# SEMIGROUPS OF LINEAR OPERATORS 

NOTES BY YOUSUF SOLIMAN

## 1. Introduction

Our goal is to define exponentials of linear operators. We will try to construct $e^{t A}$ as a linear operator, where $A: \mathscr{D}(A) \rightarrow X$ is a general linear operator, not necessarily bounded. Notationally, it seems like we are looking for a solution to $\dot{\mu}(t)=A \mu(t), \mu(0)=\mu_{0}$, and we would like to write $\mu(t)=e^{t A} \mu_{0}$. It turns out that this will hold once we make sense of the terms.
How can we construct $e^{t A}$ when $A$ is a finite matrix? The most obvious way is to write down the power series: $\sum_{n=0}^{\infty} \frac{1}{n!}(t A)^{n}$. This series is absolutely convergent for every $A$ and $t \in \mathbf{R}$. In fact, this method works for $A \in$ $\mathscr{L}(X ; X)$, even if $X$ is infinite dimensional.

A second method is to consider the connection with the explicit Euler scheme. Consider the system of ordinary differential equations:

$$
\left\{\begin{array}{l}
\dot{\mu}(t)=A \mu(t) \\
\mu(0)=\mu_{0}
\end{array}\right.
$$

Partition $[0, t]$ into $n$ parts and write

$$
\dot{\mu}\left(\frac{k t}{n}\right)=\frac{n}{t}\left(\mu\left(\frac{(k+1) t}{n}\right)-\mu\left(\frac{k t}{n}\right)\right)
$$

the forward difference quotient approximation. From the ODE, we get

$$
\begin{aligned}
A \mu\left(\frac{k t}{n}\right) & =\frac{n}{t}\left(\mu\left(\frac{(k+1) t}{n}\right)-\mu\left(\frac{k t}{n}\right)\right), \\
\mu\left(\frac{(k+1) t}{n}\right) & =\left(\mathbb{1}+\frac{t}{n} A\right) \mu\left(\frac{k t}{n}\right), \\
\mu(t)=\mu\left(\frac{n t}{n}\right) & \approx\left(\mathbb{1}+\frac{t}{n} A\right)^{n} \mu_{0}
\end{aligned}
$$

Thus $\mu(t)=\lim _{n \rightarrow \infty}\left(\mathbb{1}+\frac{t}{n} A\right)^{n} \mu_{0}$ and we write $e^{t A}=\lim _{n \rightarrow \infty}\left(\mathbb{1}+\frac{t}{n} A\right)^{n}$.
Both of these methods are doomed to fail if $A$ is not bounded. When the explicit method fails, one would normally try the implicit method. The third method we consider is the connection with the implicit Euler scheme. Partition [ $0, t$ ] into $n$ parts and write

$$
\dot{\mu}\left(\frac{(k+1) t}{n}\right)=\frac{n}{t}\left(\mu\left(\frac{(k+1) t}{n}\right)-\mu\left(\frac{k t}{n}\right)\right),
$$

the backward difference quotient approximation. From the ODE, we get

$$
\begin{aligned}
A \mu\left(\frac{(k+1) t}{n}\right) & =\frac{n}{t}\left(\mu\left(\frac{(k+1) t}{n}\right)-\mu\left(\frac{k t}{n}\right)\right) \\
\mu\left(\frac{(k+1) t}{n}\right) & =\left(\mathbb{1}-\frac{t}{n} A\right)^{-1} \mu\left(\frac{k t}{n}\right) \\
\mu(t)=\mu\left(\frac{n t}{n}\right) & \approx\left(\mathbb{1}-\frac{t}{n} A\right)^{-n} \mu_{0}
\end{aligned}
$$

Thus $\mu(t)=\lim _{n \rightarrow \infty}\left(\mathbb{1}-\frac{t}{n} A\right)^{-n} \mu_{0}$ and we write $e^{t A}=\lim _{n \rightarrow \infty}\left(\mathbb{1}-\frac{t}{n} A\right)^{-n}$. This works for some unbounded $A$ as well. The key point will be the behavior of $\left\|R(\lambda ; A)^{n}\right\|$ for large $n$.

[^0]Date: July 21, 2017.

An engineer might consider the Laplace transform. If $f(t)=e^{t A}$ then it can be shown that $\widehat{f}(\lambda)=(\lambda \mathbb{1}-A)^{-1}=$ $R(\lambda ; A)$. There is an inversion formula, namely

$$
e^{t A}=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} R(\lambda ; A) d \lambda
$$

where $\gamma$ is chosen such that the spectrum of $A$ lies to the left of the line over which we are integrating. This formula can be interpreted and works for many important unbounded iperators.
A fifth method works for self-adjoint matrices. Let $\left\{e_{k}\right\}_{k=1}^{N}$ be an orthonormal basis of $X$ of eigenvectors of $A$. For any $v \in X, v=\sum_{k=1}^{N}\left(v, e_{k}\right) e_{k}$ and $A v=\sum_{k=1}^{N} \lambda_{k}\left(v, e_{k}\right) e_{k}$. We take

$$
e^{t A} v=\sum_{k=1}^{N} e^{\lambda_{k} t}\left(v, e_{k}\right) e_{k}
$$

In general, if $X$ is a Hilbert space and $A: \mathscr{D}(A) \rightarrow X$ is self-adjoint then

$$
A=\int_{-\infty}^{\infty} \lambda d P(\lambda)
$$

where $\{P(\lambda): \lambda \in \mathbf{R}\}$ is the spectral family associated with $A$. We know that $\sigma(A) \subseteq \mathbf{R}$, so if $\sigma(A)$ is bounded above then we could define

$$
e^{t A}=\int_{-\infty}^{\infty} e^{\lambda t} d P(\lambda)
$$

Note that the matrix $A$ can be recovered from its exponential via the formula

$$
A=\lim _{t \downarrow 0} \frac{1}{t}\left(e^{t A}-\mathbb{1}\right)
$$

## 2. Linear $C_{0}$-SEMIGROUPS

Let $X$ be a Banach space over $\mathbf{K}$, where $\mathbf{K}=\mathbf{R}$ or $\mathbf{K}=\mathbf{C}$.
Definition 2.1. A linear $C_{0}$-semigroup (or a strongly continuous semigroup) is a mapping $T:[0, \infty) \rightarrow \mathscr{L}(X ; X)$ such that
(i) $T(0)=\mathbb{1}$,
(ii) $T(t+s)=T(t) T(s)$ for all $s, t \in[0, \infty)$, and
(iii) for all $x \in X, \lim _{t \downarrow 0} T(t) x=x$.

Remark 2.2.
(i) By the second condition $T(t) T(s)=T(s) T(t)$ for all $s, t$.
(ii) Sometimes we will use the notation $\{T(t)\}_{t \geq 0}$.
(iii) If we have a mapping $T:[0, \infty) \rightarrow \mathscr{L}(X ; X)$ satisfying conditions (i) and (ii), (called a semigroup of bounded linear operators) then if the following condition holds so does (iii). (iii') $\lim _{t \downarrow 0}\left\langle x^{*}, T(t) x\right\rangle=\left\langle x^{*}, x\right\rangle$ for all $x^{*} \in X^{*}$ and $x \in X$.
(iv) The condition $\lim _{t \downarrow 0}\|T(t)-\mathbb{1}\|=0$ implies that $T(t)=\sum_{n=0}^{\infty} \frac{1}{n!}(t A)^{n}$ for all $t$, for some $A \in \mathscr{L}(X ; X)$. This condition is too strong for practical purposes.
(v) The " $C_{0}$ " in the name may come form "continuous at zero" or it may refer to the fact that these semigroups are (merely) continuous, as opposed to differentiable, etc.

