A Characterization of $\boldsymbol{T}_{\mathbf{2 g + 1 , 2}}$ among Alternating Knots

Yi NI
Department of Mathematics, Caltech, MC 253-37 1200 E California Blvd, Pasadena, CA 91125, USA
E-mail: yini@caltech.edu

Abstract

Let K be a genus g alternating knot with Alexander polynomial $\Delta_{K}(T)=\sum_{i=-g}^{g} a_{i} T^{i}$. We show that if $\left|a_{g}\right|=\left|a_{g-1}\right|$, then K is the torus knot $T_{2 g+1, \pm 2}$. This is a special case of the Fox Trapezoidal Conjecture. The proof uses Ozsváth and Szabó's work on alternating knots.

Keywords Alternating knots, Alexander polynomial, strongly quasipositive fibered knots
MR(2010) Subject Classification 57M25

1 Introduction

Alternating knots have many good properties. For example, the information from the Alexander polynomial of an alternating knot K determines the genus of K and whether K is fibered [2, 11]. Even so, there are still some open problems about alternating knots. One of these problems is the following conjecture made by Fox [3, Problem 12].
Conjecture 1.1 (Fox Trapezoidal Conjecture) Let K be an alternating knot with normalized Alexander polynomial

$$
\begin{equation*}
\Delta_{K}(T)=\sum_{i=-g}^{g} a_{i} T^{i}, \tag{1.1}
\end{equation*}
$$

where g is the genus of K. Then

$$
\left|a_{i}\right| \leq\left|a_{i-1}\right| \quad \text { when } 0<i \leq g .
$$

Moreover, if $\left|a_{i}\right|=\left|a_{i-1}\right|$ for some i, then $\left|a_{j}\right|=\left|a_{i}\right|$ whenever $0 \leq j \leq i$.
This conjecture was known for 2-bridge knots [9] and alternating arborescent knots [12]. Using Heegaard Floer homology, Ozsváth and Szabó [14] proved the first part of the conjecture for $i=g$. See (2.2) for the precise inequality. As a result, they proved the conjecture for genus-2 knots.

In this paper, we will prove the second part of Conjecture 1.1 for $i=g$. In this case, we will get a stronger conclusion.
Theorem 1.2 Let K be an alternating knot with normalized Alexander polynomial given by (1.1), where g is the genus of K. If $\left|a_{g}\right|=\left|a_{g-1}\right|$, then K or its mirror is the torus $k n o t T_{2 g+1,2}$.

[^0]Our proof uses Ozsváth and Szabó's work [14].
This paper is organized as follows. In Section 2, we prove that if a knot K has thin knot Floer homology, and $\left|a_{g}\right|=\left|a_{g-1}\right|$, then K is a strongly quasipositive fibered knot. In Section 3, we prove that strongly quasipositive fibered alternating knots are connected sums of torus knots of the form $T_{2 n+1,2}$. Hence we get a proof of Theorem 1.2.

2 Thin Knots with $\left|a_{g}\right|=\left|a_{g-1}\right|$

Let $K \subset S^{3}$ be a knot with knot Floer homology $[16,18]$

$$
\widehat{H F K}\left(S^{3}, K\right)=\bigoplus_{i, j \in \mathbb{Z}^{2}} \widehat{H F K}_{j}\left(S^{3}, K, i\right)
$$

We say the knot Floer homology is thin, if it is supported in the line

$$
j=i-\tau
$$

where $\tau=\tau(K)$ is the concordance invariant defined in [15].
By work of Hedden [10], we will make the following definition of strongly quasipositive fibered knots. We do not need the original definition of strong quasipositivity in [19].
Definition 2.1 A strongly quasipositive fibered knot is a fibered knot $K \subset S^{3}$, such that the open book with binding K supports the tight contact structure on S^{3}.

Now we can state the main result we will prove in this section.
Proposition 2.2 Let $K \subset S^{3}$ be a knot with thin knot Floer homology. Let the normalized Alexander polynomial be given by (1.1). If $\left|a_{g}\right|=\left|a_{g-1}\right|$, then K or its mirror is a strongly quasipositive fibered knot.

Let $S_{0}^{3}(K)$ be the manifold obtained by 0-surgery on K. Ozsváth and Szabó proved that if $\widehat{H F K}\left(S^{3}, K\right)$ is thin and $\tau(K) \geq 0$, then

$$
\begin{equation*}
H F^{+}\left(S_{0}^{3}(K), s\right) \cong \mathbb{Z}^{b_{s}} \oplus\left(\mathbb{Z}[U] / U^{\delta(-2 \tau, s)}\right) \tag{2.1}
\end{equation*}
$$

for $s>0$, where

$$
\delta(-2 \tau, s)=\max \left\{0,\left\lceil\frac{|\tau|-|s|}{2}\right\rceil\right\}
$$

and

$$
(-1)^{s-\tau} b_{s}=\delta(-2 \tau, s)-t_{s}(K)
$$

with

$$
t_{s}(K)=\sum_{j=1}^{\infty} j a_{s+j} .
$$

See [14, Theorem 1.4] and the paragraph after it.
Using (2.1), one can deduce the following inequality as in [14]:

$$
\left|a_{g-1}\right| \geq 2\left|a_{g}\right|+ \begin{cases}-1 & \text { if }|\tau|=g \tag{2.2}\\ 1 & \text { if }|\tau|=g-1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof of Proposition 2.2 It follows from [17] that $a_{g} \neq 0$. If $\left|a_{g}\right|=\left|a_{g-1}\right|$, then by (2.2) we must have

$$
\left|a_{g}\right|=1, \quad|\tau|=g
$$

By [6, 13], K is fibered. Replacing K with its mirror if necessary, we may assume $\tau=g$. It follows from [14, Corollary 1.7] that the open book with binding K supports the tight contact structure.

3 Strongly Quasipositive Fibered Alternating Knots

Suppose that K is a fibered alternating link. Let $\mathcal{D} \subset S^{2}$ be a reduced connected alternating diagram of K. Applying Seifert's algorithm to \mathcal{D}, we can get a Seifert surface F which is a union of disks and twisted bands corresponding to the crossings in \mathcal{D}. We call the disks Seifert disks with boundary Seifert circles, and call the twisted bands Seifert bands. By [5, Theorem 5.1], F is a fiber of the fibration of $S^{3} \backslash K$ over S^{1}.

Following [7], we say a Seifert circle is nested, if each of its complementary regions contains another Seifert circle. It is well-known that F decomposes as a Murasugi sum of two surfaces along a nested Seifert circle C [11, 20]. More precisely, let D_{1}, D_{2} be the two disks bounded by C. