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In Bayesian inference, many problems can be expressed as the evaluation of the expectation of an uncertain quantity
of interest with respect to the posterior distribution based on relevant data. Standard Monte Carlo method is often not
applicable because the encountered posterior distributions cannot be sampled directly. In this case, the most popular
strategies are the importance sampling method, Markov chain Monte Carlo, and annealing. In this paper, we introduce
a new scheme for Bayesian inference, called asymptotically independent Markov sampling (AIMS), which is based on
the above methods. We derive important ergodic properties of AIMS. In particular, it is shown that, under certain
conditions, the AIMS algorithm produces a uniformly ergodic Markov chain. The choice of the free parameters of the
algorithm is discussed and recommendations are provided for this choice, both theoretically and heuristically based.
The efficiency of AIMS is demonstrated with three numerical examples, which include both multimodal and higher-
dimensional target posterior distributions.
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1. THREE CORNERSTONES OF COMPUTATIONAL BAYESIAN INFERENCE

In Bayesian statistics, many problems can be expressed as the evaluation of the expectation of a quantity of interest
with respect to the posterior distribution. Standard Monte Carlo simulation [1], where expectations are estimated by
sample averages based on samples drawn independently from the posterior, is often not applicable because the encoun-
tered posterior distributions are multidimensional non-Gaussian distributions that cannot be explicitly normalized. In
this case, the most popular strategies are importance sampling and Markov chain Monte Carlo (MCMC) methods. We
briefly review these two methods first because they play an important role in the new MCMC method introduced in
this paper.

1.1 Importance Sampling

This is nearly as old as the Monte Carlo method (see, for instance, [2]), and works as follows. Suppose we want to
evaluateE, [h], which is an expectation of a function of interést ® — R under distributionr(-) defined on a
parameter spad@ C R¢,

E.[h] = /@h(e)w(e)de. 1)

Unless otherwise stated, all probability distributions are assumed to have densities with respect to Lebesgue measure,
m(dB) = 7(8)d0. For simplicity, the same symbol will be used to denote both the distribution and its density, and we
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write © ~ x(-) to denote thaé is distributed according te(-). Suppose also that we are not able to sample directly
from 7 (-), although we can computg0) for any® € © to within a proportionality constant. Instead, we sample from
some other distribution(-) on © which is readily computable for ary € ©. Leto(™, ..., 8(Y) be N independent
and identically distributed (i.i.d.) samples frafft), andw® = 7(8())/q(8()) denote thémportance weighof the

ith sample, then we can estimé@ig[h] by

_ sz\il w(i)h(e(i))
Ei]il w® -

The estimator converges almost surely @ — oo to E,. [h] by the strong law of large numbers for any choice
of distribution ¢(-), providedsupp(w) C supp(q). Note that the latter condition automatically holds in Bayesian
updating using dat®, whereg(0) = 7, (0) is the prior density and(0) « m(0)L(0) is the posteriop(6|D), where
L stands for the likelihood functiop(D|0).

The estimator.y in (2) generally has a smaller mean square error than a more straightforward unbiased impor-
tance sampling estimator:

>
=2

)

Zw@ h(e®). (3)

This is especially clear whelnis nearly a constant: #f ~ ¢, theniy ~ ¢, while fL’ has a larger variation. Although
hy is biased for any finiteV, the bias can be made small by taking sufficiently lalgeand the improvement in
variance makes it a preferred alternatlvdﬂ;@ [3, 4]. Another major advantage of usnhgq instead off/y,, which
is especially important for Bayesian applications, is that in using the former we need to7i{8gvonly up to a
multiplicative normalizing constant, whereas in the latter, this constant must be known exactly.

The accuracy oh depends critically on the choice of theportance sampling distributioiSD) ¢(-), which is
also called thénstrumentalor trial distribution. If¢(-) is chosen carelessly such that the the importance weights
have a large variation, thely is essentially based only on the few sammés$ with the largest weights, yielding
generally a very poor estimate. Hence, for importance sampling to work efficigfijlynust be a good approximation
of 7(-)—"the importance sampling density should mimic the posterior density” [5]—so that the vasiange| is
not large. Since usually the prior and posterior are quite different, it is therefore highly inefficient to use the prior as
the importance sampling distribution. Whénis high-dimensional and (-) is complex, finding a good importance
sampling distribution can be very challenging, limiting the applicability of the method [6].

For the estimatoizgv in (3), it is not difficult to show that the optimal importance sampling density,g*¢:) that
minimizes the variance dfY, is ¢*(8) o |h(8)|x(8). This result is sometimes attributed to Rubinstein [7], although
it was proved earlier by Kahn and Marshall [2]. It is not true, however,¢h@j is optimal for the estimatdi . Note
also that this optimality result is not useful in practice, since whéh > 0, the required normalizing constant of

)is [o h(8)m(8)ds, the integral of interest.

1.2 MCMC Sampling

Instead of generating independent samples from an ISD, we could generate dependent samples by simulating a Markov
chain whose state distribution converges to the posterior distriba{igras its stationary distribution. MCMC sam-
pling originated in statistical physics, and now is widely used in solving statistical problems [3, 4, 8, 9].
The Metropolis-Hastings algorithm [10, 11], the most popular MCMC technique, works as followg - [65tbe
a distribution on®, which may or may not depend ¢he O. Assume thay(-|0) is easy to sample from and it is
either computable (up to a multiplicative constant) or symmetric,¢(&|0) = ¢(6|&). The sampling distribution
q(-|0) is called theproposal distribution Starting from essentially ar§{!) < supp(r), the Metropolis-Hastings al-
gorithm proceeds by iterating the following two steps. First, generandidatestateé from the proposal density
q(-|8(™)). Second, either acceptas the next state of the Markov cha@i?+) = &, with probability «(£|6(™)) =
min {1, [r(&)q(0™[£)]/[m(0)q(£|6™)]}; or rejectf and setd™ 1) = 9(™) with the remaining probability
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1 — «(£]6M). It can be shown (see, for example, [4]), that under fairly weak conditio0$,is the stationary
distribution of the Markov chaig, 02 ... and

lim %Zh(e“)):/@h(e)w(e)de. (4)

Since the chain needs some time (so called “burn-in” period) to converge to stationarity, in practice an initial portion
of, say, N, states is usually discarded and

N
- 1 .
hy = h(e® 5
NSV Z_:NEOH (e") (%)

is used as an estimator fBr. [h].

The two main special cases of the Metropolis-Hastings algorithm are independent Metropolis-Hastings (IMH),
where the proposal distributiof(£|0) = g,(&) is independent 0 (so g, is aglobal proposa), and random walk
Metropolis-Hastings (RWMH), where the proposal distribution is of the fo(&|0) = ¢;(& — 0), i.e., a candidate
state is proposed @ = 0(") + ¢,, wheree,, ~ ¢(-) is a random perturbation (sg is alocal proposa). In both
cases, the choice of the proposal distribution strongly affects the efficiency of the algorithms. For IMH to work well,
as with importance sampling, the proposal distribution must be a good approximationtafgedistributionr (-),
otherwise a large fraction of the candidate samples will be rejected and the Markov chain will be too slow in covering
the important regions for(-). When, however, it is possible to find a propoggl-), such thaty,(-) ~ =(-), IMH
should always be preferred to RWMH because of better efficiency, i.e., better approximatibpg:pfor a given
number of sample®/. Unfortunately, such a proposal is difficult to construct in the context of Bayesian inference
where the posterior(-) is often complex and high-dimensional. This limits the applicability of IMH.

Since the random walk proposal-) is local, it is less sensitive to the target distribution. That is why, in practice,
RWMH is more robust and used more frequently than IMH. Nonetheless, there are settings where RWMH also does
not work well because of the complexity of the posterior distribution. Although (4) is true in theory, a potential
problem with RWMH (and, in fact, with any MCMC algorithm) is that the generated sandples .., 0(Y) often
consist of highly correlated samples. Therefore, the estintajan (5) obtained from these samples tends to have a
large variance for a modest amount of samples. This is especially true when the posterior distribution contains several
widely separated modes: a chain will move between modes only rarely and it will take a long time before it reaches
stationarity. If this is the case, an estimate producedLbywilI be very inaccurate. At first glance, it seems natural
to generate several independent Markov chains, starting from different random seeds, and hope that different chains
will get trapped by different modes. However, multiple runs will not in general generate a sample in which each
mode is correctly represented, since the probability of a chain reaching a mode depends more on the mode’s “basin of
attraction” than on the probability concentrated in the mode [12].

1.3 Annealing

The concept ofinnealing(or tempering, which involves moving from an easy-to-sample distribution to the target
distribution via a sequence of intermediate distributions, is one of the most effective methods of handling multiple
isolated modes. Together with importance sampling and MCMC, annealing constitutes the third cornerstone of com-
putational Bayesian inference.

The idea of using the RWMH algorithm in conjunction with annealing was introduced independently in [13]
and [14] for solving difficult optimization problems. The resulting algorithm, cafiiesdulated annealingworks as
follows. Suppose we want to find the global minimum of a function of intekest® — R. This is equivalent to
finding the global maximum of(0) = exp[—h(0)/T] for any givenT" > 0. By analogy with the Gibbs distribution
in statistical mechanicg] is called thetemperature parametetet 7y > 77 > ... be a sequence of monotonically
decreasing temperatures, in whighis large enough so that the probability distributias(0) « fr,(0) is close to
uniform, andlim;_.., 7; = 0. At each temperaturg;, the simulated annealing method generates a Markov chain
with 7;(8) o exp[—h(0)/T;] as its stationary distribution. The final state of the Markov chain at simulation level
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j is used as the initial state for the chain at leyel 1. The key observation is that for any functiénsuch that
Jo exp[—h(8)/T]d® < oo for all T > 0, distribution;(-), as;j increases, puts more and more of its probability
mass (converging tb) into a neighborhood of the global minimumfTherefore, a sample drawn from(-) would
almost surely be in a vicinity of the global minimum bfvhenT; is close to zero.

The success of simulated annealing in finding the global minimum crucially depends on the schedule of temper-
atures used in the simulation. It was proved in [15] that if a logarithmic sch@fute Ty, / log(j + 1) is used, then,
under certain conditions, there exists a value€hipsuch that use of this schedule guarantees that the global minimum
of h will be reached almost surely. In practice, however, such a slow annealing schedule is not computationally effi-
cient. It is more common to use either a geometric schediile, = y71; with 0 <y < 1, or some adaptive schedule,
which defines the temperature for the next annealing level based on characteristics of the samples observed at earlier
levels. For examples of adaptive annealing schedules, see, for instance, [9].

In Bayesian inference problems, the idea of annealing is typically employed in the following way. First, we con-
struct (in advance or adaptively), a sequence of distributigis, . . ., 7., () interpolating between the prior distri-
bution o (-) and the posterior distribution(-) = m,,,(-). Next, we generate i.i.d. samplég), . .,eéN) from the
prior, which is assumed to be readily sampled. Then, at each annealing Jexsthg some MCMC algorithm and
samplesagl_)l, ceey 6512 from the previous levej — 1, we generate samplé§1), cey egN’ which are approximately
distributed according ta;(-). We proceed sequentially in this way, until the posterior distribution has been sampled.
The rationale behind this strategy is that sampling from the multimodal and, perhaps, high-dimensional posterior in
such a way is likely to be more efficient than a straightforwvard MCMC sampling of the posterior.

The problem of sampling a complex probability distribution is encountered in statistical mechanics, molecular
dynamics, computational Bayesian inference, scientific computing, machine learning, and other fields. As a result,
many different efficient algorithms have been recently developed, e.g., hybrid (Hamiltonian) Monte Carlo [16-18],
the method of simulated tempering [19, 20], the tempered transition method [12], annealed importance sampling [21],
the adaptive Metropolis-Hastings algorithm [22], sequential Monte Carlo sampler [23, 24], transitional Markov chain
Monte Carlo method [25], to hame a few.

In this paper we introduce a new MCMC scheme for Bayesian inference, adlgdptotically independent
Markov samplinglAIMS), which combines the three approaches described above—importance sampling, MCMC,
and annealing—in the following way. Importance sampling with,(-) as the ISD is used for a construction of an

approximatiorﬁ;\’(-) of 7;(-), which is based on sample§1_>1, ce egﬁ ~ mj_1(-). This approximation is then em-
ployed as the independent (global) proposal distribution for sampling #r@m by the IMH algorithm. Intermediate
distributionsm(-), ..., ™, (+) interpolating between prior and posterior are constructed adaptively, using the essential
sample size (ESS) to measure how much, (-) differs fromz;(-). When the number of sample§ — oo, the
approximationfrjv(') converges tor;(-), providing the optimal proposal distribution. In other words, wiér- co,

the corresponding MCMC sampler produces independent samples, hence the name of the algorithm.

Remark 1. The term “Markov sampling” has several different meanings. In this paper it is used as synonymous to
“MCMC sampling”

In this introductory section, we have described all the main ingredients that we will need in the subsequent sections.
The rest of the paper is organized as follows. In Section 2, the AIMS algorithm is described. The efficiency of AIMS
is illustrated in Section 3 with three numerical examples that include both multimodal and high-dimensional posterior
distributions. Concluding remarks are made in Section 4. The ergodic properties of AIMS are derived in the Appendix.

2. ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING

Let mo(+) andw(-) be the prior and the posterior distributions defined on a parameter §paespectively, so that,
according to Bayes’ Theorem{0) « mo(0)L(0), whereL denotes the likelihood function for dafa Our ultimate
goal is to draw samples that are distributed according(th

In AIMS, we sequentially generate samples from intermediate distributig(s, . .., m,(-) interpolating be-
tween the priorr(-) and the posterior(-) = m,,,(+). The sequence of distributions could be specially constructed for
a given problem but the following scheme [21, 25] generally yields good efficiency:
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75(0) ox m(8)L(0)P7, (6)

where0 = g < 1 < ... < B, = 1. We will refer toj and3; as theannealing levelind theannealing parameter
at levelj, respectively. In the next subsection, we assumefihas given and therefore the intermediate distribution
7;(+) is also known. In Section 2.2, we describe how to choose the annealing parameters adaptively.

2.1 AIMS at Annealing Level j

Our first goal is to describe how AIMS generates san@é}é e, GE.NJ') from 7;(-) based on the sampﬁ%?l, el

Gg’fl) ~ m;_1(-) obtained at the previous annealing level. We start with an informal motivating discussion that leads
to the simulation algorithm. In the Appendix, we rigorously prove that the corresponding algorithm indeed generates
samples which are asymptotically distributed according;te), as the sample siz&; — co. Moreover, the larger

N;_1, the less correlated generated samﬂ§é§ ceey Qg.N’) are—a very desirable, yet rarely affordable, property for
any MCMC algorithm.

Let K;(-|-) be any transition kernel such thaf(-) is a stationary distribution with respecthg; (-|-). By definition,
this means that

7;(8)d0 — /@ K, (d6]E)m, (£)de. @)
Applying importance sampling with the sampling density ; (-) to integral (7), we have
Nj 1
7;(6)d6 = /@Kj(de\a) Wjj(li)i) 7 1(E)dE ~ ; K, (de|e§,i_)1) @El’_)l dor ﬁ-;vj*l(de), (8)

wherefrjv-”‘l(-) will be used as thglobal proposaldistribution in the independent Metropolis-Hastings algorithm,
and
()
i Ww;_ g
—1 i —1 N._ k (
Tj-1 (95'—)1) et

are the importance weights and normalized importance weights, respectively. Note that to c&lﬁ#ame do not
need to know the normalizing constantsmf ; (-) and;(-). If adjacent intermediate distributiong_, (-) and;(-)

are sufficiently close (in other words,Xp; = 3; — 3,—1 is small enough), then the importance weights (9) will not
vary wildly, and therefore we can expect that for reasonably I&fge , approximation8) is accurate.

(i Ty (egb—)l) (i) Bi—Bj—1
w; x L (Ojfl) and

Remark 2. In [26], the stationary condition (7) was used for an analytical approximation of the target PDF to
evaluate the evidence (marginal likelihood) for a model.

Remark 3. Note that for any finiteV;_, distributionfrjv"‘1 () will usually have both continuous and discrete parts.
This follows from the fact that the transition kernel in Markov chain simulation usually has the following form:
K (dB|&) = k(0]&)d0 +r(&)6(dO), wherek(-|-) describes the continuous part of the transition kerbg(;) denotes

the Dirac mass af, andr(&) = 1— [ k(6]¢)d8. This is the form, for example, for the Metropolis-Hastings algorithm.
Therefore, (8) must be understood as the approximate equality of distributions, not densities. In other words, (8)
means thall_x;_, [h] =~ Eq, [h] andE_~;_, [h] — E, [h], whenN;_; — oo, for all integrable functiong.. See also

Example 2.1 below.

From now on, we consider a special case whi€ré |-) is the random walk Metropolis-Hastings (RWMH) transi-
tion kernel. In this case, it can be written as follows:

m;(6)
m; (&)

K, (d]E) = ¢,(0]&) min {1, }de 1 ay(£)]5e(d0), (10)
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whereg;(-|&) is a symmetridocal proposal density, and; (&) is the probability of having a proper transitiénto

O\ {&}:

()= [ aytele)min {1 e } e (11)

Example 2.1.As a simple illustration of (8), consider the case whefr) = N (-|0,1), m;_1(-) = N(:]0,2), and
q;(-|&) = N'(:]&,1/2), whereN (-|u, 02) denotes the Gaussian density with meeand variances®. The approxima-

tion 7%]14\[”*1(-) based on the samplé§1_)1, RN 9§N71 2N N (+]0,2) is shown in the top panels of Fig. 1, fof;_; =5
andN;_; = 50. Suppose that,(8) = 8 andh,(0) = 62 are the functions of interest. Théfy,[h] = 0 and

Er,[he] = 1. The convergence of}(N;—1) = E_~;_, [i] andh3(N;—1) = E - [ho] is shown in the bottom
panel of Fig. 1. ’

For sampling fromr; (-), we will use the IMH algorithm with thglobal proposal distributioﬁrjvf“ (). Toaccom-
plish this, we have to be able to calculate the raf’o /er7 (&) forany®, & € © as a part of the expression for

the acceptance probability; (£|6) = min {1, [ j(a)fr;v? ! (e)]/[wj(6)7%;\[-7“1 (E)]}. However, as already mentioned,

the dIStI’IbutIOI’UTNJ '(-) does not have a density since it has both continuous and discrete components, and therefore

the ratior; Ni— (6)/?’“1 (&) makes no sense. To overcome this “lack-of continuity problem,” taking into account (8)
and (10), let ugormally define the global proposal distribution ov@ras

i=1

Njil . . .
A e) Y al g (eeé”l)min{l,%?(e.f)}, (12)
J 1

h,(N) ho(N) |

1 WMM’MWWNWW«‘ww NP s s s e A
1

0.5 i

-0.5 i i i i
0 200 400 600 800 1000

N.
-1

FIG. 1: The top panels show the distributior}(-) (solid lines) and its approximatioﬁNJ‘l() for Nj_; =5

(left) and N;_; = 50 (right). Dashed lines and bars correspond to the continuous and dlscrete pﬂffs of-)

respectively. The bottom panel shows the convergendg@¥; 1) = E_~;_, [h1] andh3(Nj—1) = E_x,_, [ho] to

the true values) and1, respectively [Example 2.1].
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ito ¢ {ol,....0" "} and
w0 (8)) & oo (13)

J

Note thaterj‘1 () is adistribution or®, but it does not have a density. Howev;éj” '(-) induces another distribution
ono \ {egl Lree- G(N’ ! } which does have a density, given by the right-hand side of (12). This motivates (12).
Now, using (12) and (13), we can calculate the raﬁu\é 0)/7; I71(&) as follows:

If e agz{ ol,,....00N ”} then

5 S ol (0001 min {0100
7};\@71(&) ivzﬂl—l 'u’;(.i_)lqj (E,‘e;l_l) min {177Tj( )/7Tj [e( 1) }}

(14)

=

I 1foe¢ {95.17)1 .04 1)}and«i 9 M., then

J—

H =0 and «;(&]6) =0 (15)

. 1 6 =6, ande ¢ {of",,...,0(" ")}, then

ﬁévjil(e) — d 0) =1 16
W—OO and o;(&]0) = (16)

IV. If 8 = 0", ande = 0", then[#7~* (8)] /[, (£)] is not defined.

Notice that in the first three cases the ra;ﬁﬁj‘l(e)/ﬁ;vf‘l(a) is readily computable, while in case IV it is
not even defined. Therefore, it is very desirable to avoid case IV. The key observation that allows us to do this is

the following: suppose that the initial steﬂél) of the Markov chain that is generated is such t@nﬁf € 0] &
0\ {651)1,...,6§]f§*1)}, then ey) € ©; forall i > 1. Indeed, the only way for the chain to enter the set

{e§”1, cey eﬂg-”} is to generate a candidate state {651)1, cey 6§N71 1)} however, according to case I, such
a candidate will always be rejected. Thus, by replacing the state épage0’; and using (14) and (15) for evalua-
tion of 7;77"(0) /7,7~ (&), we are able to calculate the acceptance probability,|0) = min{1, [r;(&)7;7 " (0)]/
[m;(0)7; 77" (€)]} involved in the IMH algorithm. It is clear that the replacement®by ©7 is harmless for the

ergodic properties of the Markov chain whenC R?.

Remark 4. One may wonder why not just use the continuous pafrﬁvdf as the global proposal density within

the IMH algorithm. In other words, why not use the denﬁlﬁgont( ), WhICh is proportional to the function de-
fined by (12), as the proposal density. Indeed, in this case we would not have any difficulties with calculating the

ratio 7; j’l(e)/frj I71(&). The problem is that it is not clear how to sample fr@f{g ), while sampling from
frjvjfl(de) =y ‘5’)1 J(de|e§’_)1) is straightforward.

ont

The above discussion leads to the following algorithm for sampling from the distributieh
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AIMS at annealing level j

Input:
> oW gN;i-1)

215,07 ~m_1(), samples generated at annealing lgvel 1;
> 9§1) €0r=0\ {9‘51_)1, e Qg.zfjl’l)}, initial state of a Markov chain;
> ¢;(-|&), symmetric proposal density associated with the RWMH kernel;
> N, total number of Markov chain states to be generated.
Algorithm:
fori=1,...,N; —1do
1) Generate a global candidate stgje~ 7’ " (-) as follows:
a. Seleck from {1, ..., N,;_1} with probabilitiesﬂ;ﬁ)1 given by (9).
b. Generate a local candidaig~ qj(-|6§.'i)1).
c. Accept or reject, by setting

. . . > (E,l)
&, with probability min { 1, —2"2— % ;
&g = m (08%)) (17)
0", with the remaining probability.
2) Updates'” — 8'""") by accepting or rejecting, as follows:
k
if £, = 0",
Seto!"™) = g"
J
else
Set
£ with probability min J 1, (&) (e§>)
(i+1) _ g min ; N\ N ;
0; = j (95 )) 7 '(&g) (18)
65.’), with the remaining probability.
end if
end for
Output:
> e§”, ce 6§Nf), N; states of a Markov chain with a stationary distributioi-)

Schematically, the AIMS algorithm at annealing leyeis shown in Fig. 2. The proof that;(-) is indeed a
stationary distribution for the Markov chain generated by AIMS is given in the Appendix.

Itis important to highlight the low computational complexity of the described algorithm. In the Bayesian inference
problems of interest to us, the major calculations are the evaluations of the likelihood fub@ip(e.g., computing
responses of a dynamic system). Since these evaluatiob@ogfare “expensive” for ang, they dominate the total
computational complexity. All other arithmetic operations are relatively “cheap” when compared with likelihood
evaluations. To generate a new sample in AIMS, we need to evaluate the likelihood just once, which is the minimal
number one can have. Indeed, to update the Markov chain ﬁﬁé)rrto 95.”1), we only need to computé(é;),
which is a part ofr;(&;) in (17). All other likelihoods are already computed either at the previous annealing level
[L(Gg’_)l), wherei = 1,..., N;_;] or at the previous Markov chain update at the current annealing lé(/eﬁ)]. As
a result, calculation of the acceptance probability in (18) does not involve any new likelihood evaluations [note that
we compute (18) only whef, = &;]. Thus, the computational complexity of obtaining samples approximately
distributed according ta; (-) is O(N;).
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(i+1)
o 07,
j ;/3/, NN
. Lol
\ \:///dk)
j=1
on S
/\ (\\r‘) ) \)
N -
— e(| 2)
J
[} [ )
° [ ]
FIG. 2: AIMS at annealing levej: diskse and circles represent);l_)l, e egﬁ%” andegl), cey 6§Nf), respectively;

concentric circles show the correspondence bet\ﬂé@pthat has been chosen in step 1a and the corresponding local

candidatef,; ~ q(-|6§.’i)1) that has been generated in step 1b. In this schematic picture, all shown candidate states are
accepted as new states of the Markov chain.

Remark 5. As usual for MCMC algorithms, the fact of convergence of a Markov chain to its stationary distribution
does not depend on the initial state; however, the speed of convergence does. One reasonable way to chose the initial

1 . . o ; T 1 k* X _(k
stateeé ) e ©7 in practical applications is the following: generaﬁé N qj(-|6§_f), wherek* = arg maxy w§_)1,
ie. eg’“_f has the largest normalized importance weight.

Remark 6. From a computer implementation perspective, it is important to highlight that the accept/reject steps in
(17) and (18) can be combined; namely, after step 1) b, set

. ;i (&)
g(+1) _ ) & with probability min § 1, m; (&) i ’ (
J

j (95’?1) T (9‘4")

eg“, with the remaining probability.

2.2 The Full AIMS Procedure

At the zeroth annealing levgl = 0, we generate prior sampléél), ceey GE)NU), which usually can be readily drawn
directly by a suitable choice of the prior distributigg(-). Then, using the algorithm described in the previous subsec-
tion, we generate sampléél), cee, e§N1>, which are approximately distributed according to intermediate distribution

71(0) o< m(0)L(0)P1. We proceed like this until the posterior distributiop, (8) oc mo(0)L(8)P~ (B,, = 1) has
been sampled. To make the description of AIMS complete, we have to explain how to choose the annealing parameters
B, forj=2,...,m—1

It is clear that the choice of the annealing parameters is very important, since, for instance, it affects the accuracy
of the importance sampling approximation (8) and therefore the efficiency of the whole AIMS procedure. At the same
time, it is difficult to make a rational choice of ttf values in advance, since this requires some prior knowledge
about the posterior distribution, which is often not available. For this reason, we propose an adaptive way of choosing
the annealing scheme.
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In importance sampling, a useful measure of degeneracy of the methodea§abtive sample siZ&ESS) Nef
introduced in [27] and [28]. The ESS measures how similar the importance sampling distribptigr) is to the
target distributionr; (-). SupposeV;_; independent sampl@§1_)1, ce eéfﬁfl) are generated from;_,(-), then the
ESS of these samples is defined as

off Nj-1 N1

-1 +Vafﬂj_1[w} " E f[wQ]’ (20)

Tj—1

wherew(0) = m;(0)/m;_1(0). The ESS can be interpreted as implying tNat ; weighted sample@m (1) ), -

-1 Wi-1
(egj_vﬁfl), J(NJ 1)) are worthNelcf 1(< N;_,) i.i.d. samples drawn from the target distributioy(-). One cannot eval—

uate the ESS exactly but an estlmmﬁ , of N;{f is given by

N 1
eff (-
Nz (@5-1) = ﬁ (21)
Zz 1 ( )
wherew;_, = (@ ]( )1, . ,w(N’ 1)) andw 4 is the normalized importance waght@j‘

At anneahng levelj, whenf;_; is already known, the problem is to defifie. Lety = Neffl/NJ 1€(0,1)bea
prescribed threshold that characterizes the “quality” of the weighted sample (they}asgme “better” the weighted
sample is). Then we obtain the following equation:

Nj_1 1
(1) 22
; ( J 1) ’YN] 1 ( )
Observe that this equation can be expressed as an equatipnligrusing (9):
N o \2(Bi—Bj-1)
Zi:l L (95—)1> 1
= (23)

2 ;
{E%l L (e@’)l)ﬁjﬁjl] Y
= j—

Solving this equation fop ; gives us the value of the annealing parameter at Igvel

Remark 7. Note that whery > 2, the e] Lreeos 95.]:’-’1‘1) are generated by the Markov chain sampler described in

the previous subsection and therefore are not independent. This means that because of the autocorrelations produced
by the Markov chain used, the “true” ESS of this sample is, in fact, smaller than the one given by (20). This is useful
to remember when choosing Also, this is another reason to select the prior distributigf-) so that samples can

be generated independently at the start of each AIMS run.

Combining the AIMS algorithm at a given annealing level with the described adaptive annealing scheme gives
rise to the following procedure:

The AIMS procedure

Input:
> v, threshold for the ESS;
> No, V1, ..., whereN; is the total number of Markov chain states to be generated
at annealing leve;
> q1(:1&), g2(-|&), - . ., whereg; (-|&) is the symmetric proposal density associated with
the RWMH kernel at annealing levgl
Algorithm:
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Setj = 0, current annealing level.
SetBy = 0, current annealing parameter.
samplesV, ... o) L0 7o ().
CalculatelV(” = [L(8%7)1=Po] /[N, L(0())1=Bo), i =1,..., No.
Calculate the ESS/S™ = Ng (W) using (21), which measures how similar the
prior distributionr(-) is to the target posterior distributior(-).
while N¢%/N; <y do
Find 341 from Eq. (23).
Calculate normalized importance weiglmj%i), i=1,...,N; using (9).

Generate a Markov cha@ﬁ?l, ey 95&*” with the stationary distribution
mj+1(-) using the AIMS algorithm at annealing levek- 1.

CalculatelV "), = [L(8') )1 Pa+1] /[0 L(0Y) )1 Pivi], i = 1,..., Njur.
Calculate the ES®/¢, = N¢ff, (1,1) using (21), which measures how
similar the intermediate distribution; 1 (-) is to the posteriofr(-).

Incrementj to 5 + 1.

end while

Setf ;11 = 1, current annealing parameter.

Setm = j + 1, the total number of distributions in the annealing scheme.

Setw) =W i=1,... Ny_i.

Generate a Markov cha'ﬂ){,lL), e 65,?’"1) with the stationary distribution
Tm(+) = m(-) using the AIMS algorithm at annealing level.
Output:
> 95,11), ceey E)ﬁiv*”')&w(-), samples that are approximately distributed according

to the posterior distribution.

Remark 8. Among all published algorithms we are aware of, the transitional Markov chain Monte Carlo (TMCMC)
method [25] is the one closest to AIMS. The main difference between AIMS and TMCMC is in how samples at a given

annealing level are generated. In AIIVE%,”, ce GEN") are obtained by generating a single Markov chain using IMH
with the global proposal distributiov?a;\”*1 (+), which is constructed based on the samﬂﬁf%l, e, egﬂfl) from the
previous annealing level. On the contrary, in TMCMC the resampling procedure is first perfo@éﬂqd: e egﬁ’j{l)
are resampled with respect to the weights (9). After that, starting from e%_?;p it=1,...,N;_1, a Markov chain
of Iengthny) is generated using RWMH with the local proposal distribution, Wlméﬂe(possibly zero) is the number
of times@ﬁ1 has been resampled, 50, ng.i) = N;. As aresult, in TMCMCE)‘gl), ce 6§Nf) are obtained as samples
from multiple Markov chains, which are typically very short (ﬁﬁ@ are small compared tdV;). Therefore, they may

not settle down into the stationary state [for fini?¢_,, the resamplecﬂg.i_)1 serving as initial seeds for multiple
Markov chains need not be distributed according to the stationary distributjgn)]. In Section 3, we compare the
performance of AIMS and TMCMC using high-dimensional examples.

2.3 Implementation Issues

As it follows from the description, the AIMS procedure has the following paramegetise threshold for the effective
sample size}V;, the length of a Markov chain generated at annealing Igvell, . .., m; andg;(-|&), the symmetric
proposal density associated with the RWMH kernel at levet 1,...,m. Here, we discuss the choice of these
parameters and how this choice affects the efficiency of AIMS.
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First, it is absolutely clear that, as for any Monte Carlo method, the larger the number of generated samples
is, the more accurate the corresponding estimates of (1) are. However, we would like to highlight the difference
between the roles aV,_; and.V; at annealing levef. While V; is directly related to the convergence of the chain

e&l), cey egN-” to its stationary distribution; (-), NV, _; affects this convergence implicitly through the global proposal
distribution 7 771(-): the largerN,_;, the more accurate approximation (8) is, and therefore the less correlated

eg”, .. .,6§Nf) are. WhenN,_; — oo, samplese§1), . .,QE.NJ') become independent draws fram(-), hence the

name of the algorithm. Thus, if we increade= N;_; = Nj, the effect is twofold: first, the sample size increases,
thereby increasing the effective number of independent samples ahtlewel (typical for any Monte Carlo method);
second, the samples become less correlated (a useful feature of AIMS), again increasing the effective number of
independent samples. As a result of these two effects, incredshmas a strong influence on the effective number of
independent posterior samples and so strongly reduces the variance of the estimator for (1).

Suppose now that we are at the last annealing level and generating a Markoeﬁéﬁain. , eﬁ,ﬁvm’ with the sta-
tionary distributionr,,,(-) = = (-). We will refer to this chain as the posterior Markov chain. A critical question faced
by users of MCMC methods is how to determine when it is safe to stop sampling from the posterior distribution and
use sample@ﬁi), ceey 0¥ for estimation. In other words, how large shoulgl, be? One possible solution of this
“convergence assessment problem” is to use one of the numerous published diagnostic techniques; for example, see
[29] for a comparative review of MCMC convergence diagnostics. Unfortunately, none of the published diagnostics
allows one to say with certainty that a finite sample from an MCMC algorithm is representative of an underlying sta-
tionary distribution. A more empirical approach for assessing convergence is to run several posterior Markov chains

eg{;l, cee eiNW;?) k=1,..., K, in parallel and monitor the corresponding estimafqr,s . hy of E,[h]. A stop-
ping rule for convergence is then
max ‘iLz — ile < g, (24)
1<i<j<K

wheree is a minimum precision requirement. Note that rule (24), although easy to understand and easy to implement,
does not assure convergence of the chains [especially)ifs multi-modal]: “the potential for problems with multiple
modes exists whenever there is no theoretical guarantee that the distribution is unimodal” [21].

The thresholdy affects the speed of annealingylfs very small, i.e., close to zero, then AIMS will have very few
intermediate distributions interpolating between the prior and posterior distributions, and this will lead to inaccurate
results for a moderate number of samples.ig very large, i.e., close to 1, then AIMS will have too many intermediate
distributions, which will make the algorithm computationally very expensive.

The proposed method for findirfly values is based on the ESS, ghdis defined from Eq. (22) [or, equivalently,
from (23)]. A similar adaptive approach for defining an annealing scheme was proposed in [25]. It is based on the
coefficient of variation (COV) of the importance weights (9). More precisely, the equatig fiesrgiven by

) N2
1 Nj1 (1) 1 Nj—1 (i)
N1 > il (wj—l TN, > it W4

1 Nj-1,.(2)
N, 1 i1 Wil

=9, (25)

whered > 0 is a prescribed threshold. It is easy to show that the ESS criterion (22) and the COV criterion (25)
are mathematically equivalent; in fadffy'?‘fl = N,_1/(1 + &%). We prefer to use the former criterion singéhas a

clear meaning: it is the factor by which the (essential) sample size of the weighted sample is reduced as a penalty for
sampling from the importance sampling density instead of the target distribution. It has been found in [25} that

is usually a reasonable choice of the threshold. This corresponds=td /2. Our simulation results (see Section 3)

also show that annealing schemes witaround1 /2 yield good efficiency.

The choice of the local proposal density(-|¢) associated with the RWMH kernel determines the ergodic prop-
erties of the Markov chain generated by AIMS at leygit also determines how efficiently the chain explores local
neighborhoods of samplé%lfl, cee egﬂfl) generated at the previous level. This makes the choigg(dk) very
important.
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It has been observed by many researchers that the efficiency of Metropolis-Hastings-based MCMC methods is
not sensitive to the type of the proposal density; however, it strongly depends on its variance (e.g., [30, 31]). For this
reason, we suggest using a Gaussian density as the local proposal:

;(0]&) = N(B[E, 3T, (26)

whereé, andc?]l are the mean and diagonal covariance matrix, respectively. The scaling paregmﬂmfrmines the
“spread” of the local proposal distribution. In the Appendix, we prove (Theorem 3) that under certain conditions,
the acceptance ratd; (i.e., the expected probability of having a proper Markov transiﬂéfﬁ to e;"“) #+ eg“)
satisfiesd; > 1/M, where constand/ depends om;(-|&) and therefore or?. This result can be potentially used

for finding an optimab? that would minimizeM!. Alternatively, a more empirical way of choosing the scaling factor
consists of adjustingf based on the estimated acceptance rate. This works as follows: first, choose an initial value
for the scaling factorcf’o, and estimate the corresponding acceptancej@(e?_yo) based onV; generated Markov
states, then modifyiO to obtain an increase if;. Whether this optimization ira? is useful depends on whether

the accuracy of the estimator that is achieved compensates for the additional computational cost. Finally, note that
our simulation results show (see Section 3) that areases, the corresponding optimal scaling fa@}m‘ecreases
slightly. This observation coincides with intuition, since whiencreases, the intermediate distribution$-) become

more concentrated.

3. ILLUSTRATIVE EXAMPLES

In this section we illustrate the use of AIMS with three examples: (1) mixture of ten Gaussian distributions in two
dimensions (a multimodal case); (2) sum of two multivariate Gaussian distributions in higher dimensions; and (3)
Bayesian updating of a neural network model.

3.1 Multimodal Mixture of Gaussians in Two Dimensions

To demonstrate the efficiency of AIMS for sampling from multimodal distributions, consider simulation from a trun-
cated two-dimensional mixture @ff Gaussian densities:

M
(0) o 70(6) x L(6) = Uy ajx[0,a)(8) Y _ wilN'(8]pi, 0°2), (27)

i=1

wherel|y 41« 0,01 (-) denotes the uniform distribution on the squérga] x [0, a]. In this examplea = 10, M =
10, 0 = 0.1, wy = ... = wyg = 0.1, and the mean vectons,, ..., uo are drawn uniformly from the square
[0,10] x [0, 10]. Because of our interest in Bayesian updating, we refei(tpin (27) as a posterior distribution.

Figure 3(a) displays the scatterplot f® posterior samples obtained from AIMS. Notice there are two clusters
of samples that overlap significantly netae= (4,4) that reflect two closely spaced Gaussian densities but the other
eight clusters are widely spaced. The parameters of the algorithm were chosen as follows: samyle=size?
per annealing level; the threshold for the ES= 1/2; the local proposal density;(-|§) = N (-|&, ¢*2), with
¢ = 0.2. The trajectory of the corresponding posterior Markov chain, i.e., the chain generated at the last annealing
level with stationary distributior(+), is shown in Fig. 3(b). Black crossesrepresent the mean vectars, . . ., 11p.
As expected, the chain does not exhibit a local random walk behavior and it moves freely between well-separated
modes of the posterior distribution. Figures 3(c) and 3(d) are discussed later.

The described implementation of AIMS leads to a total numbern.of 6 intermediate distributions in the an-
nealing scheme. Figure 4 shows how annealing paranetehanges as a function gffor 50 independent runs of
the algorithm. It is found that in all considered examp[esgrows like an exponential with except for the last step
(becauses,, is set to 1 to get the posterior).

To demonstrate the asymptotic properties of AIMS, in Fig. 5 we plot the normalized sample autocorrelation
function (ACF) of three Markov chains generated by AIMS: two intermediate chains @,4) and the posterior
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FIG. 3: (a) Scatterplots ot0? posterior samples; (b) the trajectories of the corresponding posterior Markov chain
obtained from AIMS; and (c), (d) corresponding plots from RWMH. Black crossespresent the modes, . . ., i
of n(-) [example 3.1].

Annealing parameter Bj
o o © o o o o
w H wv (=)} ~N [o2} O
T T T T T T T

o
N
T

0.1 [

Annealing level j

FIG. 4: Annealing parametef ; as a function of annealing levgifor 50 independent runs of AIMS [example 3.1].

chain (j = 6). For each chain, we consider three different cagés= 10%,10% and 10* samples. Figure 5 shows
that for every Markov chain, the largé¥, the less correlated its sampleg), cee GE.N) are. When the stationary
distribution; (-) is relatively simple { = 2), the influence ofV on the sample ACF is especially clear: the sample
ACF drops quickly at lag 1, and at lag 3 the states of the Markov chain With 10* are essentially uncorrelated.
However, if the stationary distribution is complei-€ 6), then the sample ACF is less sensitive to the sample/gize
Indeed, ifr;(-) is complex, then, to obtain an accurate approximaﬁiﬁ{r(\-) ~ 7;(-), N must be large. This behavior
of the ACF with increasingV is rare for MCMC algorithms; for example, increasiivgdoes not affect the correlation
between TMCMC samples or MH samples.
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FIG. 5: The sample autocorrelation function of three Markov chains generated by AIMS: two intermediate chains
(j = 2,4) and the posterior chairy & 6) [example 3.1].

Let us now compare the performance of AIMS with the random walk Metropolis-Hastings algorithm. For a fair
comparison, the Metropolis-Hastings algorithm was implemented as follows. First, a samgie-ef 103 points

05", ...,05" was drawn from the prior distributiony(-) = Uio 4|x[0.4)(-) and the corresponding values of the
likelihood functionL(8) = ZZ L wiN (8], 0°15) were calculatedl; = L(6; ol ). Then, starting from the point with

the largest likelihood§™) = 0", k = arg max L;, a Markov chaird®), .. ., G(N), with stationary distributionr(-)
was generated using the Metropolis-Hastings algorithm. The proposal distribution use¢ \&ps= N(-|&, ¢*I,)
with ¢ = 0.2, and the length of the chain waé = 5 x 103. Thus, the total number of samples used in both AIMS
and RWMH wasN, = 6 x 103, The scatterplot of posterior samples obtained from RWMH and the trajectory of the
corresponding Markov chain are show in Figs. 3(c) and 3(d), respectively. While the AIMS algorithm successfully
sampled all ten modes with the approximately correct proportion of total samples, RWHM completely missed seven
modes.

