0 5 10
0

2

4

6

8

10

(c)

0 5 10
0

2

4

6

8

10

(d)

FIG. 3: (a) Scatterplots of103 posterior samples; (b) the trajectories of the corresponding posterior Markov chain
obtained from AIMS; and (c), (d) corresponding plots from RWMH. Black crosses× represent the modesµ1, . . . , µ10

of π(·) [example 3.1].
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FIG. 4: Annealing parameterβj as a function of annealing levelj for 50 independent runs of AIMS [example 3.1].

chain (j = 6). For each chain, we consider three different cases:N = 102, 103 and104 samples. Figure 5 shows
that for every Markov chain, the largerN , the less correlated its samplesθ

(1)
j , . . . , θ

(N)
j are. When the stationary

distributionπj(·) is relatively simple (j = 2), the influence ofN on the sample ACF is especially clear: the sample
ACF drops quickly at lag 1, and at lag 3 the states of the Markov chain withN = 104 are essentially uncorrelated.
However, if the stationary distribution is complex (j = 6), then the sample ACF is less sensitive to the sample sizeN .
Indeed, ifπj(·) is complex, then, to obtain an accurate approximationπ̂N

j (·) ≈ πj(·), N must be large. This behavior
of the ACF with increasingN is rare for MCMC algorithms; for example, increasingN does not affect the correlation
between TMCMC samples or MH samples.
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FIG. 5: The sample autocorrelation function of three Markov chains generated by AIMS: two intermediate chains
(j = 2, 4) and the posterior chain (j = 6) [example 3.1].

Let us now compare the performance of AIMS with the random walk Metropolis-Hastings algorithm. For a fair
comparison, the Metropolis-Hastings algorithm was implemented as follows. First, a sample ofN0 = 103 points
θ

(1)
0 , . . . , θ

(N0)
0 was drawn from the prior distributionπ0(·) = U[0,a]×[0,a](·) and the corresponding values of the

likelihood functionL(θ) =
∑M

i=1 wiN (θ|µi, σ
2I2) were calculated,Li = L(θ(i)

0 ). Then, starting from the point with

the largest likelihood,θ(1) = θ
(k)
0 , k = arg max Li, a Markov chainθ(1), . . . , θ(N), with stationary distributionπ(·)

was generated using the Metropolis-Hastings algorithm. The proposal distribution used wasq(·|ξ) = N(·|ξ, c2I2)
with c = 0.2, and the length of the chain wasN = 5 × 103. Thus, the total number of samples used in both AIMS
and RWMH wasNt = 6 × 103. The scatterplot of posterior samples obtained from RWMH and the trajectory of the
corresponding Markov chain are show in Figs. 3(c) and 3(d), respectively. While the AIMS algorithm successfully
sampled all ten modes with the approximately correct proportion of total samples, RWHM completely missed seven
modes.

Suppose that we are interested in estimating the posterior mean vector,µπ = (µπ
1 , µπ

2 ), and the components
(σπ

1 )2, (σπ
2 )2, σπ

12 of the posterior covariance matrixΣπ. Their true values are given in Table 1 along with the AIMS
estimates in terms of their means and coefficients of variation averaged over 50 independent simulations, all based on
103 posterior samples.

Figure 6 displays the mean square error (MSE) of the AIMS estimator for the posterior mean and covariance matrix
for different values of the scaling factorc. The MSE was estimated based on50 independent runs of the algorithm.
The MSE as a function ofc is nearly flat around the optimal,copt ≈ 0.15, i.e., the one that minimizes the MSE.

TABLE 1: True values of the posterior parameters and the
AIMS estimates in terms of their means and coefficients of
variation averaged over 50 simulations [example 3.1]

Parameter µπ
1 µπ

2 (σπ
1 )2 (σπ

2 )2 σπ
12

True value 5.23 5.75 4.51 3.37 –1.30
AIMS mean 5.20 5.73 4.56 3.32 –1.25
AIMS cov 2.4% 2.0% 8.2% 8.2% 27.7%
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FIG. 6: Mean square error of the AIMS estimator for the mean and covariance matrix as a function of the scaling
factorc showing the optimal value iscopt ≈ 0.15 [example 3.1].

