
SEMIGROUPS OF LINEAR OPERATORS

NOTES BY YOUSUF SOLIMAN

1. INTRODUCTION

Our goal is to define exponentials of linear operators. We will try to construct etA as a linear operator, where
A : D(A)→ X is a general linear operator, not necessarily bounded. Notationally, it seems like we are looking for
a solution to µ̇(t) = Aµ(t), µ(0) = µ0, and we would like to write µ(t) = etAµ0. It turns out that this will hold
once we make sense of the terms.

How can we construct etA when A is a finite matrix? The most obvious way is to write down the power series:
∑∞

n=0
1
n! (tA)

n. This series is absolutely convergent for every A and t ∈ R. In fact, this method works for A ∈
L (X ; X ), even if X is infinite dimensional.

A second method is to consider the connection with the explicit Euler scheme. Consider the system of ordinary
differential equations:

¨

µ̇(t) = Aµ(t),
µ(0) = µ0.
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the forward difference quotient approximation. From the ODE, we get
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Thus µ(t) = limn→∞
�

1+ t
n A
�n
µ0 and we write etA = limn→∞

�

1+ t
n A
�n

.

Both of these methods are doomed to fail if A is not bounded. When the explicit method fails, one would normally
try the implicit method. The third method we consider is the connection with the implicit Euler scheme. Partition
[0, t] into n parts and write
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the backward difference quotient approximation. From the ODE, we get
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�
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�
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µ

�

kt
n

�

,

µ(t) = µ
�nt

n

�

≈
�

1−
t
n

A
�−n
µ0.

Thus µ(t) = limn→∞
�

1− t
n A
�−n
µ0 and we write etA = limn→∞

�

1− t
n A
�−n

. This works for some unbounded A as
well. The key point will be the behavior of ‖R(λ; A)n‖ for large n.
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An engineer might consider the Laplace transform. If f (t) = etA then it can be shown that bf (λ) = (λ1− A)−1 =
R(λ; A). There is an inversion formula, namely

etA =
1

2πi

∫ γ+i∞

γ−i∞
eλtR(λ; A) dλ,

where γ is chosen such that the spectrum of A lies to the left of the line over which we are integrating. This
formula can be interpreted and works for many important unbounded iperators.

A fifth method works for self-adjoint matrices. Let {ek}Nk=1 be an orthonormal basis of X of eigenvectors of A. For

any v ∈ X , v =
∑N

k=1(v, ek)ek and Av =
∑N

k=1λk(v, ek)ek. We take

etAv =
N
∑

k=1

eλk t(v, ek)ek.

In general, if X is a Hilbert space and A : D(A)→ X is self-adjoint then

A=

∫ ∞

−∞
λ dP(λ),

where {P(λ) : λ ∈ R} is the spectral family associated with A. We know that σ(A) ⊆ R, so if σ(A) is bounded
above then we could define

etA =

∫ ∞

−∞
eλt dP(λ).

Note that the matrix A can be recovered from its exponential via the formula

A= lim
t↓0

1
t

�

etA− 1
�

.

2. LINEAR C0-SEMIGROUPS

Let X be a Banach space over K, where K= R or K= C.

Definition 2.1. A linear C0-semigroup (or a strongly continuous semigroup) is a mapping T : [0,∞)→L (X ; X )
such that

(i) T (0) = 1,
(ii) T (t + s) = T (t)T (s) for all s, t ∈ [0,∞), and

(iii) for all x ∈ X , limt↓0 T (t)x = x .

�

Remark 2.2.

(i) By the second condition T (t)T (s) = T (s)T (t) for all s, t.
(ii) Sometimes we will use the notation {T (t)}t≥0.

(iii) If we have a mapping T : [0,∞) → L (X ; X ) satisfying conditions (i) and (ii), (called a semigroup of
bounded linear operators) then if the following condition holds so does (iii).
(iii’) limt↓0〈x∗, T (t)x〉= 〈x∗, x〉 for all x∗ ∈ X ∗ and x ∈ X .

(iv) The condition limt↓0 ‖T (t)− 1‖ = 0 implies that T (t) =
∑∞

n=0
1
n! (tA)

n for all t, for some A ∈ L (X ; X ).
This condition is too strong for practical purposes.

(v) The “C0” in the name may come form “continuous at zero” or it may refer to the fact that these semigroups
are (merely) continuous, as opposed to differentiable, etc.

�

Let T be a linear C0-semigroup. The infintesimal generator of T is the linear operator A : D(A) → X defined as
follows.

D(A) :=
§

x ∈ X : lim
t↓0

1
t
(T (t)x − x) exists

ª
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and for all x ∈ D(A), Ax = limt↓0
1
t (T (t)x − x). It is not immediately obvious that D(A) 6= {0}. We will show that

D(A) is dense and that A is a closed linear operator.

Example 2.3. Let X = BUC(R) =bounded uniformly continuous functions R→ K. Define (T (t) f )(x) := f (t + x)
for all t ∈ [0,∞) and x ∈ R. Clearly T satisfies (i) and (ii) of the definition. Uniform continuity is essential to
get (iii). Indeed, if f is uniformly continuous then

‖T (t) f − f ‖∞ = sup {| f (t + x)− f (x)| : x ∈ R} → 0 as t → 0.