Suppose that we are interested in estimating the posterior mean vettet, (u7, u3), and the components
(0T)2, (07)2, oT, of the posterior covariance matriX". Their true values are given in Table 1 along with the AIMS
estimates in terms of their means and coefficients of variation averaged over 50 independent simulations, all based on
103 posterior samples.

Figure 6 displays the mean square error (MSE) of the AIMS estimator for the posterior mean and covariance matrix
for different values of the scaling factor The MSE was estimated based &hindependent runs of the algorithm.
The MSE as a function af is nearly flat around the optimal,; ~ 0.15, i.e., the one that minimizes the MSE.

TABLE 1: True values of the posterior parameters and the
AIMS estimates in terms of their means and coefficients of
variation averaged over 50 simulations [example 3.1]
Parameter [ i | uf | (o7)? ] (05)® | of, |
Truevalue | 523 | 575 | 451 | 3.37 | -1.30
AIMS mean| 5.20 | 5.73 | 456 | 3.32 | -1.25
AIMS cov 24% | 2.0% | 82% | 8.2% | 27.7%
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FIG. 6: Mean square error of the AIMS estimator for the mean and covariance matrix as a function of the scaling
factorc showing the optimal value ig,,; ~ 0.15 [example 3.1].

3.2 Mixture of Two Higher-Dimensional Gaussians

To demonstrate the efficiency of AIMS for higher dimensionality, consider simulation from a truncated sum of two
multivariate Gaussian densities:

7?(8) o 15 (8) L (0) = Uy _q,04(0) [N(8]p1, 0°1a) + N (6] p2, 0La)] , (28)

wherea = 2, u; = (0.5,...,0.5), up = (=0.5,...,-0.5), ando = 0.5. Thus,7¢(-) is a bimodal distribution on a
d-dimensional cubé-a, a]¢. Suppose that a quantity of interest is the function[—a, a]? — [—a, a] that gives the
largest component & = (04,...,04) € [~a,a]¢ :

h(0) = max{01,...,04}, (29)
and we want to estimate its expectation with respect4o) using posterior sampled®), ..., 0") ~ 7?(.) as
follows:

_ . 1 X @
h:Eﬂd[h]th:N;h(e ) (30)

This example is taken from [25], where the TMCMC for sampling from posterior densities was introduced.

Here, we consider five cases:= 2,4, 6,10, and20. The performance of TMCMC was examined for only the
first three cases in [25]. The last two cases are higher dimensional, and therefore more challenging.

The details of implementation and simulation results from 50 independent runs are summarized in Table 2. The
exact valueh is calculated by Monte Carlo withh = 10° samples. First, observe that AIMS outperforms TMCMC
whend = 2,4,6. Both methods are capable of generating samples from both modes of the posterior; however, the
probabilities of the modes (eachlig2 in this example) are found more accurately by AIMS.

Remark 9. In addition to the first three cases, five other scenarios with different probabilities of modes and different
values ofo were examined in [25]. It is found that AIMS outperforms TMCMC in all these cases too.

Results presented in Table 2 help to shed some light on the properties of the optimal scaling paggrfetehe
proposal density; (-|&) = N (-|&, *1,). It appears that,,: depends not only on the dimensidnwhich is expected,
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TABLE 2: Summary of the simulation resultg:is the dimension of the sample spade;
andhy are the exact value d& .« [h] and its estimated value, respectivelyin parentheses

is the corresponding coefficient of variatioN;, v, copt, andm are the number of samples

used per annealing level, the threshold for the ESS, the (nearly) optimal value of the scaling
parameter, and the average number of distributions in the annealing scheme, respectively. The
AIMS results are based dit) independent runs. The TMCMC results are taken from [25] and

are based on 50 independent runs [example 3.2]

Case| d | h | TMCMC:hy,(8) | AIMS: hy, (3) N Y | copt

m

1 | 2029 0.28(12.3%) 0.29(8.8%) | 10° | 12| 02| 3
2 | 4 |051| 0.54(10.0%) 0.51(6.9%) | 10> |1/2| 04 | 4
3 | 6|064| 065(157%) | 0.64(10.4%) | 10° |1/2| 0.6 | 4.95
4 [10] 076 — 0.76 (26.7%) | 10° | 1/2| 0.7 | 5.84
10 | 0.76 — 0.76 (12.2%) | 2 x 103 | 1/2 | 0.6 | 5.98
5 |20/ 092 — 0.95 (42.1%) | 4x 103 | 1/2| 0.5 | 5.58

but also onV, the number of samples used per each annealing level. The latter dependence is explained by the fact
that the global proposal distributio?jv(-) for the AIMS Markov chain depends both daande: frJN(-) is a weighted

sum of N RWMH transition kernels with Gaussian proposal distributions, whose spread is controlletiMnen N

is fixed, copt IS @ monotonically increasing function df since in higher dimensions, for optimal local exploration

of the neighborhoods cﬂg.ljl, ce eﬂ we have to be able to make larger local jumps frﬁjjfjl to &;. Whend
is fixed, cop is @ monotonically decreasing function df, since the more sampl%ljl, c egjfi that have been

generated at the previous level, the more we can focus on local exploration of their neighborhoods without worrying

too much about regions that lie far away. If we think of the suppot; Qi]e;]i)l) = N(-|6§.’i)1, c?14) as lying mostly

in ad-dimensional ball of radius centered at);’i)l, then we can explain the dependencegf on IV as follows: the
mored-dimensional balls of radiuswe have, the smallerwe can use for covering the sample space.

Next we look at how the local and global acceptance rates (see Remark 12 in Appendix A) depend on the scaling
parametet. Figures 7-9 display these acceptance rates along with the coefficient of vasiafithre AIMS estimator
for the first three cased: = 2,4, and6, based on 50 independent runs. As expected, the global acceptance rate is
always smaller than the local acceptance rate, and the minimum vadueoafesponds to the maximum value of the
global acceptance rate. Observe also that the peak of the global acceptance rate slides to the jeifharbases.
This suggests that it is more efficient to use smaller valuesbhigher annealing levels. Indeed, it is natural to expect
thatc;?IDt > c?}'fl, since the intermediate distributian., (-) is more concentrated than(-).

Finally, we draw attention to caskin Table 2 wherel = 10 with N = 102 and N = 2 x 103 samples per
annealing level. Usually for Monte Carlo-based methods the coefficient of vartatibthe estimator is proportional
to 1/v/N;, whereN; is the total number of samples. Thus, the doubling of sample size will result in the reduction
of & by the factor ofl /v/2 ~ 0.71. For AIMS, however, the decrease ®fs more significant: frond = 26.7% to
b = 12.2%, i.e., approximately by the factor 6f46. This is because, as explained in Section 2.3, the increade of
affects not only the total sample size, but also improves the global proposal distrih@i(o)d This improvement of
frj\’(«) results in the generation of less correlated samples at each annealing level, and therefore leads to an additional
reduction of the coefficient of variation

3.3 Bayesian Updating of a Neural Network with one Hidden Layer

To illustrate the use of AIMS for Bayesian updating, consider its application to a feed-forward neural network model,
one of the most popular and most widely used models for function approximation. The goal is to approximate a
(potentially highly nonlinear) functiorf : X — R, whereX C RP is a compact set, based on a finite number of
measurementg;, = f(x;), 7 = 1,...,n, by using a finite sum of the form
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FIG. 7: Coefficient of variatiord of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functionsfof case 1 { = 2) [example 3.2].
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FIG. 8: Coefficient of variatiord of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functionsfof case 2 { = 4) [example 3.2].
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FIG. 9: Coefficient of variatiord of the AIMS estimate (top panel), global acceptance rate (middle panel), and local
acceptance rate (bottom panel) as functionsfof case 3 { = 6) [example 3.2].
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M
f(x,e):Zoc]\I'(@, BJ>+YJ>7 (31)
j=1
where denotes the model parametersy; € R, andp; € RP forj =1,..., M, (-, -) is the standard scalar product

in RP, andV¥ is a sigmoidal function, the typical choice being either the logistic function otzhk function that is
used in this example:
e — e %

V(z) = ——.
(Z) e? 4+ e~ %

Model (31) is called a feed-forward neural network (FFNN) with activation function ¢3#)put units, one hidden
layer with M hidden units, and one output unit. The paramefgraind o; are called the connection weights from
the input units to the hidden unjtand the connection weights from the hidden yrib the output unit, respectively.
The termy, is a designated bias of the hidden unénd it can be viewed as a connection weight from an additional
constant unit input. Schematically, the FFNN model is shown in Fig. 10.