Let $T$ be a linear $C_{0}$-semigroup. The infintesimal generator of $T$ is the linear operator $A: \mathscr{D}(A) \rightarrow X$ defined as follows.

$$
\mathscr{D}(A):=\left\{x \in X: \lim _{t \downarrow 0} \frac{1}{t}(T(t) x-x) \text { exists }\right\}
$$

and for all $x \in \mathscr{D}(A), A x=\lim _{t \downarrow 0} \frac{1}{t}(T(t) x-x)$. It is not immediately obvious that $\mathscr{D}(A) \neq\{0\}$. We will show that $\mathscr{D}(A)$ is dense and that $A$ is a closed linear operator.

Example 2.3. Let $X=B U C(\mathbf{R})=$ bounded uniformly continuous functions $\mathbf{R} \rightarrow \mathbf{K}$. Define $(T(t) f)(x):=f(t+x)$ for all $t \in[0, \infty)$ and $x \in \mathbf{R}$. Clearly $T$ satisfies (i) and (ii) of the definition. Uniform continuity is essential to get (iii). Indeed, if $f$ is uniformly continuous then

$$
\|T(t) f-f\|_{\infty}=\sup \{|f(t+x)-f(x)|: x \in \mathbf{R}\} \rightarrow 0 \text { as } t \rightarrow 0
$$

The infinitesimal generator is

$$
A f=\lim _{t \downarrow 0} \frac{f(t+x)-f(x)}{t}=f^{\prime}(x),
$$

i.e. differentiation. Note that the solution to the $\operatorname{PDE} \mu_{t}(x, t)=\mu_{x}(x, t), \mu(x, 0)=\mu_{0}$ is $\mu(x, t)=\mu_{0}(x+t)=$ $\left(T(t) \mu_{0}\right)(x)$.

Lemma 2.4. Let $T$ be a linear $C_{0}$-semigroup. Then there are $M, \omega \in \mathbf{R}$ such that $\|T(t)\| \leq M e^{\omega t}$ for all $t \in[0, \infty)$.

Proof. We claim that there is some $\eta>0$ such that $\sup \{\|T(t)\|: t \in[0, \eta]\}$ is finite. Indeed, assume for the sake of contradiction there is no such $\eta$. Choose $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $t_{n} \downarrow 0$ and $\left\{T\left(t_{n}\right) x\right\}_{n=1}^{\infty}$ is unbounded. However, for all $x \in X$, since $T\left(t_{n}\right) x \rightarrow x,\left\{T\left(t_{n}\right) x\right\}_{n=1}^{\infty}$ is a convergent sequence, so $\sup \left\{\left\|T\left(t_{n}\right) x\right\|: n \in \mathbf{N}\right\}$ is finite for each $x \in X$. By the Banach-Steinhaus theorem we deduce that $\sup \left\{\left\|T\left(t_{n}\right)\right\|: n \in \mathbf{N}\right\}$ is finite, a contradiction.

Now let $\eta>0$ be as above. Set $M:=\sup \{\|T(t)\|: t \in[0, \eta]\} \geq 1\}$. Let $t \in[0, \infty)$ be given. Choose $n \geq 0$ and $\alpha \in[0, \eta)$ such that $t=n \eta+\alpha$. Then $T(t)=T(n \eta+\alpha)=(T(\eta))^{n} T(\alpha)$ by the semigroup property. Hence,

$$
\|T(t)\| \leq\|T(\alpha)\|\|T(\eta)\|^{n} \leq M M^{n}
$$

Now let $\omega=\frac{1}{\eta} \log M \geq 0$, so that $\omega t \geq n \log M$, and $\|T(t)\| M e^{\omega t}$.
Definition 2.5. Let $T$ be a linear $C_{0}$-semigroup. We say that $T$ is
(i) uniformly bounded if there is $M \in \mathbf{R}$ such that $\|T(t)\| \mid$ leq $M$ for all $t \geq 0$.
(ii) contractive if $\|T(t)\| \leq 1$ for all $t \geq 0$.
(iii) quasi-contractive provided there is $\omega \in \mathbf{R}$ such that $\|T(t)\| \leq e^{\omega t}$ for all $t \geq 0$.

Contractive semigroups are much easier to study than general linear $C_{0}$-semigroups. If $T$ is a linear $C_{0}$-semigroup satisfying $\|T(t)\| \mid$ leq $M e^{\omega t}$ then $S(t):=e^{-\omega t} T(t)$ is a uniformly bounded linear $C_{0}$-semigroup. Note that the infinitesimal generator of $S$ is related to that of $T$ as follows.

$$
\begin{aligned}
\lim _{t \downarrow 0} \frac{S(t) x-x}{t} & =\lim _{t \downarrow 0} \frac{e^{-\omega t} T(t) x-x}{t} \\
& =\lim _{t \downarrow 0} \frac{e^{-\omega t}-1}{t} T(t) x+\lim _{t \downarrow 0} \frac{T(t) x-x}{t} \\
& =-\omega x+A x=(A-\omega \mathbb{1}) x .
\end{aligned}
$$

Further, there is an equivalent norm $\||\cdot \||$ on $X$ such that $S$ is contractive with respect to $\|\|\cdot\| \mid$. In fact, we may take $\|x\|:=\sup \{\|S(t) x\|: t \in[0, \infty)\}$. Indeed, for all $x \in X$,

$$
\|\|S(t) x\|=\sup \{\|S(t+s) x\|: s \in[0, \infty)\} \leq\| x \mid \|
$$

Warning: The norm $\||\cdot| \mid$ need not preserve all "nice" geometric properties of $\|\cdot\|$, such as the parallelogram law.
Lemma 2.6. Let $T$ be a linear $C_{0}$-semigroup and let $x \in X$ be given. Then the mapping $t \mapsto T(t) x$ is continuous on $[0, \infty)$.

Proof. For continuity from the right, let $t \geq 0$ be given and notice that

$$
T(t+h) x-T(t) x=(T(h)-\mathbb{1})(T(t) x) \rightarrow 0 \text { as } h \rightarrow 0 .
$$

For continuity from the left, let $t>0$ and $h(0, t)$ be given. Choose $M \geq 1$ and $\omega \geq 0$ such that $\|T(s)\| \leq M e^{\omega s}$ for all $s \in[0, \infty)$.

$$
\begin{aligned}
\|T(t-h) x-T(t) x\| & =\|T(t-h)(\mathbb{1}-T(h)) x\| \\
& \leq\|T(t-h)\|\|T(h) x-x\| \\
& \leq M e^{\omega(t-h)}\|T(h) x-x\| \rightarrow 0 \text { as } h \rightarrow 0 .
\end{aligned}
$$

Lemma 2.7. Let $T$ be a linear $C_{0}$-semigroup with infinitesimal generator $A$, and let $x \in X$ be given.
(i) For all $t \geq 0, \lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h} T(s) x d s=T(t) x$ (where the limit is one sided if $t=0$ ).
(ii) For all $t \geq 0, \int_{0}^{t} T(s) x d s \in \mathscr{D}(A)$ and $A \int_{0}^{t} T(s) x d s=T(t) x-x$.

Proof.
(i) Follows from Lemma 2.6 and basic calculus.
(ii) If $t=0$ there is nothing to prove. Let $t>0$ be given. For $h>0$,

$$
\begin{aligned}
\frac{T(h)-\mathbb{1}}{h} \int_{0}^{t} T(s) x d s & =\frac{1}{h} \int_{0}^{t}(T(s+h)-T(s)) x d s \\
& =\frac{1}{h} \int_{0}^{t} T(s+h) x d s-\frac{1}{h} \int_{0}^{t} T(s) x d s \\
& =\frac{1}{h} \int_{h}^{t} T(u) x d u+\frac{1}{h} \int_{t}^{t+h} T(u) x d u-\frac{1}{h} T(s) x d s-\frac{1}{h} \int_{0}^{h} T(s) x d s \\
& =\frac{1}{h} \int_{t}^{t+h} T(u) x d u-\frac{1}{h} \int_{0}^{h} T(s) x d s \\
& \rightarrow T(t) x-x \text { as } h \rightarrow 0
\end{aligned}
$$

by part (a). The conclusion immediately follows.

Lemma 2.8. Let $T$ be a linear $C_{0}$-semigroup with infinitesimal generator $A$, and $x \in \mathscr{D}(A)$ be given. Put $\mu(t)=T(t) x$ for all $t \geq 0$. Then $\mu(t) \in \mathscr{D}(A)$ fo rlal $t \geq 0, \mu$ is differentiable on $[0, \infty)$, and for each $t \geq 0$,

$$
\dot{\mu}(t)=T(t) A x=A T(t) x=A \mu(t)
$$

Proof. Let $t \geq 0$ be given. For $h>0$,

$$
\frac{T(t+h) x-T(t) x}{h}=\left(\frac{T(h)-\mathbb{1}}{h}\right) T(t) x=T(t)\left(\frac{T(h)-\mathbb{1}}{h}\right) x \rightarrow T(t) A x
$$

as $h \downarrow 0$. In particular, $T(t) x \in \mathscr{D}(A)$ and $A T(t) x=T(t) A x$. Furthermore, $D^{+} \mu(t)=x=T(t) A x$. Let $t>0$ be given. For $h \in(0, t)$,

$$
\frac{T(t-h) x-T(t) x}{h}=T(t-h)\left(\frac{x-T(h) x}{h}\right) \rightarrow-T(t) A x \text { as } h \rightarrow 0
$$

So we deduce that $D^{-} \mu(t) x=T(t) A x$. Since the left and right derivatives both exist and are equal, $\mu$ is differentiable and $\dot{\mu}(t)=A \mu(t)$.

Lemma 2.9. Let $T$ be a linear $C_{0}$-semigroup with infinitesimal generator $A$, and let $x \in \mathscr{D}(A)$ be given. Then for all $s, t \in[0, \infty)$,

$$
T(t) x-T(s) x=\int_{s}^{t} A T(u) x d u=\int_{s}^{t} T(u) A x d u
$$

Proof. This follows from Lemma 2.8 and the fundamental theorem of calculus.

Theorem 2.10. Let $T$ be a linear $C_{0}$-semigroup with infinitesimal generator $A$. Then $\mathscr{D}(A)$ is dense in $X$ and $A$ is closed.

Proof. Let $x \in X$. By Lemma 2.7 we see that $x=\lim _{h \downarrow 0} \int_{0}^{h} T(s) x d s$, and $\int_{0}^{h} T(s) x d s \in \mathscr{D}(A)$ for all $h \geq 0$, so $\mathscr{D}(A)$ is dense in $X$.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathscr{D}(A)$ converging to $x \in X$ and suppose that $A x_{n} \rightarrow y \in X$ as $n \rightarrow \infty$. We must show that $x \in \mathscr{D}(A)$ and that $A x=y$. For $h>0$, by Lemma 2.9,

$$
T(h) x_{n}-x_{n}=\int_{0}^{h} T(s) A x_{n} d s
$$

so by Lemma 2.7,

$$
A x=\lim _{h \downarrow 0} \frac{T(h) x-x}{h}=\lim _{h \downarrow 0} \frac{1}{h} \int_{0}^{h} T(s) y d s=y
$$

It follows that $x \in \mathscr{D}(A)$ and $A x=y$
Lemma 2.11. Let $S$, $T$ be linear $C_{0}$-semigroups having the same infinitesimal generator $A$. Then $S(t)=T(t)$ for all $t \geq 0$.

Proof. Let $x \in \mathscr{D}(A)$ and $t>0$ be given. Define the function $\mu:[0, t] \rightarrow X$ by $\mu(s)=T(t-s) S(s) x$ for all $x \in[0, t]$. We will show that $\mu$ is constant as follows. We claim that $\mu$ is differentiable on $[0, t]$ and

$$
\dot{\mu}(s)=T(t-s) A S(s) x-T(t-s) A S(s) x=0
$$

for all $s \in[0, t]$. This will imply that $\mu$ is constant on $[0, t]$, so

$$
T(t) x=\mu(0)=\mu(1)=S(t) x
$$

Since $\mathscr{D}(A)$ is dense in $X$, it will follow that $T(t)=S(t)$ on $X$ for all $t \geq 0$. To prove the claim we apply Lemma 2.8.

$$
\begin{aligned}
\frac{\mu(s+h)-\mu(s)}{h} & =\frac{1}{h}(T(t-s-h) S(s+h) x-T(t-s) S(s) x) \\
& =\frac{1}{h} T(t-s-h)(S(s+h)-S(s)) x+\frac{1}{h}(T(t-s-h)-T(t-s)) S(s) x \\
& =T(t-s-h)\left(\frac{S(s+h)-S(s)}{h}\right) x+\left(\frac{T(t-s-h)-T(t-s)}{h}\right) S(s) x \\
& \rightarrow T(t-s) A S(s) x-T(t-s) A S(s) x=0 \text { as } h \rightarrow 0
\end{aligned}
$$

The mean value theorem holds for calculus in Banach spaces, and so $\mu$ is constant.

## 3. Infinitesimal Generators

Given a closed densely defined $A$, how do we tell if $A$ generates a linear $C_{0}$-semigroup? Let $a \in \mathbf{R}$ and $n \in \mathbf{N}$ and put $f(t)=t^{n-1} e^{a t}$ for all $t \geq 0$. Recall that the Laplace transform of $f$ is

$$
\widehat{f}(\lambda)=\frac{(n-1)!}{(\lambda-a)^{n}}
$$

Let $A$ be an $N \times N$ matrix and put $F(t)=e^{t A}$.

$$
\widehat{f}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} e^{t A} d t=\int_{0}^{\infty} e^{t(A-\lambda \mathbb{1})} d t=\left.(A-\lambda \mathbb{1})^{-1} e^{t(A-\lambda \mathbb{1})}\right|_{0} ^{\infty}=-(A-\lambda \mathbb{1})^{-1}=R(\lambda ; A)
$$

Recall that $e^{t A}=\lim _{n \rightarrow \infty}\left(\mathbb{1}-\frac{t}{n}\right)^{-n}=\lim _{n \rightarrow \infty}\left(\frac{n}{t}\right)^{n} R\left(\frac{t}{n} ; A\right)^{n}$. To apply this to unbounded operators, the behavior of $R(\lambda ; A)^{n}$ for large $n$ will be key. We conjecture that

$$
R(\lambda ; A)^{n}=\frac{1}{(n-1)!} \int_{0}^{\infty} e^{-\lambda t} t^{n-1} e^{t A} d t
$$

Lemma 3.1. Let $M, \omega \in \mathbf{R}$ and $\lambda \in \mathbf{K}$ with $\Re(\lambda)>\omega$ be given. Let $T$ be a linear $C_{0}$-semigroup such that $\|T(t)\| \leq$ $M e^{\omega t}$ for all $t \geq 0$, and let $A$ be the infinitesimal generator of $T$. Then $\lambda \in \rho(A)$ and, for all $x \in X$,

$$
R(\lambda ; A) x=\int_{0}^{\infty} e^{-\lambda t} T(t) x d t
$$

Proof. Put $I_{1}(\lambda) x=\int_{0}^{\infty} e^{-\lambda t} T(t) x d t$ for all $x \in X$. We need to show that $\lambda \in \rho(A)$ and $R(\lambda ; A)=I_{1}(\lambda)$. Let $x \in \mathscr{D}(A)$ be given.