3.2 Mixture of Two Higher-Dimensional Gaussians

To demonstrate the efficiency of AIMS for higher dimensionality, consider simulation from a truncated sum of two
multivariate Gaussian densities:

πd(θ) ∝ πd
0(θ)Ld(θ) = U[−a,a]d(θ)

[N (θ|µ1, σ
2Id) +N (θ|µ2, σ

2Id)
]
, (28)

wherea = 2, µ1 = (0.5, . . . , 0.5), µ2 = (−0.5, . . . ,−0.5), andσ = 0.5. Thus,πd(·) is a bimodal distribution on a
d-dimensional cube[−a, a]d. Suppose that a quantity of interest is the functionh : [−a, a]d → [−a, a] that gives the
largest component ofθ = (θ1, . . . , θd) ∈ [−a, a]d :

h(θ) = max{θ1, . . . , θd}, (29)

and we want to estimate its expectation with respect toπd(·) using posterior samplesθ(1), . . . , θ(N) ∼ πd(·) as
follows:

h̄ = Eπd [h] ≈ ĥN =
1
N

N∑

i=1

h
(
θ(i)

)
. (30)

This example is taken from [25], where the TMCMC for sampling from posterior densities was introduced.
Here, we consider five cases:d = 2, 4, 6, 10, and20. The performance of TMCMC was examined for only the

first three cases in [25]. The last two cases are higher dimensional, and therefore more challenging.
The details of implementation and simulation results from 50 independent runs are summarized in Table 2. The

exact valuēh is calculated by Monte Carlo withN = 105 samples. First, observe that AIMS outperforms TMCMC
whend = 2, 4, 6. Both methods are capable of generating samples from both modes of the posterior; however, the
probabilities of the modes (each is1/2 in this example) are found more accurately by AIMS.

Remark 9. In addition to the first three cases, five other scenarios with different probabilities of modes and different
values ofσ were examined in [25]. It is found that AIMS outperforms TMCMC in all these cases too.

Results presented in Table 2 help to shed some light on the properties of the optimal scaling parametercopt for the
proposal densityqj(·|ξ) = N (·|ξ, c2Id). It appears thatcopt depends not only on the dimensiond, which is expected,
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TABLE 2: Summary of the simulation results:d is the dimension of the sample space;h̄
and ĥN are the exact value ofEπd [h] and its estimated value, respectively;δ in parentheses
is the corresponding coefficient of variation;N , γ, copt, andm̄ are the number of samples
used per annealing level, the threshold for the ESS, the (nearly) optimal value of the scaling
parameter, and the average number of distributions in the annealing scheme, respectively. The
AIMS results are based on50 independent runs. The TMCMC results are taken from [25] and
are based on 50 independent runs [example 3.2]

Case d h̄ TMCMC : ĥN , (δ) AIMS : ĥN , (δ) N γ copt m̄

1 2 0.29 0.28 (12.3%) 0.29 (8.8%) 103 1/2 0.2 3
2 4 0.51 0.54 (10.0%) 0.51 (6.9%) 103 1/2 0.4 4
3 6 0.64 0.65 (15.7%) 0.64 (10.4%) 103 1/2 0.6 4.95
4 10 0.76 — 0.76 (26.7%) 103 1/2 0.7 5.84

10 0.76 — 0.76 (12.2%) 2× 103 1/2 0.6 5.98
5 20 0.92 — 0.95 (42.1%) 4× 103 1/2 0.5 5.58

but also onN , the number of samples used per each annealing level. The latter dependence is explained by the fact
that the global proposal distribution̂πN

j (·) for the AIMS Markov chain depends both onN andc: π̂N
j (·) is a weighted

sum ofN RWMH transition kernels with Gaussian proposal distributions, whose spread is controlled byc. WhenN
is fixed,copt is a monotonically increasing function ofd, since in higher dimensions, for optimal local exploration

of the neighborhoods ofθ(1)
j−1, . . . , θ

(N)
j−1, we have to be able to make larger local jumps fromθ

(k)
j−1 to ξl. Whend

is fixed, copt is a monotonically decreasing function ofN , since the more samplesθ(1)
j−1, . . . , θ