The rationale behind the FFNN approximation method follows from the universal approximation property of
FFNN models [32, 33]; that is, an FFNN with sufficient number of hidden units and properly adjusted connection
weights can approximate most functions arbitrarily well. More precisely, finite sums (31) over all positive idtegers
are dense in the set of real continuous functions omitienensional unit cube.

Let.A denote the FFNN architecture, i.e., the input-output model (31) together with information about the type of
activation function¥, number of input unit, and number of hidden unif. In this example, we uge= 1, M = 2,
andV is given by (32), so the model parametérs: («;, xo, B1, B2, v1,v2) € © = RS,

Deterministic model4 of function f given by f (z,0) in (31) can be used to construcBayesian (stochastic)
model M of function f by stochastic embeddin@ee the details in [34, 35]). Recall that by definition, a Bayesian
model M consists of two components:

(32)

1. An input-output probability mode} ~ p(y|z, 8, M), which is obtained by introducing the prediction-error

13 :y—f(a:,e), (33)

which is the difference between the true output f(x) and the deterministic model outpjitz, 8). A prob-

ability model for ¢ is introduced by using the principle of maximum entropy [36, 37], which states that the
probability model should be selected to produce the most uncertainty subject to constraints that we wish to
impose (the selection of any other probability model would lead to an unjustified reduction in the prediction
uncertainty). In this example, we impose the following constraiifs] = 0 and vafe] = o2 with ¢ un-
bounded. The maximum entropy PDF for the prediction error is then\/(0, o2). This leads to the following
input-output probability model:

plylz,0. M) =N (y| f(,6), o) (34)

FIG. 10: The feed-forward neural network model with one hidden layer (shown by hatching) [example 3.3].
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Here, the prediction-error variane@ is included in the set of model parameters where, for convenience, we
defined; = log 0—2, so the parameter space is nGw= R”.

2. A prior PDF 7((8|M) over the parameter space which is chosen to quantify the initial relative plausibility of
each value 06 in ©. In this example, the prior distributions are assumed to be

a; ~N(0,0%), B; ~N(0,03), v; ~N(0,03), 67=1logo ?~N(0,03,), (35)
with 0, = o = 0, = 09, = 5. Thus, the prior PDF in our case is

M

mo(0]M) = N (87]0, 03,) [ M (0510, 03) N (B510, 03 )N (410, 03). (36)

j=1

Let D denote the training dat® = {(x1,41),- - ., (za, yn) }, treated as independent samples; then, the likelihood
function which expresses the probability of getting dathased on the probability model (34) is given by

L(8) = p(D|o, M) = [ [ p(yilz:, 0, M). (37)
1=1

In this example, data are synthetically generated from (34) with= 5, s = =5, 1 = —1, B2 = =3, v1 = 5,
Y2 = 2,0 = 0.1, and the input;; = /10, fori = 1,...,n = 100.
Finally, using Bayes theorem, we can write the posterior RDHD, M) for the uncertain model parameters:

m(08|D, M) o (6| M) L(0)

= N(87]0,03,) H (10, 02 )N (B0, o )N (510, oi)Hp(in:ci,&M)-

i=1 i=1

(38)

Under the Bayesian framework, the mean prediction f f () from observable: can be obtained by integrating
out the nuisance parameters:

E. [y|z, D, M] /@f(a;, 0)7(6]D, M)do. (39)

To demonstrate the efficiency of AIMS for the mean prediction problem, we use it to sample from the posterior
PDF (38) and use Monte Carlo simulation in (39). The parameters of the AIMS algorithm are chosen as follows:
sample sizeV = 3 x 10 per annealing level; the threshold for the ES= 1/2; the proposal density; (-|&) =
N (-]&, ¢2I7), with ¢ = 0.5. This implementation of AIMS leads to a total numberof= 10 intermediate distributions
in the annealing scheme. The obtained posterior san@é,ié,s e 0'™) are then used to approximate the integral on
the right-hand side of (39):

N —
/@f(:c,@)w(@ﬂ),./\/l)de ~ ;Zf (2.09) % fua). (40)

The true functiory = f(z) as well as its AIMS approximatioﬁm(m) are shown in Fig. 11. A few “intermediate

approximations” Aj(x), which are based oagl), ol eEN) ~ 5, are plotted to show hovfj(a:) approacheg (z)
whenj — m. To visualize the uncertainty for the AIMS approximation, we plot5ts and95th percentiles in
Fig. 12.
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FIG. 11: The true functionf (z) (solid curve), its posterior agproximati(fﬁb (z) (dashed curve), which is constructed
using AIMS, and “intermediate annealing approximatiory%’(:x) (dotted curve), which is based on prior samples,
f2(x) and f3(z) (dashed-dotted curves) [example 3.3].

12 T T T T T T T T T
True function
‘‘‘‘‘‘‘‘‘‘‘‘‘ — — — AIMS approximation
10 - R EEEREE REREEPY 5th—percentile
"""""" T N 95th—percentile

FIG. 12: The true functionf(z) (solid curve), its AIMS approximatiorfm(x) (dashed curve), and 5th and 95th
percentiles oﬁﬂo(x) (dotted curves) [example 3.3].

4. CONCLUDING REMARKS

In this paper, a new scheme for sampling from posterior distributions, called asymptotically independent Markov
sampling (AIMS), is introduced. The algorithm is based on three well-established and widely-used stochastic sim-
ulation methods: importance sampling, MCMC, and simulated annealing. The key idea behind AIMS is to use
N samples drawn fromr;_,(-) as an importance sampling density to construct an approximaﬁﬁn) of m;(-),
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wheremy(+), ..., () is a sequence of intermediate distributions interpolating between therpfigrand posterior
7(-) = mm(-). This approximation is then employed as the independent proposal distribution for sampling; fropm
by the independent Metropolis-Hastings algorithm. Whén- oo, the AIMS sampler generates independent draws
from the target distribution, hence the name of the algorithm.

Important ergodic properties of AIMS are derived in the Appendix. In particular, it is shown that under certain
conditions (that are often fulfilled in practice), the AIMS algorithm produces a uniformly ergodic Markov chain. The
choice of the free parameters of the algorithm is discussed and recommendations are provide for their values, both
theoretically and heuristically based. The efficiency of AIMS is demonstrated with three examples, which include
both multimodal and higher-dimensional target posterior distributions.
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APPENDIX A. ERGODIC PROPERTIES OF AIMS

Because the discussion in Section 2.1, which motivated AIMS at annealingjlewelolved delta functions and
formal equalities (12) and (13), we cannot simply rely on the convergence of the IMH algorithm in verification of
AIMS; a rigorous proof is needed. First we prove that the described algorithm indeed generates a Markov chain with
a stationary distributiom;(-). We also explain that when the proposal dengity|&) is reasonably chosem,(-) is

the unique (and, therefore, limiting) stationary distribution of the corresponding Markov chain.

Theorem 1. Let 6;1),6§2), ... be the Markov chain o®* = © \ {6(1) ...,eg.ffg-“} generated by the AIMS

i—1
algorithm at annealing level, thenr;(-) is a stationary distribution of the Markov chain.

Proof. Let IC;(-|-) denote the transition kernel of the Markov chain generated by AIMS at annealing I&reim the
description of the algorithm it follows thd, (-|-) has the following form:
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+[1 = A;(0)]50(dE),
whereA;(0) is the probability of having a proper transitiérto ©7 \ {0}:

(N
/ Zw] a; (&6 )mm{ f(;gl)}min{l,w}dé (A-2)

. me) | m(E)E6) }
i (dE|8) 2145 8 Jmin< 1, —~ 2 — min{ 1, ——2—"13d
(£10) Z o (49%,) { - (95721)} { m;(0)7, 7 (&) ‘ (A1)

Jj =1
A sufficient condition forr; (-) to be a stationary distribution is fég; (-|-) to satisfy the detailed balance condition:
;i (dO)K;(d&|8) = m; (dE)K;(dBE). (A.3)

Without loss of generality, we assume tiflag &, since otherwise (A.3) is trivial. In this cagg; (d&|0) is given by
the first term in (A.1), since the second term vanishes. Thus, all we need to prove is that the function

D\ 5 (&) : m;(E)7;771(6)
£(o, Z w5 1q] E|9F-_)1 min 1,77/4 mm{l,f‘1 (A.4)
P (407 i (0f)) 7 (O)7; 7 ()
is symmetric with respect to permutation— &, for all 8, £ € ©7. Taking into account (12) and the simple fact that
amin{l,b/a} = bmin{l,a/b} for all a,b > 0, we have
N1
m; (&) (0) }