$$
\begin{align*}
I_{1}(\lambda) A x & =\int_{0}^{\infty} e^{-\lambda t} T(t) A x d t \\
& =\int_{0}^{\infty} e^{-\lambda t} \frac{\mathrm{~d}}{\mathrm{~d} t}(T(t) x) d t  \tag{Lemma 2.8}\\
& =-x+\lambda \int_{0}^{\infty} e^{-\lambda t} T(t) x d t \\
& =\lambda I_{1}(\lambda) x-x
\end{align*}
$$

integration by parts

Now let $x \in X$ be given. We will show that $I_{1}(\lambda) x \mathscr{D}(A)$ and

$$
A I_{1}(\lambda) x=\lambda I_{1}(\lambda) x-x
$$

Fix $h>0$ and compute the difference quotient:

$$
\begin{aligned}
\left(\frac{T(h)-\mathbb{1}}{h}\right) I_{1}(\lambda) x & =\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t}(T(t+h) x-T(t) x) d t \\
& =\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} T(t+h) x d t-\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} T(t) x d t \\
& =\frac{1}{h} \int_{h}^{\infty} e^{-\lambda(s-h)} T(s) x d s-\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} T(t) x d t \\
& =\frac{1}{h} \int_{0}^{\infty} e^{-\lambda(t-h)} T(t) x d t-\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t} T(t) x d t-\frac{1}{h} \int_{0}^{h} e^{-\lambda(t-h)} T(t) x d t \\
& =\int_{0}^{\infty} \frac{e^{-\lambda(t-h)}-e^{-\lambda t}}{h} T(t) x d t-e^{\lambda h} \frac{1}{h} \int_{0}^{h} e^{-\lambda(t-h)} T(t) x d t \\
& \rightarrow \lambda I_{1}(\lambda) x-x \text { as } h \rightarrow 0 .
\end{aligned}
$$

This proves the lemma.
Lemma 3.2. Let $M, \omega \in \mathbf{R}$ and $\lambda \in \mathbf{K}$ with $\Re(\lambda)>\omega$ be given. Let $T$ be a linear $C_{0}$-semigroup such that $\|T(t)\| \leq$ $M e^{\omega t}$ for all $t \geq 0$, and let $A$ be the infinitesimal generator of $T$. Then $\lambda \in \rho(A)$ and, for all $n \in \mathbf{N}$ and all $x \in X$,

$$
R(\lambda ; A)^{n} x=\frac{1}{(n-1)!} \int_{0}^{\infty} e^{-\lambda t} t^{n-1} T(t) x d t
$$

Proof. We already know that $\rho(A) \supseteq\{\mu \in \mathbf{K}: \Re(\mu)>\omega\}$. We also know that $\mu \mapsto R(\mu ; A)$ is analytic. In particular, we have

$$
R(\mu ; A)=\sum_{n=0}^{\infty}(\lambda-\mu)^{n} R(\lambda ; A)^{n+1}=\sum_{n=0}^{\infty} R(\lambda ; A)^{n+1}(\mu-\lambda)^{n}
$$

for $\mid \mu-\lambda$ sufficiently small. Let $R^{(k)}(\lambda ; A)$ denote the $k^{\text {th }}$ derivative of $R(\mu ; A)$ evaluated at $\mu=\lambda$. From the power series, for all $n \in \mathbf{N}$,

$$
\frac{R^{(n-1)}(\lambda ; A)}{(n-1)!}=(-1)^{n-1} R(\lambda ; A)^{n}
$$

By Lemma 3.1, $R(\lambda ; A) x=\int_{0}^{\infty} e^{-\lambda t} T(t) x d t$ for all $x \in X$. From this,

$$
R^{(n-1)}(\lambda ; A) x=(-1)^{n-1} \int_{0}^{\infty} e^{-\lambda t} t^{n-1} T(t) x d t
$$

This proves the result.

Theorem 3.3 (Hille-Yosida, 1948). Let $M, \omega \in \mathbf{R}$ be given. Suppose that $A: \mathscr{D}(A) \rightarrow X$ is a linear operator with $\mathscr{D}(A) \subseteq Z$. Then $A$ is the infinitesimal generator of a linear $C_{0}$-semigroup $T$ satisfying $\|T(t)\| \leq M e^{\omega t}$ for all $t \geq 0$ if and only if the following hold.
(i) A is closed and $\mathscr{D}(A)$ is dense in $X$; and
(ii) $\rho(A) \supseteq\{\lambda \in \mathbf{R}: \lambda>\omega\}$ and $\left\|R(\lambda ; A)^{n}\right\| \leq \frac{M}{(\lambda-\omega)^{n}}$ for all $\lambda \in \mathbf{R}$ with $\lambda>\omega$ and all $n \in \mathbf{N}$.

Remark 3.4. Note that the condition that $\left\|R(\lambda ; A)^{n}\right\| \leq \frac{M}{(\lambda-\omega)^{n}}$ may be difficult to verify in practice. Notice that $\|R(\lambda ; A)\| \leq \frac{M}{(\lambda-\omega)}$ implies that $\left\|R(\lambda ; A)^{n}\right\| \leq \frac{M^{n}}{(\lambda-\omega)^{n}}$, so if $M=1$, i.e. if the semigroup is quasi-contractive, then it is enough to verify the inequality for $n=1$ only.

Proof.

## Step 1. Necessity.

We have already seen that (i) holds, by Theorem 2.10, and that $\rho(A)$ contains $\{\lambda \in \mathbf{R}: \lambda>\omega\}$, by Lemma 3.1. By Lemma 3.2,

$$
\begin{aligned}
R(\lambda ; A)^{n} & =\frac{1}{(n-1)!} \int_{0}^{\infty} e^{-\lambda t} t^{n-1} T(t) x d t \\
\left\|R(\lambda ; A)^{n} x\right\| & \leq \frac{1}{(n-1)!} \int_{0}^{\infty} e^{-\lambda t} t^{n-1}\|T(t) x\| d t \\
& \leq \frac{M}{(n-1)!}\|x\| \int_{0}^{\infty} e^{-\lambda t} t^{n-1} e^{\omega t} d t \\
& =\frac{M}{(n-1)!} \frac{(n-1)!}{(\lambda-\omega)^{n}}\|x\| \\
& =\frac{M}{(\lambda-\omega)^{n}\|x\| .}
\end{aligned}
$$

This concludes the proof of necessity.

## Step 2. Sufficiency.

Should we try using the inverse Laplace transform? If we could write

$$
T(t)=\frac{1}{2 \pi i} \int_{\gamma-\infty}^{\gamma+\infty} e^{\lambda t} R(\lambda ; A) d \lambda
$$

then $T$ would have higher order regularity in general. This method would work for so called "analytic" semigroups, but not for general $C_{0}$-semigroups.

How about the limit obtained from considering the implicit scheme? In general $T(t)=\lim _{n \rightarrow \infty}\left(\mathbb{1}-\frac{t}{n} A\right)^{-n}$, and this method can be used, but we will not use it here. What we will do is approximate $A$ with bounded operators $\left\{A_{\lambda}\right\}_{\lambda>\omega}$ and put $T_{\lambda}(t)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(t A_{\lambda}\right)^{n}$. Then in theory $T_{\lambda}(t) \rightarrow T(t)$ as $\lambda \rightarrow \infty$.