The infinitesimal generator is

Af = lim
t↓0

f (t + x)− f (x)
t

= f ′(x),

i.e. differentiation. Note that the solution to the PDE µt(x , t) = µx(x , t), µ(x , 0) = µ0 is µ(x , t) = µ0(x + t) =
(T (t)µ0)(x). �

Lemma 2.4. Let T be a linear C0-semigroup. Then there are M ,ω ∈ R such that ‖T (t)‖ ≤ Meωt for all t ∈ [0,∞).

Proof. We claim that there is some η > 0 such that sup{‖T (t)‖ : t ∈ [0,η]} is finite. Indeed, assume for the sake
of contradiction there is no such η. Choose {tn}∞n=1 such that tn ↓ 0 and {T (tn)x}∞n=1 is unbounded. However, for
all x ∈ X , since T (tn)x → x , {T (tn)x}∞n=1 is a convergent sequence, so sup{‖T (tn)x‖ : n ∈ N} is finite for each
x ∈ X . By the Banach-Steinhaus theorem we deduce that sup{‖T (tn)‖ : n ∈ N} is finite, a contradiction.

Now let η > 0 be as above. Set M := sup{‖T (t)‖ : t ∈ [0,η]} ≥ 1}. Let t ∈ [0,∞) be given. Choose n ≥ 0 and
α ∈ [0,η) such that t = nη+α. Then T (t) = T (nη+α) = (T (η))nT (α) by the semigroup property. Hence,

‖T (t)‖ ≤ ‖T (α)‖‖T (η)‖n ≤ M M n.

Now let ω= 1
η log M ≥ 0, so that ωt ≥ n log M , and ‖T (t)‖Meωt . �

Definition 2.5. Let T be a linear C0-semigroup. We say that T is

(i) uniformly bounded if there is M ∈ R such that ‖T (t)‖|leqM for all t ≥ 0.
(ii) contractive if ‖T (t)‖ ≤ 1 for all t ≥ 0.

(iii) quasi-contractive provided there is ω ∈ R such that ‖T (t)‖ ≤ eωt for all t ≥ 0.

�

Contractive semigroups are much easier to study than general linear C0-semigroups. If T is a linear C0-semigroup
satisfying ‖T (t)‖|leqMeωt then S(t) := e−ωt T (t) is a uniformly bounded linear C0-semigroup. Note that the
infinitesimal generator of S is related to that of T as follows.

lim
t↓0

S(t)x − x
t

= lim
t↓0

e−ωt T (t)x − x
t

= lim
t↓0

e−ωt − 1
t

T (t)x + lim
t↓0

T (t)x − x
t

= −ωx + Ax = (A−ω1)x .

Further, there is an equivalent norm |||·||| on X such that S is contractive with respect to |||·|||. In fact, we may take
|||x ||| := sup{‖S(t)x‖ : t ∈ [0,∞)}. Indeed, for all x ∈ X ,

|||S(t)x |||= sup{‖S(t + s)x‖ : s ∈ [0,∞)} ≤ |||x |||.

Warning: The norm |||·||| need not preserve all “nice” geometric properties of ‖ · ‖, such as the parallelogram law.

Lemma 2.6. Let T be a linear C0-semigroup and let x ∈ X be given. Then the mapping t 7→ T (t)x is continuous on
[0,∞).

Proof. For continuity from the right, let t ≥ 0 be given and notice that

T (t + h)x − T (t)x = (T (h)− 1)(T (t)x)→ 0 as h→ 0.
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For continuity from the left, let t > 0 and h(0, t) be given. Choose M ≥ 1 and ω ≥ 0 such that ‖T (s)‖ ≤ Meωs

for all s ∈ [0,∞).

‖T (t − h)x − T (t)x‖= ‖T (t − h)(1− T (h))x‖
≤ ‖T (t − h)‖‖T (h)x − x‖

≤ Meω(t−h)‖T (h)x − x‖ → 0 as h→ 0.

�

Lemma 2.7. Let T be a linear C0-semigroup with infinitesimal generator A, and let x ∈ X be given.

(i) For all t ≥ 0, limh→0
1
h

∫ t+h

t T (s)x ds = T (t)x (where the limit is one sided if t = 0).

(ii) For all t ≥ 0,
∫ t

0 T (s)x ds ∈ D(A) and A
∫ t

0 T (s)x ds = T (t)x − x.

Proof.

(i) Follows from Lemma 2.6 and basic calculus.
(ii) If t = 0 there is nothing to prove. Let t > 0 be given. For h> 0,

T (h)− 1
h

∫ t

0

T (s)x ds =
1
h

∫ t

0

(T (s+ h)− T (s))x ds

=
1
h

∫ t

0

T (s+ h)x ds−
1
h

∫ t

0

T (s)x ds

=
1
h

∫ t

h

T (u)x du+
1
h

∫ t+h

t

T (u)x du−
1
h

T (s)x ds−
1
h

∫ h

0

T (s)x ds

=
1
h

∫ t+h

t

T (u)x du−
1
h

∫ h

0

T (s)x ds

→ T (t)x − x as h→ 0

by part (a). The conclusion immediately follows.