(N)
j−1 that have been

generated at the previous level, the more we can focus on local exploration of their neighborhoods without worrying
too much about regions that lie far away. If we think of the support ofqj(·|θ(k)

j−1) = N (·|θ(k)
j−1, c

2Id) as lying mostly

in ad-dimensional ball of radiusc centered atθ(k)
j−1, then we can explain the dependence ofcopt onN as follows: the

mored-dimensional balls of radiusc we have, the smallerc we can use for covering the sample space.
Next we look at how the local and global acceptance rates (see Remark 12 in Appendix A) depend on the scaling

parameterc. Figures 7–9 display these acceptance rates along with the coefficient of variationδ of the AIMS estimator
for the first three cases:d = 2, 4, and6, based on 50 independent runs. As expected, the global acceptance rate is
always smaller than the local acceptance rate, and the minimum value ofδ corresponds to the maximum value of the
global acceptance rate. Observe also that the peak of the global acceptance rate slides to the left whenj increases.
This suggests that it is more efficient to use smaller values ofc at higher annealing levels. Indeed, it is natural to expect
thatcopt

j > copt
j+1, since the intermediate distributionπj+1(·) is more concentrated thanπj(·).

Finally, we draw attention to case4 in Table 2 whered = 10 with N = 103 andN = 2 × 103 samples per
annealing level. Usually for Monte Carlo-based methods the coefficient of variationδ of the estimator is proportional
to 1/

√
Nt, whereNt is the total number of samples. Thus, the doubling of sample size will result in the reduction

of δ by the factor of1/
√

2 ≈ 0.71. For AIMS, however, the decrease ofδ is more significant: fromδ = 26.7% to
δ = 12.2%, i.e., approximately by the factor of0.46. This is because, as explained in Section 2.3, the increase ofN
affects not only the total sample size, but also improves the global proposal distributionπ̂N

j (·). This improvement of
π̂N

j (·) results in the generation of less correlated samples at each annealing level, and therefore leads to an additional
reduction of the coefficient of variationδ.

3.3 Bayesian Updating of a Neural Network with one Hidden Layer

To illustrate the use of AIMS for Bayesian updating, consider its application to a feed-forward neural network model,
one of the most popular and most widely used models for function approximation. The goal is to approximate a
(potentially highly nonlinear) functionf : X → R, whereX ⊂ Rp is a compact set, based on a finite number of
measurementsyi = f(xi), i = 1, . . . , n, by using a finite sum of the form
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FIG. 7: Coefficient of variationδ of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functions ofc for case 1 (d = 2) [example 3.2].
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FIG. 8: Coefficient of variationδ of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functions ofc for case 2 (d = 4) [example 3.2].
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FIG. 9: Coefficient of variationδ of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functions ofc for case 3 (d = 6) [example 3.2].
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f̂(x, θ) =
M∑

j=1

αjΨ(〈x, βj〉+ γj), (31)

whereθ denotes the model parametersαj ,γj ∈ R, andβj ∈ Rp for j = 1, . . . , M , 〈·, ·〉 is the standard scalar product
in Rp, andΨ is a sigmoidal function, the typical choice being either the logistic function or thetanh function that is
used in this example:

Ψ(z) =
ez − e−z

ez + e−z
. (32)

Model (31) is called a feed-forward neural network (FFNN) with activation function (32),p input units, one hidden
layer withM hidden units, and one output unit. The parametersβj andαj are called the connection weights from
the input units to the hidden unitj and the connection weights from the hidden unitj to the output unit, respectively.
The termγj is a designated bias of the hidden unitj and it can be viewed as a connection weight from an additional
constant unit input. Schematically, the FFNN model is shown in Fig. 10.

The rationale behind the FFNN approximation method follows from the universal approximation property of
FFNN models [32, 33]; that is, an FFNN with sufficient number of hidden units and properly adjusted connection
weights can approximate most functions arbitrarily well. More precisely, finite sums (31) over all positive integersM
are dense in the set of real continuous functions on thep-dimensional unit cube.

LetA denote the FFNN architecture, i.e., the input-output model (31) together with information about the type of
activation functionΨ, number of input unitsp, and number of hidden unitsM . In this example, we usep = 1, M = 2,
andΨ is given by (32), so the model parametersθ = (α1, α2, β1,β2, γ1,γ2) ∈ Θ = R6.