Lemma 3.5. Let $A: \mathscr{D}(A) \rightarrow X$ be a linear operator with $\mathscr{D}(A) \subseteq X$. Assume that (i) and (ii) of the Hille-Yosida theorem hold. Then, for all $x \in X, \lim _{\lambda \rightarrow \infty} \lambda R(\lambda ; A) x=x$.

Proof. Let $x \in \mathscr{D}(A)$ be given. For any $\lambda>\omega$,

$$
\begin{aligned}
(\lambda \mathbb{1}-A) R(\lambda ; A) x & =x \\
\lambda R(\lambda ; A) x-x & =A R(\lambda ; A) x=R(\lambda ; A) A x \\
\|\lambda R(\lambda ; A) x-x\| & =\|R(\lambda ; A) A x\| \\
& \leq \frac{M}{\lambda-\omega}\|A x\| \\
& \rightarrow 0 \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

Since $\mathscr{D}(A)$ is dense in $X$, the result follows.
Now we define the Yosida approximation $A_{\lambda}$ of $\lambda$ for $\lambda>\omega$. It is defined as

$$
A_{\lambda} x:=\lambda A R(\lambda ; A) x=\left(\lambda^{2} R(\lambda ; A)-\lambda \mathbb{1}\right) x
$$

By Lemma 3.5, $A_{\lambda} x \rightarrow A x$ as $\lambda \rightarrow \infty$ for all $x \in \mathscr{D}(A)$.
Lemma 3.6. Let $B \in \mathscr{L}(X ; X)$ and define $e^{t B}=\sum_{n=0}^{\infty} \frac{1}{n!}(t B)^{n}$ for all $t \in \mathbf{R}$.
(i) $\left\{e^{t B}\right\}_{t \geq 0}$ is a linear $C_{0}$-semigroup with infinitesimal generator $B$.
(ii) $\lim _{t \rightarrow 0}\left\|e^{t B}-\mathbb{1}\right\|=0$.
(iii) For all $\lambda \in \mathbf{K}, e^{t(B-\lambda \mathbb{1})}=e^{-\lambda t} e^{t B}$.

Proof.
(i) Since $B \in \mathscr{L}(X ; X)$ we have $\|B\|<+\infty$, and so for any $x \in X$ and $t \geq 0$,

$$
\left\|\sum_{i=n}^{m} \frac{1}{i!}(t B)^{i} x\right\| \leq \sum_{i=n}^{m} \frac{(t\|B\|)^{i}}{i!}\|x\| \leq\|x\| e^{t\|B\|}
$$

hence the sequence of partial sums $\left\{\sum_{n=0}^{m} \frac{1}{n!}(t B)^{n}\right\}_{n \in \mathbf{N}}$ is Cauchy in $X$. Hence the series converges, $e^{t B}$ is well defined, and $e^{t B} \in \mathscr{L}(X ; X)$.
Since for $a, b \in \mathbf{R}$

$$
\left(\sum_{n=0}^{\infty} \frac{1}{n!} a^{n}\right)\left(\sum_{n=0}^{\infty} \frac{1}{n!} b^{n}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}(a+b)^{n}
$$

we deduce that the semigroup property holds by the same argument which shows that $e^{t B}$ is well defined. Clearly, $\lim _{t \downarrow 0} e^{t B}=e^{0 B}=\mathbb{1}$. Finally, to show that $\left\{e^{t B}\right\}_{t \geq 0}$ is a linear $C_{0}$-semigroup note that

$$
\left\|e^{t B} x-x\right\|=\left\|\sum_{n=1}^{\infty} \frac{1}{n!}(t B)^{n} x\right\| \leq \sum_{n=1}^{\infty} \frac{1}{n!} t^{n}\|B\|^{n}\|x\| \leq\left(e^{t\|B\|}-1\right)\|x\| \rightarrow 0 \text { as } t \downarrow 0
$$

We claim that $e^{t\|B\|}$ is differentiable with derivative $B e^{t B}$. To see this note that
$B \int_{0}^{t} e^{s B} d s=B \int_{0}^{t} \sum_{n=0}^{\infty} \frac{1}{n!}(s B)^{n} d s=\sum_{n=0}^{\infty} B^{n+1} \int_{0}^{t} s^{n} d s=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}(t B)^{n+1}=e^{t B}-\mathbb{1}$.
Now by differentiating both sides we deduce that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{t B}=\lim _{h \downarrow 0} \frac{e^{(t+h) B}-e^{t B}}{t}=B e^{t B}
$$

Now since the infinitesimal generator is derivative at $t=0$ we deduce that the infinitesimal generator of the linear $C_{0}$-semigroup $\left\{e^{t B}\right\}_{t \geq 0}$ is simply $B$.
(ii) Since

$$
\left\|e^{t B}-\mathbb{1}\right\|=\left\|\sum_{n=1}^{\infty} \frac{1}{n!}(t B)^{n}\right\| \leq \sum_{n=1}^{\infty} \frac{1}{n!} t^{n}\|B\|^{n}=e^{t\|B\|}-1,
$$

and $e^{t\|B\|}-1 \rightarrow 0$ as $t \rightarrow 0$, we deduce that $\lim _{t \rightarrow 0}\left\|e^{t B}-\mathbb{1}\right\|=0$.
(iii) We have

$$
e^{t(B-\lambda \mathbb{1})}=\sum_{n=0}^{\infty} \frac{1}{n!}(t B-t \lambda \mathbb{1})^{n}=\left(\sum_{n=0}^{\infty} \frac{1}{n!}(t B)^{n}\right)\left(\sum_{n=0}^{\infty} \frac{1}{n!}(-t \lambda \mathbb{1})^{n}\right)=e^{t B} e^{-\lambda t \mathbb{1}}
$$

Now for any $x \in X$ we see that

$$
e^{t(B-\lambda \mathbb{1})} x=e^{t B} e^{-\lambda t \mathbb{1}} x=e^{t B} e^{-\lambda t} x=e^{-\lambda t} e^{t B} x
$$

In fact, it can be shown that if $T$ is a linear $C_{0}$-semigroup with the property that $\lim _{h \downarrow 0}\|T(h)-\mathbb{1}\|=0$ then $T(t)=e^{t B}$ for some $B \in \mathscr{L}(X ; X)$.

Now assume that conditions (i) and (ii) of the Hille-Yosida theorem hold, and let $A_{\lambda}$ be the Yosida approximation of $A$. Notice that for any $\lambda>\omega$,

$$
\begin{array}{rlr}
e^{t A_{\lambda}} & =e^{-\lambda t} \sum_{n=0}^{\infty} \frac{\lambda^{2 n} t^{n} R(\lambda ; A)^{n}}{n!} & \\
\left\|e^{t A_{\lambda}}\right\| & \leq M e^{-\lambda t} \sum_{n=0}^{\infty} \frac{\lambda^{2 n} t^{n}}{(\lambda-\omega)^{n} n!} &  \tag{ii}\\
& =M e^{-\lambda t} \exp \left(\frac{\lambda^{2}}{\lambda-\omega} t\right) & \\
& =M \exp \left(\frac{\lambda}{\lambda-\omega} t\right)
\end{array}
$$

It follows that $\left\|e^{t A_{\lambda}}\right\| \leq M e^{\omega_{1} t}$ for any fixed $\omega_{1}>\omega$, for all $\lambda$ sufficiently large when compared to $\omega$.
Put $T_{\lambda}(t):=e^{t A_{\lambda}}$ for all $t \geq 0$ and $\lambda>\omega$. Notice that $A_{\lambda} A_{\mu}=A_{\mu} A_{\lambda}$ and $A_{\lambda} T_{\mu}(t)=T_{\mu}(t) A_{\lambda}$ for all $\lambda, \mu>\omega$. Fix $x \in \mathscr{D}(A)$.