�

Lemma 2.8. Let T be a linear C0-semigroup with infinitesimal generator A, and x ∈ D(A) be given. Put µ(t) = T (t)x
for all t ≥ 0. Then µ(t) ∈ D(A) fo rlal t ≥ 0, µ is differentiable on [0,∞), and for each t ≥ 0,

µ̇(t) = T (t)Ax = AT (t)x = Aµ(t).

Proof. Let t ≥ 0 be given. For h> 0,

T (t + h)x − T (t)x
h

=
�

T (h)− 1
h

�

T (t)x = T (t)
�

T (h)− 1
h

�

x → T (t)Ax

as h ↓ 0. In particular, T (t)x ∈ D(A) and AT (t)x = T (t)Ax . Furthermore, D+µ(t) = x = T (t)Ax . Let t > 0 be
given. For h ∈ (0, t),

T (t − h)x − T (t)x
h

= T (t − h)
�

x − T (h)x
h

�

→−T (t)Ax as h→ 0.

So we deduce that D−µ(t)x = T (t)Ax . Since the left and right derivatives both exist and are equal, µ is differen-
tiable and µ̇(t) = Aµ(t). �

Lemma 2.9. Let T be a linear C0-semigroup with infinitesimal generator A, and let x ∈ D(A) be given. Then for all
s, t ∈ [0,∞),

T (t)x − T (s)x =

∫ t

s

AT (u)x du=

∫ t

s

T (u)Ax du.

Proof. This follows from Lemma 2.8 and the fundamental theorem of calculus. �
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Theorem 2.10. Let T be a linear C0-semigroup with infinitesimal generator A. Then D(A) is dense in X and A is
closed.

Proof. Let x ∈ X . By Lemma 2.7 we see that x = limh↓0
∫ h

0 T (s)x ds, and
∫ h

0 T (s)x ds ∈ D(A) for all h ≥ 0, so
D(A) is dense in X .

Let {xn}∞n=1 be a sequence in D(A) converging to x ∈ X and suppose that Axn→ y ∈ X as n→∞. We must show
that x ∈ D(A) and that Ax = y . For h> 0, by Lemma 2.9,

T (h)xn − xn =

∫ h

0

T (s)Axn ds,

so by Lemma 2.7,

Ax = lim
h↓0

T (h)x − x
h

= lim
h↓0

1
h

∫ h

0

T (s)y ds = y.

It follows that x ∈ D(A) and Ax = y �

Lemma 2.11. Let S, T be linear C0-semigroups having the same infinitesimal generator A. Then S(t) = T (t) for all
t ≥ 0.

Proof. Let x ∈ D(A) and t > 0 be given. Define the function µ : [0, t] → X by µ(s) = T (t − s)S(s)x for all
x ∈ [0, t]. We will show that µ is constant as follows. We claim that µ is differentiable on [0, t] and

µ̇(s) = T (t − s)AS(s)x − T (t − s)AS(s)x = 0

for all s ∈ [0, t]. This will imply that µ is constant on [0, t], so

T (t)x = µ(0) = µ(1) = S(t)x .

Since D(A) is dense in X , it will follow that T (t) = S(t) on X for all t ≥ 0. To prove the claim we apply Lemma
2.8.

µ(s+ h)−µ(s)
h

=
1
h
(T (t − s− h)S(s+ h)x − T (t − s)S(s)x)

=
1
h

T (t − s− h)(S(s+ h)− S(s))x +
1
h
(T (t − s− h)− T (t − s))S(s)x

= T (t − s− h)
�

S(s+ h)− S(s)
h

�

x +
�

T (t − s− h)− T (t − s)
h

�

S(s)x

→ T (t − s)AS(s)x − T (t − s)AS(s)x = 0 as h→ 0.

The mean value theorem holds for calculus in Banach spaces, and so µ is constant. �

3. INFINITESIMAL GENERATORS

Given a closed densely defined A, how do we tell if A generates a linear C0-semigroup? Let a ∈ R and n ∈ N and
put f (t) = tn−1eat for all t ≥ 0. Recall that the Laplace transform of f is

bf (λ) =
(n− 1)!
(λ− a)n

.

Let A be an N × N matrix and put F(t) = etA.

bf (λ) =

∫ ∞

0

e−λt etA d t =

∫ ∞

0

et(A−λ1) d t = (A−λ1)−1et(A−λ1)
�

�

∞
0 = −(A−λ1)

−1 = R(λ; A).

Recall that etA = limn→∞
�

1− t
n

�−n
= limn→∞

�

n
t

�n
R
�

t
n ; A

�n
. To apply this to unbounded operators, the behavior

of R(λ; A)n for large n will be key. We conjecture that

R(λ; A)n =
1

(n− 1)!

∫ ∞

0

e−λt tn−1etA d t.

5



Semigroups of linear operators Yousuf Soliman

Lemma 3.1. Let M ,ω ∈ R and λ ∈ K with ℜ(λ) >ω be given. Let T be a linear C0-semigroup such that ‖T (t)‖ ≤
Meωt for all t ≥ 0, and let A be the infinitesimal generator of T . Then λ ∈ ρ(A) and, for all x ∈ X ,

R(λ; A)x =

∫ ∞

0

e−λt T (t)x d t.

Proof. Put I1(λ)x =
∫∞

0 e−λt T (t)x d t for all x ∈ X . We need to show that λ ∈ ρ(A) and R(λ; A) = I1(λ). Let
x ∈ D(A) be given.