Deterministic modelA of function f given by f̂(x, θ) in (31) can be used to construct aBayesian (stochastic)
modelM of function f by stochastic embedding(see the details in [34, 35]). Recall that by definition, a Bayesian
modelM consists of two components:

1. An input-output probability modely ∼ p(y|x, θ,M), which is obtained by introducing the prediction-error

ε = y − f̂(x, θ), (33)

which is the difference between the true outputy = f(x) and the deterministic model outputf̂(x, θ). A prob-
ability model forε is introduced by using the principle of maximum entropy [36, 37], which states that the
probability model should be selected to produce the most uncertainty subject to constraints that we wish to
impose (the selection of any other probability model would lead to an unjustified reduction in the prediction
uncertainty). In this example, we impose the following constraints:E[ε] = 0 and var[ε] = σ2 with ε un-
bounded. The maximum entropy PDF for the prediction error is thenε ∼ N (0, σ2). This leads to the following
input-output probability model:

p(y|x, θ,M) = N
(

y | f̂(x, θ),σ2
)

(34)

FIG. 10: The feed-forward neural network model with one hidden layer (shown by hatching) [example 3.3].
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Here, the prediction-error varianceσ2 is included in the set of model parameters where, for convenience, we
defineθ7 = log σ−2, so the parameter space is nowΘ = R7.

2. A prior PDFπ0(θ|M) over the parameter space which is chosen to quantify the initial relative plausibility of
each value ofθ in Θ. In this example, the prior distributions are assumed to be

αj ∼ N (0, σ2
α), βj ∼ N (0, σ2

β), γj ∼ N (0,σ2
γ), θ7 = log σ−2 ∼ N (0,σ2

θ7
), (35)

with σα = σβ = σγ = σθ7 = 5. Thus, the prior PDF in our case is

π0(θ|M) = N (θ7|0, σ2
θ7

)
M∏

j=1

N (αj |0,σ2
α)N (βj |0, σ2

β)N (γj |0,σ2
γ). (36)

LetD denote the training data,D = {(x1, y1), . . . , (xn, yn)}, treated as independent samples; then, the likelihood
function which expresses the probability of getting dataD based on the probability model (34) is given by

L(θ) = p(D|θ,M) =
n∏

i=1

p(yi|xi, θ,M). (37)

In this example, data are synthetically generated from (34) withα1 = 5, α2 = −5, β1 = −1, β2 = −3, γ1 = 5,
γ2 = 2, σ = 0.1, and the inputxi = i/10, for i = 1, . . . , n = 100.

Finally, using Bayes theorem, we can write the posterior PDFπ(θ|D,M) for the uncertain model parameters:

π(θ|D,M) ∝ π0(θ|M)L(θ)

= N (θ7|0,σ2
θ7

)
M∏

j=1

N (αj |0, σ2
α)N (βj |0, σ2

β)N (γj |0, σ2
γ)

n∏

i=1

p(yi|xi,θ,M).
(38)

Under the Bayesian framework, the mean prediction ofy = f(x) from observablex can be obtained by integrating
out the nuisance parameters:

Eπ[y|x,D,M] =
∫

Θ

f̂(x, θ)π(θ|D,M)dθ. (39)

To demonstrate the efficiency of AIMS for the mean prediction problem, we use it to sample from the posterior
PDF (38) and use Monte Carlo simulation in (39). The parameters of the AIMS algorithm are chosen as follows:
sample sizeN = 3 × 103 per annealing level; the threshold for the ESSγ = 1/2; the proposal densityqj(·|ξ) =
N (·|ξ, c2I7), with c = 0.5. This implementation of AIMS leads to a total number ofm = 10 intermediate distributions
in the annealing scheme. The obtained posterior samplesθ

(1)
m , . . . , θ

(N)
m are then used to approximate the integral on

the right-hand side of (39):

∫

Θ

f̂(x, θ)π(θ|D,M)dθ ≈ 1
N

N∑

i=1

f̂
(
x,θ(i)

m

)
def= ¯̂

fm(x). (40)

The true functiony = f(x) as well as its AIMS approximation̄̂fm(x) are shown in Fig. 11. A few “intermediate

approximations” ¯̂fj(x), which are based onθ(1)
j , . . . , θ

(N)
j ∼ πj , are plotted to show how̄̂fj(x) approachesf(x)

when j → m. To visualize the uncertainty for the AIMS approximation, we plot its5th and95th percentiles in
Fig. 12.
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FIG. 11: The true functionf(x) (solid curve), its posterior approximation̂̄f10(x) (dashed curve), which is constructed

using AIMS, and “intermediate annealing approximations”:¯̂
f0(x) (dotted curve), which is based on prior samples,

¯̂
f2(x) and ¯̂

f3(x) (dashed-dotted curves) [example 3.3].
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FIG. 12: The true functionf(x) (solid curve), its AIMS approximation̄̂f10(x) (dashed curve), and 5th and 95th

percentiles of¯̂f10(x) (dotted curves) [example 3.3].