$$
\begin{aligned}
T_{\lambda}(t) x-T_{\mu}(t) x & =\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(T_{\mu}(t-s) T_{\lambda}(s) x\right) d s \\
& =\int_{0}^{t} T_{\mu}(t-s) A_{\lambda} T_{\lambda}(s) x-T_{\mu}(t-s) A_{\mu} T_{\lambda}(s) x d s \\
& =\int_{0}^{t}\left(T_{\mu}(t-s) T_{\lambda}(s)\right)\left(A_{\lambda} x-A_{\mu} x\right) d s
\end{aligned}
$$

So we deduce that

$$
\left\|T_{\lambda}(t) x-T_{\mu}(t) x\right\| \leq M^{2} e^{\omega_{1} t} t\left\|A_{\lambda} x-A_{\mu} x\right\|
$$

Hence $\left\{T_{\lambda}(t) x\right\}_{\lambda>\omega}$ is uniformly Cauchy in $t$ on bounded intervals. Since $\mathscr{D}(A)$ is dense in $X$ and since we have a bound on $\left\|T_{\lambda}(t)\right\|$ (in $\lambda$ ), we have for all $x \in X, \lim _{\lambda \rightarrow \infty} T_{\lambda}(t) x$ exists.

For all $t \geq 0$ and $x \in X$, put $T(t) x=\lim _{\lambda \rightarrow \infty} T_{\lambda}(t) x$. Note that $\|T(t)\| \leq M e^{\omega_{1} t}, T(t) T(s)=T(t+s)$ for all $s, t \geq 0$, and $T(0)=\mathbb{1}$ - this follows since these relations all hold for each $T_{\lambda}$. Continuity follows since the convergence is uniform for $t$ bounded intervals. Hence, we have shown that $T$ is linear $C_{0}$-semigroup. Let $B$ be the infinitesimal generator of $T$. Now we must show that $B=A$. First we will show that $B$ is an extension of $A$, and then we will use a resolvent argument to show that $\mathscr{D}(A)=\mathscr{D}(B)$. Let $x \in \mathscr{D}(A)$ be given.

$$
\begin{aligned}
\left\|T_{\lambda}(t) A_{\lambda} x-T(t) A x\right\| & \leq\left\|T_{\lambda}(t)\left(A_{\lambda} x-A x\right)\right\|+\left\|\left(T_{\lambda}(t)-T(t)\right) A x\right\| \\
& \leq M e^{\omega_{1} t}\left\|A_{\lambda} x-A x\right\|+\|(T-\lambda(t)-T(t)) A x\| \\
& \rightarrow 0 \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

Since the convergence is uniform in $t$ on bounded intervals,

$$
T(t) x-x=\lim _{\lambda \rightarrow \infty} T_{\lambda}(t) x-x=\lim _{\lambda \rightarrow \infty} \int_{0}^{t} T_{\lambda}(s) A_{\lambda} x d x=\int_{0}^{t} T(s) A x d x
$$

Now by the definition of $B$, for any $h>0$,

$$
\frac{T(h) x-x}{h}=\frac{1}{h} \int_{0}^{h} T(s) A x d s \rightarrow A x \text { as } h \downarrow 0 .
$$

Hence, $x \in \mathscr{D}(B)$ and $B x=A x . B$ is closed since it is the infinitesimal generator of a linear $C_{0}$-semigroup, and $A$ is closed by assumption. Since $\|T(t)\| \leq M e^{\omega_{1} t}$ for any $\omega_{1}>\omega$, by Lemma $3.1 \rho(B) \supseteq(\omega, \infty)$, so it follows that $\rho(B) \cap \rho(A) \neq \emptyset$. Choose $\lambda \in \rho(A) \cap \rho(B)$. By standard spectral theory since $A$ and $B$ are closed, $(\lambda \mathbb{1}-A)[\mathscr{D}(A)]=X$ and $(\lambda \mathbb{1}-B)[\mathscr{D}(B)]=x$. Furthermore, since $B$ extends $A,(\lambda \mathbb{1}-B)[\mathscr{D}(A)]=$ $(\lambda \mathbb{1}-A)[\mathscr{D}(A)]=X$. To conclude the proof of the Hille-Yosida theorem, note that $\mathscr{D}(A)=R(\lambda ; B)[X]=$ $\mathscr{D}(B)$.

Remark 3.7. Let $A: \mathscr{D}(A) \rightarrow X$ be a linear operator with $\mathscr{D}(A) \subseteq X$. The following are equivalent.
(i) $A$ is closed,
(ii) $(\lambda \mathbb{1}-A): \mathscr{D}(A) \rightarrow X$ is a bijection for some $\lambda \in \rho(A)$,
(iii) $(\lambda \mathbb{1}-A): \mathscr{D}(A) \rightarrow X$ is a bijection for all $\lambda \in \rho(A)$.

Corollary 3.8. Assume that $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A) \subseteq X$, and that $\mathscr{D}(A)$ is dense and $A$ is closed. Then $A$ generates a contractive linear $C_{0}$-semigroup if and only if $\rho(A) \supseteq(0, \infty)$ and $\|R(\lambda ; A)\| \leq \frac{1}{\lambda}$ for all $\lambda>0$.

## 4. Contractive semigroups

Let $T:[0, \infty) \rightarrow \mathscr{L}(X ; X)$ be a contractive semigroup. For all $t, h \in[0, \infty)$,

$$
\|T(t+h)\|=\|T(h) T(t)\| \leq\|T(h)\|\|T(t)\| \leq\|T(t)\|
$$

so $t \mapsto\|T(t)\|$ is a decreasing function. Assume for now that $X$ is a Hilbert space. Let $x \in \mathscr{D}(A)$ be given, and put $\mu(t)=\|T(t) x\|^{2}=(T(t) x, T(t) x)$. For all $t \geq 0$, since $\mu$ is decreasing,

$$
0 \geq \dot{\mu}(t)=(T(t) x, T(t) A x)+(T(t) A x, T(t) x)=2 \Re(A T(t) x, x)
$$

In particular, for $t=0, \mathfrak{R}(A x, x) \leq 0$ for all $x \in \mathscr{D}(A)$.
We will prove that if $X$ is a Hilbert space and $A: \mathscr{D}(A) \rightarrow X$ is a linear operator then $A$ generates a contractive semigroup if and only if both of the following hold.
(i) $\mathfrak{R}(A x, x) \leq 0$ for all $x \in \mathscr{D}(A)$, and
(ii) there exists $\lambda_{0}>0$ such that $\lambda_{0} \mathbb{1}-A$ is surjective.

Definition 4.1. Let $X$ be a Banach space over $\mathbf{K}$ with norm $\|\cdot\|$. A semi-inner product on $X$ is a mapping $[\cdot, \cdot]$ : $X \times X \rightarrow \mathbf{K}$ such that
(i) $[x+y, z]=[x, z]+[y, z]$ for all $x, y, z \in X$,
(ii) $[\alpha x, y]=\alpha[x, y]$ for all $x, y \in X$ and $\alpha \in \mathbf{K}$,
(iii) $[x, x]=\|x\|^{2}$ for all $x \in X$, and
(iv) $|[x, y]| \leq\|x\|\|y\|$ for all $x, y \in X$.

Remark 4.2. The term "semi-inner product" is often used in a more general sense that is not linked to a pre-existing norm.

Now we ask: do semi-inner products exists, and can there be more than one associated with any given norm? The answer to both is yes in general. However, if $X^{*}$ is strictly convex then there cannot be more than one. We will see that if $\Re[A x, x] \leq 0$ with respect to one semi-inner product then it holds with respect to any semi-inner product.

Proposition 4.3. There is at least one semi-inner product on a Banach space.

Proof. Let $X$ be a Banach space. For every $x \in X$ let

$$
\mathscr{F}(x):=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} .
$$

By the Hahn-Banach theorem $\mathscr{F}(x)$ is nonempty for every $x \in X$. For every $x \in X$, choose $F(x) \in \mathscr{F}(x)$. Define $[\cdot, \cdot]: X \times X \rightarrow \mathbf{K}$ by $[x, y]=\langle F(y), x\rangle$ for all $x, y \in X$.

If $X^{*}$ is strictly convex then there is exactly one semi-inner product, essentially because the set $\mathscr{F}(x)$ contains only a single element.

Definition 4.4. Assume that $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A) \subseteq X$. We say that $A$ is dissipative if there is a semi-inner product on $X$ such that $\Re[A x, x] \leq 0$ for all $x \in \mathscr{D}(A)$.

The notion of dissipativity depends on the particular norm used, but it will turn out that it does not depend on the particular semi-inner product used.

Remark 4.5. Consider $\mu_{t t}(x, t)=\Delta \mu(x, t)-\alpha(x) \mu_{t}(x, t)$ with $\left.\mu\right|_{\partial \Omega}=0$, where $\alpha$ is non-negative, smooth, with compact support, and $\int_{\Omega} \alpha>0$. Then solutions $\mu$ tend to zero with $t$ !
Lemma 4.6. Assume that $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A) \subseteq X$. Then $A$ is dissipative if and only if $\|(\lambda \mathbb{1}-A) x\| \geq$ $\lambda\|x\|$ for all $x \in \mathscr{D}(A)$ and $\lambda>0$.

Proof. Assume that $A$ is dissipative. Choose a semi-inner product such that $\Re[A x, x] \leq 0$ for all $x \in \mathscr{D}(A)$. Then for all $x \in \mathscr{D}(A)$ and $\lambda>0$, we have

$$
\mathfrak{R}[(A-\lambda \mathbb{1}) x, x]=\lambda\|x\|^{2}-\Re[A x, x] \geq \lambda\|x\|^{2} .
$$

Combining this with the fact that

$$
\mathfrak{R}[(\lambda \mathbb{1}-A) x, x] \leq\|[(\lambda \mathbb{1}-A) x, x] \mid \leq\|(\lambda \mathbb{1}-A) x\| \| x \|
$$

yields the result.
Assume now that $\|(\lambda \mathbb{1}-A) x\| \geq \lambda\|x\|$ for all $x \in \mathscr{D}(A)$ and $\lambda>0$. As before, put

$$
\mathscr{F}(x):=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} .
$$

We identify three cases: $x=0, x \in \mathscr{D}(A) \backslash\{0\}$ and $x \notin \mathscr{D}(A)$.
Fix $x \in \mathscr{D}(A) \backslash\{0\}$. For all $\lambda>0$ choose $y_{\lambda}^{*} \in \mathscr{F}(\lambda x-A x)$ and put $z_{\lambda}^{*}=\frac{1}{\left\|y_{\lambda}^{*}\right\|} y_{\lambda}^{*}$.

$$
\begin{array}{rlr}
\lambda\|x\| & \leq\|\lambda x-A x\| & \text { by assumption } \\
& =\frac{1}{\left\|y_{\lambda}^{*}\right\|}\left\langle y_{\lambda}^{*}, n x-A x\right\rangle & \text { since } y_{\lambda}^{*} \in \mathscr{F}(\lambda x-A x) \\
& =\left\langle z_{\lambda}^{*}, \lambda x-A x\right\rangle & \\
& =\lambda \Re\left\langle z_{\lambda}^{*}, x\right\rangle-\Re\left\langle z_{\lambda}^{*}, A x\right\rangle . & \text { (this is a real number) } \\
&
\end{array}
$$

Since $\left\|z_{\lambda}^{*}\right\|=1$ by construction,

$$
\lambda\|x\| \leq \lambda \Re\left\langle z_{\lambda}^{*}, x\right\rangle-\Re\left\langle z_{\lambda}^{*}, A x\right\rangle \leq \lambda\|x\|-\Re\left\langle z_{\lambda}^{*}, A x\right\rangle
$$

Therefore, $\Re\left\langle z_{\lambda}^{*}, A z\right\rangle \leq 0$ and similarly $\Re\left\langle z_{\lambda}^{*}, x\right\rangle \geq\|x\|-\frac{1}{\lambda}\|A x\|$. Since the unit ball in $X^{*}$ is weak-* compact the net $\left\{z_{\lambda}^{*}\right\}_{\lambda \rightarrow \infty}$ has a weak-* cluster point $z^{*} \in X^{*}$. Then $\left\|z^{*}\right\| \leq 1, \Re\left\langle z^{*}, A x\right\rangle \leq 0$, and $\Re\left\langle z^{*}, x\right\rangle \geq\|x\|$. It follows that $\left\langle z^{*}, x\right\rangle=\|x\|$. Define a semi-inner product as before, but with

$$
F(x)= \begin{cases}0 & x=0 \\ \left\langle z^{*}, x\right\rangle & x \in \mathscr{D}(A) \backslash\{0\} \\ \text { anything in } \mathscr{F}(x) & x \in X \backslash \mathscr{D}(A) .\end{cases}
$$

Lemma 4.7. Assume that $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A) \subseteq X$ and that $A$ is dissipative. Let $\lambda_{0} \in(0, \infty)$ be given and assume that $\lambda_{0} \mathbb{1}-A$ is surjective. Then $A$ is closed, $\rho(A) \supseteq(0, \infty)$, and $\|R(\lambda ; A)\| \leq \frac{1}{\lambda}$ for all $\lambda>0$.

Proof. Notice that, by Lemma 4.6, $\|(\lambda \mathbb{1}-A) x\| \geq \lambda\|x\|$ for all $x \in \mathscr{D}(A)$ and $\lambda>0$. So we immediately deduce that $\|R(\lambda ; A)\| \leq \frac{1}{\lambda}$, provided the resolvent exists. The key points are to show that $A$ is closed and that $\lambda \mathbb{1}-A$ is surjective for all $\lambda>0$.

Notice that $\lambda_{0} \mathbb{1}-A$ is bijective since it is surjective and bounded below, and furthermore, $\left\|\left(\lambda_{0} \mathbb{1}-A\right)^{-1} x\right\| \leq \frac{1}{\lambda_{0}}\|x\|$. So $\left(\lambda_{0} \mathbb{1}-A\right)^{-1} \in \mathscr{L}(X ; X)$, hence it is closed, so $A$ is closed as well.

To show that $\rho(A) \supseteq(0, \infty)$ it suffices to show that $(\lambda \mathbb{1}-A)^{-1}$ is surjective for all $\lambda>0$. Let $\Lambda=\{\lambda \in(0, \infty)$ : $\lambda \in \rho(A)\}$, which is open (in the relative topology of $(0, \infty)$ ) and non-empty. We will show that $\Lambda$ is closed and conclude that $\Lambda=(0, \infty)$. Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\Lambda$ converging to $\lambda^{*} \in(0, \infty)$. We will show that $\lambda^{*} \in \Lambda$ by showing that $\lambda^{*} \mathbb{1}-A$ is surjective. Let $y \in X$ be given. For every $n \in \mathbf{N}$ let $x_{n}=R\left(\lambda_{n} ; A\right) y$. Note that $\sup \left\{\frac{1}{n}: n \in \mathbf{N}\right\}<\infty$.

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\| & =\left\|\left(R\left(\lambda_{n} ; A\right)-R\left(\lambda_{m} ; A\right)\right) y\right\| \\
& =\left|\lambda_{m}-\lambda_{n}\right|\left\|R\left(\lambda_{n} ; A\right) R\left(\lambda_{m} ; A\right) y\right\| \\
& \leq\left|\lambda_{m}-\lambda_{n}\right| \frac{\|y\|}{\lambda_{n} \lambda_{m}} \\
& \rightarrow 0 \text { as } n, m \rightarrow \infty
\end{aligned}
$$

So $x_{n} \rightarrow x$ for some $x \in X$. Finally, $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq \mathscr{D}(A), x_{n} \rightarrow x$, and $A x_{n} \rightarrow \lambda^{*} x-y$. Since $A$ is closed, $\left(\lambda^{*} \mathbb{1}-A\right) x=$ $y$.

Theorem 4.8 (Lumer-Phillips, 1961). Assume $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A)$ dense in $X$.
(i) If $A$ is dissipative and there is $\lambda_{0}>0$ such that $\lambda_{0} \mathbb{1}-A$ is surjective then $A$ generates a contractive linear $C_{0}$-semigroup.
(ii) If A generates a contractive linear $C_{0}$-semigroup then $\lambda \mathbb{1}-A$ is surjective for all $\lambda>0$ and $\mathfrak{R}[A x, x] \leq 0$ for all $x \in \mathscr{D}(A)$ and every semi-inner product on $X$ (in particular, $A$ is dissipative).

Proof. The first part follows from Lemma 4.7 and the Hille-Yosida theorem, since $\|R(\lambda ; A)\| \leq \frac{1}{\lambda}$ implies $\left\|R(\lambda ; A)^{n}\right\| \leq$ $\frac{1}{\lambda^{n}}$.
For the second part, the surjectivity conclusion follows from the Hille-Yosida theorem. Let $[\cdot, \cdot]$ be a semi-inner product on $X$. We need to show that $\Re[A x, x] \leq 0$ for all $x \in \mathscr{D}(A)$. For all $h>0$ and $x \in \mathscr{D}(A)$,

$$
\begin{aligned}
\Re[T(h) x-x, x] & =\Re[T(h) x, x]-\|x\|^{2} \\
& \leq\|T(h) x\|\|x\|-\|x\|^{2} \\
& \leq\|x\|^{2}-\|x\|^{2} \\
& =0 .
\end{aligned}
$$

Dividing by $h$ and letting $h \downarrow 0$ yields $\Re[A x, x] \leq 0$.
Corollary 4.9. Assume $B: \mathscr{D}(B) \rightarrow X$ is linear with $\mathscr{D}(B)$ dense in $X$. Let $\omega, \lambda_{0} \in \mathbf{R}$ with $\lambda_{0}>\omega$ be given. If $\lambda_{0} \mathbb{1}-B$ is surjective and there exists a semi-inner product on $X$ such that $\Re[B x, x] \leq \omega\|x\|^{2}$ for all $x \in \mathscr{D}(B)$, then $B$ generates a linear $C_{0}$-semigroup $T$ such that $\|T(t)\| \leq e^{\omega t}$.

Proof. Let $A=B-\omega \mathbb{1}$ and apply the Lumer-Phillips theorem to $A$.
Lemma 4.10. Assume that $X$ is reflexive and that $A: \mathscr{D}(A) \rightarrow X$ is linear with $\mathscr{D}(A) \subseteq X$. Let $\lambda_{0}>0$ be given and assume that $A$ is dissipative and that $\lambda_{0} \mathbb{1}-A$ is surjective. Then $\mathscr{D}(A)$ is dense in $X$.

Remark 4.11. Let $M$ be a linear submanifold in a Banach space $X$ (not necessarily reflexive). Then $M$ is dense in $X$ if and only if for all $y \in X$ there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq M$ such that $x_{n} \rightharpoonup y$ as $n \rightarrow \infty$. Indeed, one direction is trivial. For the other, if $y$ is not in the closure of $M$ then $\operatorname{dist}(M, y)>0$. By the Hahn-Banach theorem there is $y^{*} \in X^{*}$ such that $\left\langle y^{*}, x\right\rangle=0$ for all $x \in M$ and $\left\langle y^{*}, y\right\rangle \neq 0$.

Proof. Let $y \in X$ be given. It suffices to shwo that there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq \mathscr{D}(A)$ such that $x_{n} \rightharpoonup y$ as $n \rightarrow \infty$. Put $x_{n}=\left(\mathbb{1}-\frac{1}{n} A\right)^{-1} y=n R(n ; A) y \in \mathscr{D}(A)$ for all $n \in \mathbf{N}$. Then

$$
\left\|x_{n}\right\| \leq n\|R(n ; A)\|\|y\| \leq n \frac{1}{n}\|y\|=\|y\|
$$

Choose a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $x \in X$ such that $x_{n_{k}} \rightharpoonup x$ as $k \rightarrow \infty$. We are done if we show that $x=y$. We have

$$
A\left(\frac{x_{n_{k}}}{n_{k}}\right)=x_{n_{k}}-y \rightharpoonup x-y
$$

and $x_{n_{k}} \rightharpoonup 0$ (in fact, $x_{n_{k}} \rightarrow 0$ ). Now since $\operatorname{Gr}(A)$ is closed and convex it is weakly closed. Since $(0, x-y) \in \operatorname{Gr}(A)$, we deduce that $x=y$.

This lemma shows that if $X$ is reflexive then we do not need to assume that $\mathscr{D}(A)$ is dense in the Lumer-Phillips theorem. This is less helpful than it seems because in many applications it is trivial to check that the domain is dense.

Theorem 4.12 (Lumer-Phillips for Hilbert spaces). Let $X$ be a Hilbert space and assume that $B: \mathscr{D}(B) \rightarrow X$ is linear with $\mathscr{D}(B) \subseteq X$. Let $\lambda_{0}, \omega \in \mathbf{R}$ and $\lambda_{0}>\omega$ be given. Assume that $\mathscr{R}(B x, x) \leq \omega\|x\|^{2}$ for all $x \in \mathscr{D}(B)$ and that $\lambda_{0} \mathbb{1}-B$ is surjective. Then $B$ generates a linear $C_{0}$-semigroup $T$ such that $\|T(t)\| \leq e^{\omega t}$ for all $t \geq 0$.
Example 4.13. Let

$$
\mathscr{D}(A):=\left\{u \in A C[0,1]: u^{\prime} \in A C[0,1], u^{\prime \prime} \in L^{2}[0,1], u(0)=u(1)=0\right\} \subseteq L^{2}[0,1],
$$

and $A u:=u^{\prime \prime}$. We have seen that $A$ is closed and $A$ is densely defined (in fact it is self-adjoint). For any $u \in \mathscr{D}(A)$,

$$
(A u, u)=\int_{0}^{1} u^{\prime \prime} u d x=-\int_{0}^{1}\left(u^{\prime}\right)^{2} d x \leq 0
$$

If we can solve the ODE $u-u^{\prime \prime}=f, u(0)=u(1)=0$ for any $f \in L^{2}(0,1)$, then $A$ generates a contraction semigroup $T$ by the Lumer-Phillips theorem. Thus the solutions to the heat equation

$$
\begin{cases}u_{t}-u_{x} x=0 & \text { on }(0,1) \\ u(t, 0)=u(t, 1)=0 & \text { for all } t \geq 0 \\ u(0, x)=g(x) & \text { for all } x \in(0,1)\end{cases}
$$

can be written as $u(x, t)=(T(t) g)(x)$.


[^0]:    E-mail address: ysoliman@cmu.edu.