I1(λ)Ax =

∫ ∞

0

e−λt T (t)Ax d t

=

∫ ∞

0

e−λt d
dt
(T (t)x) d t Lemma 2.8

= −x +λ

∫ ∞

0

e−λt T (t)x d t integration by parts

= λI1(λ)x − x .

Now let x ∈ X be given. We will show that I1(λ)xD(A) and

AI1(λ)x = λI1(λ)x − x .

Fix h> 0 and compute the difference quotient:
�

T (h)− 1
h

�

I1(λ)x =
1
h

∫ ∞

0

e−λt(T (t + h)x − T (t)x) d t

=
1
h

∫ ∞

0

e−λt T (t + h)x d t −
1
h

∫ ∞

0

e−λt T (t)x d t

=
1
h

∫ ∞

h

e−λ(s−h)T (s)x ds−
1
h

∫ ∞

0

e−λt T (t)x d t

=
1
h

∫ ∞

0

e−λ(t−h)T (t)x d t −
1
h

∫ ∞

0

e−λt T (t)x d t −
1
h

∫ h

0

e−λ(t−h)T (t)x d t

=

∫ ∞

0

e−λ(t−h) − e−λt

h
T (t)x d t − eλh 1

h

∫ h

0

e−λ(t−h)T (t)x d t

→ λI1(λ)x − x as h→ 0.

This proves the lemma. �

Lemma 3.2. Let M ,ω ∈ R and λ ∈ K with ℜ(λ) >ω be given. Let T be a linear C0-semigroup such that ‖T (t)‖ ≤
Meωt for all t ≥ 0, and let A be the infinitesimal generator of T . Then λ ∈ ρ(A) and, for all n ∈ N and all x ∈ X ,

R(λ; A)n x =
1

(n− 1)!

∫ ∞

0

e−λt tn−1T (t)x d t.

Proof. We already know that ρ(A) ⊇ {µ ∈ K : ℜ(µ)>ω}. We also know that µ 7→ R(µ; A) is analytic. In particular,
we have

R(µ; A) =
∞
∑

n=0

(λ−µ)nR(λ; A)n+1 =
∞
∑

n=0

R(λ; A)n+1(µ−λ)n

for |µ−λ sufficiently small. Let R(k)(λ; A) denote the kth derivative of R(µ; A) evaluated at µ= λ. From the power
series, for all n ∈ N,

R(n−1)(λ; A)
(n− 1)!

= (−1)n−1R(λ; A)n.

6
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By Lemma 3.1, R(λ; A)x =
∫∞

0 e−λt T (t)x d t for all x ∈ X . From this,

R(n−1)(λ; A)x = (−1)n−1

∫ ∞

0

e−λt tn−1T (t)x d t.

This proves the result. �

Theorem 3.3 (Hille-Yosida, 1948). Let M ,ω ∈ R be given. Suppose that A : D(A) → X is a linear operator with
D(A) ⊆ Z. Then A is the infinitesimal generator of a linear C0-semigroup T satisfying ‖T (t)‖ ≤ Meωt for all t ≥ 0 if
and only if the following hold.

(i) A is closed and D(A) is dense in X ; and
(ii) ρ(A) ⊇ {λ ∈ R : λ >ω} and ‖R(λ; A)n‖ ≤ M

(λ−ω)n for all λ ∈ R with λ >ω and all n ∈ N.

Remark 3.4. Note that the condition that ‖R(λ; A)n‖ ≤ M
(λ−ω)n may be difficult to verify in practice. Notice that

‖R(λ; A)‖ ≤ M
(λ−ω) implies that ‖R(λ; A)n‖ ≤ M n

(λ−ω)n , so if M = 1, i.e. if the semigroup is quasi-contractive, then it
is enough to verify the inequality for n= 1 only. �

Proof.

Step 1. Necessity.

We have already seen that (i) holds, by Theorem 2.10, and that ρ(A) contains {λ ∈ R : λ > ω}, by
Lemma 3.1. By Lemma 3.2,

R(λ; A)n =
1

(n− 1)!

∫ ∞

0

e−λt tn−1T (t)x d t

‖R(λ; A)n x‖ ≤
1

(n− 1)!

∫ ∞

0

e−λt tn−1‖T (t)x‖ d t

≤
M

(n− 1)!
‖x‖

∫ ∞

0

e−λt tn−1eωt d t

=
M

(n− 1)!
(n− 1)!
(λ−ω)n

‖x‖

=
M

(λ−ω)n‖x‖.

This concludes the proof of necessity.

Step 2. Sufficiency.

Should we try using the inverse Laplace transform? If we could write

T (t) =
1

2πi

∫ γ+∞

γ−∞
eλtR(λ; A) dλ

then T would have higher order regularity in general. This method would work for so called “analytic”
semigroups, but not for general C0-semigroups.

How about the limit obtained from considering the implicit scheme? In general T (t) = limn→∞
�

1− t
n A
�−n

,
and this method can be used, but we will not use it here. What we will do is approximate A with bounded
operators {Aλ}λ>ω and put Tλ(t) =

∑∞
n=0

1
n! (tAλ)

n. Then in theory Tλ(t)→ T (t) as λ→∞.

Lemma 3.5. Let A : D(A) → X be a linear operator with D(A) ⊆ X . Assume that (i) and (ii) of the
Hille-Yosida theorem hold. Then, for all x ∈ X , limλ→∞λR(λ; A)x = x.