4. CONCLUDING REMARKS

In this paper, a new scheme for sampling from posterior distributions, called asymptotically independent Markov
sampling (AIMS), is introduced. The algorithm is based on three well-established and widely-used stochastic sim-
ulation methods: importance sampling, MCMC, and simulated annealing. The key idea behind AIMS is to use
N samples drawn fromπj−1(·) as an importance sampling density to construct an approximationπ̂N

j (·) of πj(·),
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whereπ0(·), . . . , πm(·) is a sequence of intermediate distributions interpolating between the priorπ0(·) and posterior
π(·) = πm(·). This approximation is then employed as the independent proposal distribution for sampling fromπj(·)
by the independent Metropolis-Hastings algorithm. WhenN → ∞, the AIMS sampler generates independent draws
from the target distribution, hence the name of the algorithm.

Important ergodic properties of AIMS are derived in the Appendix. In particular, it is shown that under certain
conditions (that are often fulfilled in practice), the AIMS algorithm produces a uniformly ergodic Markov chain. The
choice of the free parameters of the algorithm is discussed and recommendations are provide for their values, both
theoretically and heuristically based. The efficiency of AIMS is demonstrated with three examples, which include
both multimodal and higher-dimensional target posterior distributions.
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APPENDIX A. ERGODIC PROPERTIES OF AIMS

Because the discussion in Section 2.1, which motivated AIMS at annealing levelj, involved delta functions and
formal equalities (12) and (13), we cannot simply rely on the convergence of the IMH algorithm in verification of
AIMS; a rigorous proof is needed. First we prove that the described algorithm indeed generates a Markov chain with
a stationary distributionπj(·). We also explain that when the proposal densityqj(·|ξ) is reasonably chosen,πj(·) is
the unique (and, therefore, limiting) stationary distribution of the corresponding Markov chain.

Theorem 1. Let θ
(1)
j , θ

(2)
j , . . . be the Markov chain onΘ∗j = Θ \

{
θ

(1)
j−1, . . . , θ

(Nj−1)
j−1

}
generated by the AIMS

algorithm at annealing levelj, thenπj(·) is a stationary distribution of the Markov chain.

Proof. LetKj(·|·) denote the transition kernel of the Markov chain generated by AIMS at annealing levelj. From the
description of the algorithm it follows thatKj(·|·) has the following form:
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Kj(dξ|θ) =
Nj−1∑

i=1

w̄
(i)
j−1qj

(
ξ|θ(i)

j−1

)
min



1,

πj(ξ)

πj

(
θ

(i)
j−1

)


 min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξ

+ [1−Aj(θ)]δθ(dξ),

(A.1)

whereAj(θ) is the probability of having a proper transitionθ to Θ∗j \ {θ}:

Aj(θ) =
∫

Θ∗j

Nj−1∑

i=1

w̄
(i)
j−1qj

(
ξ|θ(i)

j−1

)
min



1,

πj(ξ)

πj

(
θ

(i)
j−1

)


min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξ. (A.2)

A sufficient condition forπj(·) to be a stationary distribution is forKj(·|·) to satisfy the detailed balance condition:

πj(dθ)Kj(dξ|θ) = πj(dξ)Kj(dθ|ξ). (A.3)

Without loss of generality, we assume thatθ 6= ξ, since otherwise (A.3) is trivial. In this caseKj(dξ|θ) is given by
the first term in (A.1), since the second term vanishes. Thus, all we need to prove is that the function

E(θ, ξ) def= πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1qj

(
ξ|θ(i)

j−1

)
min



1,

πj(ξ)

πj

(
θ

(i)
j−1

)


min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
(A.4)

is symmetric with respect to permutationθ ↔ ξ, for all θ, ξ ∈ Θ∗j . Taking into account (12) and the simple fact that
amin{1, b/a} = bmin{1, a/b} for all a, b > 0, we have

E(θ, ξ) = πj(θ)π̂Nj−1
j (ξ)min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}

= πj(ξ)π̂Nj−1
j (θ)min

{
1,

πj(θ)π̂Nj−1
j (ξ)

πj(ξ)π̂Nj−1
j (θ)

}
= E(ξ, θ)

(A.5)

This proves thatπj(·) is a stationary distribution of the AIMS Markov chain.

A stationary distribution is unique and is the limiting distribution for a Markov chain if the chain is aperiodic and
irreducible (see, for example, [38]). In the case of AIMS, aperiodicity is guaranteed by the fact that the probability
of having a repeated sampleθ(i+1)

j = θ
(i)
j is not zero: for example, if the local candidate stateξl is rejected in step

1c, then we automatically haveθ(i+1)
j = θ

(i)
j . A Markov chain with stationary distributionπ(·) is irreducible if, for

any initial state, it has positive probability of entering any set to whichπ(·) assigns positive probability. It is clear that
if the proposal distributionqj(·|ξ) is “standard” (e.g., Gaussian, uniform, log-normal, etc.), then AIMS generates an
irreducible Markov chain. In this case,πj(·) is therefore the unique stationary distribution of the AIMS Markov chain,
and for everyθ ∈ Θ∗j

lim
n→∞

‖Kn
j (·|θ)− πj(·)‖TV = 0, (A.6)

with ‖ · ‖TV denoting the total variation distance. Recall that the total variation distance between two measures
µ1(·) andµ2(·) on Θ is defined as‖µ1(·) − µ1(·)‖TV = supA⊂Θ |µ1(A) − µ2(A)|. In a simulation setup, the most
important consequence of convergence property (A.6) is, of course, that the sample mean converges to the expectation
of a measurable function of interest almost surely:

lim
Nj→∞

1
Nj

Nj∑

i=1

h
(
θ

(i)
j

)
=

∫

Θ

h(θ)πj(θ)dθ (A.7)
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Convergence (A.6) ensures the proper behavior of the AIMS chainθ
(1)
j , θ

(2)
j , . . . regardless of the initial stateθ(1)

j .
A more detailed description of convergence properties involves the study of the speed of convergence ofKn

j (·|θ) to
πj(·). Evaluation (or estimation) of this speed is very important for any MCMC algorithm, since it relates to a stopping
rule for this algorithm: the higher the speed of convergenceKn

j (·|θ) → πj(·), the fewer samples are needed to obtain
an accurate estimate in (A.7). Recall, following [39], that a chainθ(1),θ(2), . . . is calleduniformly ergodicif

lim
n→∞

sup
θ∈Θ

‖Kn(·|θ)− π(·)‖TV = 0. (A.8)

The property of uniform ergodicity is stronger than (A.6), since it guarantees that the speed of convergence is uniform
over the whole space. Moreover, a Markov chain is uniformly ergodic if and only if there existr > 1 andR < ∞
such that for allθ ∈ Θ

‖Kn(·|θ)− π(·)‖TV ≤ Rr−n, (A.9)

that is, the convergence in (A.8) takes place at uniform geometric rate [39].

Theorem 2. If there exists a constantM such that for allθ ∈ Θ∗j

πj(θ) ≤ Mπ̂
Nj−1
j (θ), (A.10)

then the AIMS algorithm at annealing levelj produces a uniformly ergodic chain and

‖Kn
j (·|θ)− πj(·)‖TV ≤

(
1− 1

M

)n

. (A.11)

Proof. To prove the first part of the theorem we will need the notion of asmall set[39]. A setA ⊂ Θ is called a small
set if there exists an integerm > 0 and a nontrivial measureµm onΘ, such that for allθ ∈ A, B ⊂ Θ

Km(B|θ) ≥ µm(B). (A.12)

In this case we say thatA is µm-small. It can be shown [39] that a Markov chain is uniformly ergodic if and only if
its state space isµm-small for somem. Thus, to prove the theorem, it is enough to show thatΘ∗j is a small set.

If (A.10) is satisfied, then the following holds for transition kernel (A.1) forθ ∈ Θ∗j andB ⊂ Θ∗j :

Kj(B|θ) ≥
∫

B

Nj−1∑

i=1

w̄
(i)
j−1qj(ξ|θ(i)

j−1)min

{
1,

πj(ξ)

πj(θ
(i)
j−1)

}
min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξ

=
∫

B

π̂
Nj−1
j (ξ)min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξ

=
∫

B

min

{
π̂

Nj−1
j (ξ), πj(ξ)

π̂
Nj−1
j (θ)
πj(θ)

}
dξ

≥
∫

B

min
{

π̂
Nj−1
j (ξ),

πj(ξ)
M

}
dξ =

1
M

∫

B

πj(ξ)dξ =
1
M

πj(B)

. (A.13)

The sample spaceΘ∗j is thereforeπj/M -small, and the corresponding Markov chain is uniformly ergodic.
To prove bound (A.11), first observe, using (A.13), that