£(0,8) = m;(0)7, " (£) min < 1, -
(6,8) = m;(0) (&) { O (E)

v (A.5)
. ()77 (&
— (070 (0) min {1, ”)””} —&(t.0)
™ (&)757(6)
This proves that;(-) is a stationary distribution of the AIMS Markov chain. O

A stationary distribution is unique and is the limiting distribution for a Markov chain if the chain is aperiodic and
irreducible (see, for example, [38]). In the case of AIMS, aperiodicity is guaranteed by the fact that the probability

of having a repeated sampﬂéi“) = eg” is not zero: for example, if the local candidate stités rejected in step
i+1)

1c, then we automatically ha\ﬂ§ = 957). A Markov chain with stationary distribution(-) is irreducible if, for

any initial state, it has positive probability of entering any set to whith assigns positive probability. It is clear that

if the proposal distribution; (-|&) is “standard” (e.g., Gaussian, uniform, log-normal, etc.), then AIMS generates an
irreducible Markov chain. In this case; (-) is therefore the unique stationary distribution of the AIMS Markov chain,
and for everp € ©7

Tim[KC7(-16) = m5() v =0, (A6)
with || - ||Tv denoting the total variation distance. Recall that the total variation distance between two measures
ti(-) andpz(-) on © is defined agw; (-) — wi(:)|lrv = supyce [H1(A) — n2(A)|. In a simulation setup, the most

important consequence of convergence property (A.6) is, of course, that the sample mean converges to the expectation
of a measurable function of interest almost surely:

llglmN Zh(e“) /h(e)wj(e)de (A.7)
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Convergence (A.6) ensures the proper behavior of the AIMS cﬂg.é)inef), ... regardless of the initial staﬁ§1).
A more detailed description of convergence properties involves the study of the speed of convergéhcgoto
7;(+). Evaluation (or estimation) of this speed is very important for any MCMC algorithm, since it relates to a stopping
rule for this algorithm: the higher the speed of convergege |0) — m;(-), the fewer samples are needed to obtain

an accurate estimate in (A.7). Recall, following [39], that a ctéain, 8(2), . . . is calleduniformly ergodidf

lim sup ||[K"(:|6) — =(-)||Tv = 0. (A.8)

n—eeo

The property of uniform ergodicity is stronger than (A.6), since it guarantees that the speed of convergence is uniform
over the whole space. Moreover, a Markov chain is uniformly ergodic if and only if thererexist and R < oo
such that for alb € ©

K (16) — 7(-)[|lrv < R, (A.9)

that is, the convergence in (A.8) takes place at uniform geometric rate [39].
Theorem 2. If there exists a constar/ such that for allp € ©;
m;(8) < M7 (6), (A.10)

then the AIMS algorithm at annealing levieproduces a uniformly ergodic chain and

I3 0) ~ my ke < (1 57 ) (a11)

Proof. To prove the first part of the theorem we will need the notion sifrall se{39]. A setA C © is called a small
set if there exists an integer > 0 and a nontrivial measuneg,, on ©, such that foralb € A, B C ©

K™(B|8) = pm(B). (A.12)

In this case we say that is u,,,-small. It can be shown [39] that a Markov chain is uniformly ergodic if and only if
its state space is,,-small for somen. Thus, to prove the theorem, it is enough to show éiats a small set.
If (A.10) is satisfied, then the following holds for transition kernel (A.1)@oe ©} andB C ©7:

AT A
:/ﬁ'jjl(&)min{l,W}d&
B m(0)7; 7 (&)
LN
_ : ~Nj-1 - i (9)
_/Bmln{ﬂj (&), m;(&) 5 0) }dE,

zémm%?%&ﬁ?}ﬁz&ém@ﬂ=&mw)

The sample spad®; is thereforer; /M-small, and the corresponding Markov chain is uniformly ergodic.
To prove bound (A.11), first observe, using (A.13), that

(A.13)

L) =1- 4. (A.14)

1K (:16) = m; () [[rv = sup K55 (Al6) — m; (A)] < sup Im3(A) = 57 i

Forn > 1, using the Chapman-Kolmogorov equatiGfi+"(A[8) = [, K™ (A|£)K"(dE|8) and stationarity ofr;(-)
with respect tdC; (-|-), we have
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K55 (18) =5 ()llzv = sup |KC5 (4]6) — ;(4)]

—swp | [ K(alecy o) - [ Kj(alem (€)de
A |Je; o;
(A.15)
—sup | [ K (4le) [ (aee) - m<a>da]|
A i
—sup| [ G410 = my (4] [ el my e
where the last equality follows from the fact thif. K"~ (d€|6) = [, m;(€)dE = 1. Finally, we obtain
115 18) = 3w < supsup | [ 165416 — ()] [ (dE]0) — m(E)e] ]
B A B
<sup| [ sup I (Al8) = w5 ()] 1] (0El0) — 6] (419
B B A
— 1K 10) = Ol 1663 (48) = my ey < (1= 57 ) .

Remark 10. Note that if there exists a constamf such that (A.10) holds for all € ©7, thenM > 1 automatically.

Corollary 1. If © c R%is a compact set ang(-|&) is a Gaussian distribution centered&tthen the AIMS algorithm
at annealing leve} produces a uniformly ergodic chain and (A.11) holds withgiven by

Nj_1 mingeg gj <9|9(»i)1) o
M= v, . (A.17)

P maxgco 7;(0)

Proof. Let us show that in this case condition (A.10) is always fulfilled. For&my©} we have

ﬁN"—l(e)—Nilw(” (162, ) min {1 O
J A AN EAC

_ _ (A.18)
Nj—1 . mingeeo q; (6|6§-l_)1) . T (9;2_)1)
2 7@(9) Z wj—l ) min 1, m
i=1 71']» (e]_1> € J
Nj_1 : ) Q]
J = i-1 maxgeeo Wj(e)
Thus, (A.10) holds with\/ given by (A.17). O

Remark 11. Note that the assumption of compactness of the sample épacaot very restrictive and is typically
satisfied in most Bayesian statistics problems. Indeed, to fulfill this condition, it is enough to take a prior distribution
mo(-) with compact support. Next, it is clear from the proof that the conclusion of Corollary 1 holds for different “rea-
sonable” (not only Gaussian) proposal distributiong-|&). Therefore, the AIMS algorithm will produce a uniformly
ergodic Markov chain in many practical cases.
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It has been recognized for a long time that when using an MCMC algorithm, it is useful to monitor its acceptance
rate A4, i.e., expected probability of having a proper Markov judfp to 8t £ 9() While in the case of the
RWMH algorithm, the finding of the optimal acceptance rate is a difficult problem: neither high nod lisngood
[30]; for IMH the picture is rather simple: the highgk, the better [4]. Since AIMS is based on the IMH algorithm,
their properties are very similar. In particular, one should aim for the highest possible acceptance rate of the global
candidate stat§, when implementing AIMS.

We finish this section with a result that provides bounds for the acceptance rate of the AIMS algorithms. These
bounds can be useful for finding the optimal implementation parameters.

Theorem 3. Let.A; be the expected probability of having a proper Markov transition associated with the AIMS algo-
rithm at annealing levej. Then

< Z o (egijl), (A.19)

Whereaj(eyzl) is probability (11) associated with having a proper transition under the RWMH transition kernel (10).
If (A.10) holds, then
1

Az (A.20)

Proof. For everyd € ©7, the probability.4;(0) of transition® to ©7 \ {0} is given by (A.2). For its expected value
we have

A= [ m@a e

(&) L m(E)7)(6)
/O /* - J)lqj (g|9g 1) mln{l W}mln{l’W}dade

=1

L0 (o s

2
——
-

S
—a
@ ==
~ =
_
~—
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QU
ingl
U
D
~—
>
N
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N—r

Nj_1
/ z oya; (00,) do = 3 ala, (0,
=1

To prove the Iower bound (A.20), we use (12) in the equation defidifig

4; = (04N 1 (£) min M
fi—léjz%wﬂmwj (&) {Lﬂﬂmﬁ%_%a}d&w

(A.22)
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where the last probability is equal 1¢2, becaus® and{ are i.i.d. according ta;(-), and hence the result. O

Remark 12. The AIMS algorithm at annealing levglhas two accept/reject steps: one is for the local candidate
(step 1c) and another is for the global candidatg(step 2). The right-hand side of (A.19) is nothing else but the local

acceptance rate, i.e., expected probability of generating a proper local candidateiﬁtgte{egljl, ceey eg_ffjl—l)}.

Basically (A.19) says that the global acceptance rdtecan never exceed the local acceptance rate. In fact, it can
be deduced directly from the description of the algorithm, since if the local candiglagerejected, then the global
candidatet,; is automatically rejected and we have a repeated sar@njjfél) = G;Z).

International Journal for Uncertainty Quantification