7
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Proof. Let x ∈ D(A) be given. For any λ >ω,

(λ1− A)R(λ; A)x = x ,

λR(λ; A)x − x = AR(λ; A)x = R(λ; A)Ax ,

‖λR(λ; A)x − x‖= ‖R(λ; A)Ax‖

≤
M

λ−ω
‖Ax‖

→ 0 as λ→∞.

Since D(A) is dense in X , the result follows. �

Now we define the Yosida approximation Aλ of λ for λ >ω. It is defined as

Aλx := λAR(λ; A)x = (λ2R(λ; A)−λ1)x .

By Lemma 3.5, Aλx → Ax as λ→∞ for all x ∈ D(A).

Lemma 3.6. Let B ∈ L (X ; X ) and define etB =
∑∞

n=0
1
n! (tB)n for all t ∈ R.

(i) {etB}t≥0 is a linear C0-semigroup with infinitesimal generator B.
(ii) limt→0 ‖etB − 1‖= 0.

(iii) For all λ ∈ K, et(B−λ1) = e−λt etB.

Proof.

(i) Since B ∈ L (X ; X ) we have ‖B‖< +∞, and so for any x ∈ X and t ≥ 0,















m
∑

i=n

1
i!
(tB)i x
















≤
m
∑

i=n

(t‖B‖)i

i!
‖x‖ ≤ ‖x‖et‖B‖,

hence the sequence of partial sums {
∑m

n=0
1
n! (tB)n}n∈N is Cauchy in X . Hence the series converges,

etB is well defined, and etB ∈ L (X ; X ).
Since for a, b ∈ R

�∞
∑

n=0

1
n!

an

��∞
∑

n=0

1
n!

bn

�

=
∞
∑

n=0

1
n!
(a+ b)n,

we deduce that the semigroup property holds by the same argument which shows that etB is well
defined. Clearly, limt↓0 etB = e0B = 1. Finally, to show that {etB}t≥0 is a linear C0-semigroup note
that

‖etB x − x‖=
















∞
∑

n=1

1
n!
(tB)n x
















≤
∞
∑

n=1

1
n!

tn‖B‖n‖x‖ ≤ (et‖B‖ − 1)‖x‖ → 0 as t ↓ 0.

We claim that et‖B‖ is differentiable with derivative BetB. To see this note that

B

∫ t

0

esB ds = B

∫ t

0

∞
∑

n=0

1
n!
(sB)n ds =

∞
∑

n=0

Bn+1

∫ t

0

sn ds =
∞
∑

n=0

1
(n+ 1)!

(tB)n+1 = etB − 1.

Now by differentiating both sides we deduce that

d
dt

etB = lim
h↓0

e(t+h)B − etB

t
= BetB.

Now since the infinitesimal generator is derivative at t = 0 we deduce that the infinitesimal gener-
ator of the linear C0-semigroup {etB}t≥0 is simply B.

(ii) Since

‖etB − 1‖=
















∞
∑

n=1

1
n!
(tB)n
















≤
∞
∑

n=1

1
n!

tn‖B‖n = et‖B‖ − 1,

and et‖B‖ − 1→ 0 as t → 0, we deduce that limt→0 ‖etB − 1‖= 0.

8
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(iii) We have

et(B−λ1) =
∞
∑

n=0

1
n!
(tB − tλ1)n =

�∞
∑

n=0

1
n!
(tB)n

��∞
∑

n=0

1
n!
(−tλ1)n

�

= etBe−λt1.

Now for any x ∈ X we see that

et(B−λ1)x = etBe−λt1x = etBe−λt x = e−λt etB x .

�

In fact, it can be shown that if T is a linear C0-semigroup with the property that limh↓0 ‖T (h)− 1‖ = 0
then T (t) = etB for some B ∈ L (X ; X ).

Now assume that conditions (i) and (ii) of the Hille-Yosida theorem hold, and let Aλ be the Yosida ap-
proximation of A. Notice that for any λ >ω,

etAλ = e−λt
∞
∑

n=0

λ2n tnR(λ; A)n

n!

‖etAλ‖ ≤ Me−λt
∞
∑

n=0

λ2n tn

(λ−ω)nn!
by (ii)

= Me−λt exp

�

λ2

λ−ω
t

�

λ >ω

= M exp
�

λ

λ−ω
t
�

.

It follows that ‖etAλ‖ ≤ Meω1 t for any fixed ω1 >ω, for all λ sufficiently large when compared to ω.

Put Tλ(t) := etAλ for all t ≥ 0 and λ > ω. Notice that AλAµ = AµAλ and AλTµ(t) = Tµ(t)Aλ for all
λ,µ >ω. Fix x ∈ D(A).

Tλ(t)x − Tµ(t)x =

∫ t

0

d
ds

�

Tµ(t − s)Tλ(s)x
�

ds

=

∫ t

0

Tµ(t − s)AλTλ(s)x − Tµ(t − s)AµTλ(s)x ds

=

∫ t

0

�

Tµ(t − s)Tλ(s)
� �

Aλx − Aµx
�

ds.

So we deduce that
‖Tλ(t)x − Tµ(t)x‖ ≤ M2eω1 t t‖Aλx − Aµx‖.