‖Kj(·|θ)− πj(·)‖TV = sup
A
|Kj(A|θ)− πj(A)| ≤ sup

A
|πj(A)− 1

M
πj(A)| = 1− 1

M
. (A.14)

Forn > 1, using the Chapman-Kolmogorov equationKm+n(A|θ) =
∫
Θ
Km(A|ξ)Kn(dξ|θ) and stationarity ofπj(·)

with respect toKj(·|·), we have
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‖Kn
j (·|θ)− πj(·)‖TV = sup

A
|Kn

j (A|θ)− πj(A)|

= sup
A

∣∣∣∣∣
∫

Θ∗j

Kj(A|ξ)Kn−1
j (dξ|θ)−

∫

Θ∗j

Kj(A|ξ)πj(ξ)dξ

∣∣∣∣∣

= sup
A

∣∣∣∣∣
∫

Θ∗j

Kj(A|ξ)
[Kn−1

j (dξ|θ)− πj(ξ)dξ
]
∣∣∣∣∣

= sup
A

∣∣∣∣∣
∫

Θ∗j

[Kj(A|ξ)− πj(A)]
[Kn−1

j (dξ|θ)− πj(ξ)dξ
]
∣∣∣∣∣ ,

(A.15)

where the last equality follows from the fact that
∫
Θ∗j
Kn−1

j (dξ|θ) =
∫
Θ∗j

πj(ξ)dξ = 1. Finally, we obtain

‖Kn
j (·|θ)− πj(·)‖TV ≤ sup

B
sup
A

∣∣∣∣
∫

B

[Kj(A|ξ)− πj(A)]
[Kn−1

j (dξ|θ)− πj(ξ)dξ
]∣∣∣∣

≤ sup
B

∣∣∣∣
∫

B

sup
A
|Kj(A|ξ)− πj(A)| [Kn−1

j (dξ|θ)− πj(ξ)dξ
]∣∣∣∣

= ‖Kj(·|θ)− πj(·)‖TV · ‖Kn−1
j (·|θ)− πj(·)‖TV ≤

(
1− 1

M

)n

.

(A.16)

Remark 10. Note that if there exists a constantM such that (A.10) holds for allθ ∈ Θ∗j , thenM > 1 automatically.

Corollary 1. If Θ ⊂ Rd is a compact set andqj(·|ξ) is a Gaussian distribution centered atξ, then the AIMS algorithm
at annealing levelj produces a uniformly ergodic chain and (A.11) holds withM given by

M =




Nj−1∑

i=1

w̄
(i)
j−1

minθ∈Θ qj

(
θ|θ(i)

j−1

)

maxθ∈Θ πj(θ)



−1

(A.17)

Proof. Let us show that in this case condition (A.10) is always fulfilled. For anyθ ∈ Θ∗j we have

π̂
Nj−1
j (θ) =

Nj−1∑

i=1

w̄
(i)
j−1qj

(
θ|θ(i)

j−1

)
min



1,

πj(θ)

πj

(
θ

(i)
j−1

)




=
Nj−1∑

i=1

w̄
(i)
j−1qj

(
θ|θ(i)

j−1

) πj(θ)

πj

(
θ

(i)
j−1

) min



1,

πj

(
θ

(i)
j−1

)

πj(θ)





≥ πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1

minθ∈Θ qj

(
θ|θ(i)

j−1

)

πj

(
θ

(i)
j−1

) min



1,

πj

(
θ

(i)
j−1

)

maxθ∈Θ πj(θ)





= πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1

minθ∈Θ qj

(
θ|θ(i)

j−1

)

maxθ∈Θ πj(θ)

(A.18)

Thus, (A.10) holds withM given by (A.17).

Remark 11. Note that the assumption of compactness of the sample spaceΘ is not very restrictive and is typically
satisfied in most Bayesian statistics problems. Indeed, to fulfill this condition, it is enough to take a prior distribution
π0(·) with compact support. Next, it is clear from the proof that the conclusion of Corollary 1 holds for different “rea-
sonable” (not only Gaussian) proposal distributionsqj(·|ξ). Therefore, the AIMS algorithm will produce a uniformly
ergodic Markov chain in many practical cases.
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It has been recognized for a long time that when using an MCMC algorithm, it is useful to monitor its acceptance
rate Ā, i.e., expected probability of having a proper Markov jumpθ(i) to θ(i+1) 6= θ(i). While in the case of the
RWMH algorithm, the finding of the optimal acceptance rate is a difficult problem: neither high nor lowĀ is good
[30]; for IMH the picture is rather simple: the higher̄A, the better [4]. Since AIMS is based on the IMH algorithm,
their properties are very similar. In particular, one should aim for the highest possible acceptance rate of the global
candidate stateξg when implementing AIMS.

We finish this section with a result that provides bounds for the acceptance rate of the AIMS algorithms. These
bounds can be useful for finding the optimal implementation parameters.

Theorem 3. Let Āj be the expected probability of having a proper Markov transition associated with the AIMS algo-
rithm at annealing levelj. Then

Āj ≤
Nj−1∑

i=1

w̄
(i)
j−1aj

(
θ

(i)
j−1

)
, (A.19)

whereaj(θ
(i)
j−1) is probability (11) associated with having a proper transition under the RWMH transition kernel (10).

If (A.10) holds, then

Āj ≥ 1
M

. (A.20)

Proof. For everyθ ∈ Θ∗j , the probabilityAj(θ) of transitionθ to Θ∗j \ {θ} is given by (A.2). For its expected value
we have

Āj =
∫

Θ∗j

πj(θ)Aj(θ)dθ

=
∫

Θ∗j

∫

Θ∗j

πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1qj

(
ξ|θ(i)

j−1

)
min



1,

πj(ξ)

πj

(
θ

(i)
j−1

)


 min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξdθ

≤
∫

Θ∗j

∫

Θ∗j

πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1qj

(
ξ|θ(i)

j−1

)
min



1,

πj(ξ)

πj

(
θ

(i)
j−1

)


 dξdθ

=
∫

Θ∗j

πj(θ)
Nj−1∑

i=1

w̄
(i)
j−1aj

(
θ

(i)
j−1

)
dθ =

Nj−1∑

i=1

w̄
(i)
j−1aj

(
θ

(i)
j−1

)

(A.21)

To prove the lower bound (A.20), we use (12) in the equation definingĀj :

Āj =
∫

Θ∗j

∫

Θ∗j

πj(θ)π̂Nj−1
j (ξ)min

{
1,

πj(ξ)π̂Nj−1
j (θ)

πj(θ)π̂Nj−1
j (ξ)

}
dξdθ

=
∫

Θ∗j

∫

Θ∗j

πj(θ)π̂Nj−1
j (ξ)I

(
πj(ξ)π̂Nj−1

j (θ)

πj(θ)π̂Nj−1
j (ξ)

≥ 1

)
dξdθ

+
∫

Θ∗j

∫

Θ∗j

πj(θ)π̂Nj−1
j (ξ)I

(
πj(θ)π̂Nj−1

j (ξ)

πj(ξ)π̂Nj−1
j (θ)

≥ 1

)
πj(ξ)π̂Nj−1

j (θ)

πj(θ)π̂Nj−1
j (ξ)

dξdθ

= 2
∫

Θ∗j

∫

Θ∗j

πj(θ)π̂Nj−1
j (ξ)I

(
πj(ξ)π̂Nj−1

j (θ)

πj(θ)π̂Nj−1
j (ξ)

≥ 1

)
dξdθ

≥ 2
∫

Θ∗j

∫

Θ∗j

πj(θ)
πj(ξ)
M

I

(
πj(ξ)

π̂
Nj−1
j (ξ)

≥ πj(θ)

π̂
Nj−1
j (θ)

)
dξdθ

=
2
M

P

(
πj(ξ)

π̂
Nj−1
j (ξ)

≥ πj(θ)

π̂
Nj−1
j (θ)

)
=

1
M

,

(A.22)
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where the last probability is equal to1/2, becauseθ andξ are i.i.d. according toπj(·), and hence the result.

Remark 12. The AIMS algorithm at annealing levelj has two accept/reject steps: one is for the local candidateξl

(step 1c) and another is for the global candidateξg (step 2). The right-hand side of (A.19) is nothing else but the local

acceptance rate, i.e., expected probability of generating a proper local candidate stateξl /∈
{

θ
(1)
j−1, . . . , θ

(Nj−1)
j−1

}
.

Basically (A.19) says that the global acceptance rateĀj can never exceed the local acceptance rate. In fact, it can
be deduced directly from the description of the algorithm, since if the local candidateξl is rejected, then the global
candidateξg is automatically rejected and we have a repeated sampleθ

(i+1)
j = θ

(i)
j .
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