Hence {Tλ(t)x}λ>ω is uniformly Cauchy in t on bounded intervals. Since D(A) is dense in X and since
we have a bound on ‖Tλ(t)‖ (in λ), we have for all x ∈ X , limλ→∞ Tλ(t)x exists.

For all t ≥ 0 and x ∈ X , put T (t)x = limλ→∞ Tλ(t)x . Note that ‖T (t)‖ ≤ Meω1 t , T (t)T (s) = T (t+ s) for
all s, t ≥ 0, and T (0) = 1 – this follows since these relations all hold for each Tλ. Continuity follows since
the convergence is uniform for t bounded intervals. Hence, we have shown that T is linear C0-semigroup.
Let B be the infinitesimal generator of T . Now we must show that B = A. First we will show that B is an
extension of A, and then we will use a resolvent argument to show that D(A) = D(B). Let x ∈ D(A) be
given.

‖Tλ(t)Aλx − T (t)Ax‖ ≤ ‖Tλ(t)(Aλx − Ax)‖+ ‖(Tλ(t)− T (t))Ax‖
≤ Meω1 t‖Aλx − Ax‖+ ‖(T −λ(t)− T (t))Ax‖
→ 0 as λ→∞.

Since the convergence is uniform in t on bounded intervals,

T (t)x − x = lim
λ→∞

Tλ(t)x − x = lim
λ→∞

∫ t

0

Tλ(s)Aλx d x =

∫ t

0

T (s)Ax d x .

9
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Now by the definition of B, for any h> 0,

T (h)x − x
h

=
1
h

∫ h

0

T (s)Ax ds→ Ax as h ↓ 0.

Hence, x ∈ D(B) and Bx = Ax . B is closed since it is the infinitesimal generator of a linear C0-semigroup,
and A is closed by assumption. Since ‖T (t)‖ ≤ Meω1 t for any ω1 >ω, by Lemma 3.1 ρ(B) ⊇ (ω,∞), so
it follows that ρ(B)∩ρ(A) 6= ;. Choose λ ∈ ρ(A)∩ρ(B). By standard spectral theory since A and B are
closed, (λ1−A)[D(A)] = X and (λ1− B)[D(B)] = x . Furthermore, since B extends A, (λ1− B)[D(A)] =
(λ1− A)[D(A)] = X . To conclude the proof of the Hille-Yosida theorem, note that D(A) = R(λ; B)[X ] =
D(B).

�

Remark 3.7. Let A : D(A)→ X be a linear operator with D(A) ⊆ X . The following are equivalent.

(i) A is closed,
(ii) (λ1− A) : D(A)→ X is a bijection for some λ ∈ ρ(A),

(iii) (λ1− A) : D(A)→ X is a bijection for all λ ∈ ρ(A).

�

Corollary 3.8. Assume that A : D(A)→ X is linear with D(A) ⊆ X , and that D(A) is dense and A is closed. Then A
generates a contractive linear C0-semigroup if and only if ρ(A) ⊇ (0,∞) and ‖R(λ; A)‖ ≤ 1

λ for all λ > 0.

4. CONTRACTIVE SEMIGROUPS

Let T : [0,∞)→L (X ; X ) be a contractive semigroup. For all t, h ∈ [0,∞),

‖T (t + h)‖= ‖T (h)T (t)‖ ≤ ‖T (h)‖‖T (t)‖ ≤ ‖T (t)‖,

so t 7→ ‖T (t)‖ is a decreasing function. Assume for now that X is a Hilbert space. Let x ∈ D(A) be given, and put
µ(t) = ‖T (t)x‖2 = (T (t)x , T (t)x). For all t ≥ 0, since µ is decreasing,

0≥ µ̇(t) = (T (t)x , T (t)Ax) + (T (t)Ax , T (t)x) = 2ℜ(AT (t)x , x).

In particular, for t = 0, ℜ(Ax , x)≤ 0 for all x ∈ D(A).

We will prove that if X is a Hilbert space and A : D(A) → X is a linear operator then A generates a contractive
semigroup if and only if both of the following hold.

(i) ℜ(Ax , x)≤ 0 for all x ∈ D(A), and
(ii) there exists λ0 > 0 such that λ01− A is surjective.

Definition 4.1. Let X be a Banach space over K with norm ‖ · ‖. A semi-inner product on X is a mapping [·, ·] :
X × X → K such that

(i) [x + y, z] = [x , z] + [y, z] for all x , y, z ∈ X ,
(ii) [αx , y] = α[x , y] for all x , y ∈ X and α ∈ K,

(iii) [x , x] = ‖x‖2 for all x ∈ X , and
(iv) |[x , y]| ≤ ‖x‖‖y‖ for all x , y ∈ X .

�

Remark 4.2. The term “semi-inner product” is often used in a more general sense that is not linked to a pre-existing
norm. �

Now we ask: do semi-inner products exists, and can there be more than one associated with any given norm?
The answer to both is yes in general. However, if X ∗ is strictly convex then there cannot be more than one. We
will see that if ℜ[Ax , x] ≤ 0 with respect to one semi-inner product then it holds with respect to any semi-inner
product.

Proposition 4.3. There is at least one semi-inner product on a Banach space.

10
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Proof. Let X be a Banach space. For every x ∈ X let

F (x) := {x∗ ∈ X ∗ : 〈x∗, x〉= ‖x‖2 = ‖x∗‖2}.

By the Hahn-Banach theorem F (x) is nonempty for every x ∈ X . For every x ∈ X , choose F(x) ∈ F (x). Define
[·, ·] : X × X → K by [x , y] = 〈F(y), x〉 for all x , y ∈ X . �

If X ∗ is strictly convex then there is exactly one semi-inner product, essentially because the set F (x) contains
only a single element.

Definition 4.4. Assume that A : D(A) → X is linear with D(A) ⊆ X . We say that A is dissipative if there is a
semi-inner product on X such that ℜ[Ax , x]≤ 0 for all x ∈ D(A). �

The notion of dissipativity depends on the particular norm used, but it will turn out that it does not depend on
the particular semi-inner product used.

Remark 4.5. Consider µt t(x , t) =∆µ(x , t)−α(x)µt(x , t) with µ|∂Ω = 0, where α is non-negative, smooth, with
compact support, and

∫

Ω
α > 0. Then solutions µ tend to zero with t! �

Lemma 4.6. Assume that A : D(A)→ X is linear with D(A) ⊆ X . Then A is dissipative if and only if ‖(λ1− A)x‖ ≥
λ‖x‖ for all x ∈ D(A) and λ > 0.

Proof. Assume that A is dissipative. Choose a semi-inner product such that ℜ[Ax , x] ≤ 0 for all x ∈ D(A). Then
for all x ∈ D(A) and λ > 0, we have

ℜ[(A−λ1)x , x] = λ‖x‖2 −ℜ[Ax , x]≥ λ‖x‖2.

Combining this with the fact that

ℜ[(λ1− A)x , x]≤ |[(λ1− A)x , x]| ≤ ‖(λ1− A)x‖‖x‖

yields the result.

Assume now that ‖(λ1− A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0. As before, put

F (x) := {x∗ ∈ X ∗ : 〈x∗, x〉= ‖x‖2 = ‖x∗‖2}.

We identify three cases: x = 0, x ∈ D(A) \ {0} and x /∈ D(A).

Fix x ∈ D(A) \ {0}. For all λ > 0 choose y∗
λ
∈ F (λx − Ax) and put z∗

λ
= 1
‖y∗
λ
‖ y∗
λ
.

λ‖x‖ ≤ ‖λx − Ax‖ by assumption

=
1
‖y∗
λ
‖
〈y∗λ, nx − Ax〉 since y∗

λ
∈ F (λx − Ax)

= 〈z∗λ,λx − Ax〉 (this is a real number)

= λℜ〈z∗λ, x〉 −ℜ〈z∗λ, Ax〉.

Since ‖z∗
λ
‖= 1 by construction,

λ‖x‖ ≤ λℜ〈z∗λ, x〉 −ℜ〈z∗λ, Ax〉 ≤ λ‖x‖ −ℜ〈z∗λ, Ax〉.

Therefore, ℜ〈z∗
λ
, Az〉 ≤ 0 and similarly ℜ〈z∗

λ
, x〉 ≥ ‖x‖ − 1

λ‖Ax‖. Since the unit ball in X ∗ is weak-? compact the
net {z∗

λ
}λ→∞ has a weak-? cluster point z∗ ∈ X ∗. Then ‖z∗‖ ≤ 1, ℜ〈z∗, Ax〉 ≤ 0, and ℜ〈z∗, x〉 ≥ ‖x‖. It follows

that 〈z∗, x〉= ‖x‖. Define a semi-inner product as before, but with

F(x) =







0 x = 0

〈z∗, x〉 x ∈ D(A) \ {0}
anything in F (x) x ∈ X \D(A).

�

Lemma 4.7. Assume that A : D(A)→ X is linear with D(A) ⊆ X and that A is dissipative. Let λ0 ∈ (0,∞) be given
and assume that λ01− A is surjective. Then A is closed, ρ(A) ⊇ (0,∞), and ‖R(λ; A)‖ ≤ 1

λ for all λ > 0.
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Proof. Notice that, by Lemma 4.6, ‖(λ1− A)x‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0. So we immediately deduce
that ‖R(λ; A)‖ ≤ 1

λ , provided the resolvent exists. The key points are to show that A is closed and that λ1− A is
surjective for all λ > 0.

Notice that λ01−A is bijective since it is surjective and bounded below, and furthermore, ‖(λ01−A)−1 x‖ ≤ 1
λ0
‖x‖.

So (λ01− A)−1 ∈ L (X ; X ), hence it is closed, so A is closed as well.

To show that ρ(A) ⊇ (0,∞) it suffices to show that (λ1− A)−1 is surjective for all λ > 0. Let Λ = {λ ∈ (0,∞) :
λ ∈ ρ(A)}, which is open (in the relative topology of (0,∞)) and non-empty. We will show that Λ is closed
and conclude that Λ = (0,∞). Let {λn}∞n=1 be a sequence in Λ converging to λ∗ ∈ (0,∞). We will show that
λ∗ ∈ Λ by showing that λ∗1− A is surjective. Let y ∈ X be given. For every n ∈ N let xn = R(λn; A)y . Note that
sup

�

1
n : n ∈ N

	

<∞.

‖xn − xm‖= ‖(R(λn; A)− R(λm; A))y‖
= |λm −λn|‖R(λn; A)R(λm; A)y‖

≤ |λm −λn|
‖y‖
λnλm

→ 0 as n, m→∞.

So xn→ x for some x ∈ X . Finally, {xn}∞n=1 ⊆ D(A), xn→ x , and Axn→ λ∗x − y . Since A is closed, (λ∗1−A)x =
y . �

Theorem 4.8 (Lumer-Phillips, 1961). Assume A : D(A)→ X is linear with D(A) dense in X .

(i) If A is dissipative and there is λ0 > 0 such that λ01 − A is surjective then A generates a contractive linear
C0-semigroup.

(ii) If A generates a contractive linear C0-semigroup then λ1−A is surjective for all λ > 0 and ℜ[Ax , x]≤ 0 for
all x ∈ D(A) and every semi-inner product on X (in particular, A is dissipative).

Proof. The first part follows from Lemma 4.7 and the Hille-Yosida theorem, since ‖R(λ; A)‖ ≤ 1
λ implies ‖R(λ; A)n‖ ≤

1
λn .

For the second part, the surjectivity conclusion follows from the Hille-Yosida theorem. Let [·, ·] be a semi-inner
product on X . We need to show that ℜ[Ax , x]≤ 0 for all x ∈ D(A). For all h> 0 and x ∈ D(A),

ℜ[T (h)x − x , x] =ℜ[T (h)x , x]− ‖x‖2

≤ ‖T (h)x‖‖x‖ − ‖x‖2

≤ ‖x‖2 − ‖x‖2

= 0.

Dividing by h and letting h ↓ 0 yields ℜ[Ax , x]≤ 0. �

Corollary 4.9. Assume B : D(B) → X is linear with D(B) dense in X . Let ω,λ0 ∈ R with λ0 > ω be given. If
λ01− B is surjective and there exists a semi-inner product on X such that ℜ[Bx , x]≤ω‖x‖2 for all x ∈ D(B), then
B generates a linear C0-semigroup T such that ‖T (t)‖ ≤ eωt .

Proof. Let A= B −ω1 and apply the Lumer-Phillips theorem to A. �

Lemma 4.10. Assume that X is reflexive and that A : D(A)→ X is linear with D(A) ⊆ X . Let λ0 > 0 be given and
assume that A is dissipative and that λ01− A is surjective. Then D(A) is dense in X .

Remark 4.11. Let M be a linear submanifold in a Banach space X (not necessarily reflexive). Then M is dense in
X if and only if for all y ∈ X there is a sequence {xn}∞n=1 ⊆ M such that xn * y as n→∞. Indeed, one direction
is trivial. For the other, if y is not in the closure of M then dist(M , y)> 0. By the Hahn-Banach theorem there is
y∗ ∈ X ∗ such that 〈y∗, x〉= 0 for all x ∈ M and 〈y∗, y〉 6= 0. �
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Proof. Let y ∈ X be given. It suffices to shwo that there is a sequence {xn}∞n=1 ⊆ D(A) such that xn * y as n→∞.

Put xn =
�

1− 1
n A
�−1

y = nR(n; A)y ∈ D(A) for all n ∈ N. Then

‖xn‖ ≤ n‖R(n; A)‖‖y‖ ≤ n
1
n
‖y‖= ‖y‖.

Choose a subsequence {xnk
}∞k=1 and x ∈ X such that xnk

* x as k→∞. We are done if we show that x = y . We
have

A
� xnk

nk

�

= xnk
− y * x − y,

and xnk
* 0 (in fact, xnk

→ 0). Now since Gr(A) is closed and convex it is weakly closed. Since (0, x− y) ∈ Gr(A),
we deduce that x = y . �

This lemma shows that if X is reflexive then we do not need to assume that D(A) is dense in the Lumer-Phillips
theorem. This is less helpful than it seems because in many applications it is trivial to check that the domain is
dense.

Theorem 4.12 (Lumer-Phillips for Hilbert spaces). Let X be a Hilbert space and assume that B : D(B)→ X is linear
with D(B) ⊆ X . Let λ0,ω ∈ R and λ0 > ω be given. Assume that ℜ(Bx , x) ≤ ω‖x‖2 for all x ∈ D(B) and that
λ01− B is surjective. Then B generates a linear C0-semigroup T such that ‖T (t)‖ ≤ eωt for all t ≥ 0.

Example 4.13. Let

D(A) := {u ∈ AC[0,1] : u′ ∈ AC[0, 1], u′′ ∈ L2[0, 1], u(0) = u(1) = 0} ⊆ L2[0, 1],

and Au := u′′. We have seen that A is closed and A is densely defined (in fact it is self-adjoint). For any u ∈ D(A),

(Au, u) =

∫ 1

0

u′′u d x = −
∫ 1

0

(u′)2 d x ≤ 0.

If we can solve the ODE u−u′′ = f , u(0) = u(1) = 0 for any f ∈ L2(0, 1), then A generates a contraction semigroup
T by the Lumer-Phillips theorem. Thus the solutions to the heat equation







ut − ux x = 0 on (0,1)
u(t, 0) = u(t, 1) = 0 for all t ≥ 0

u(0, x) = g(x) for all x ∈ (0,1)

can be written as u(x , t) = (T (t)g)(x). �
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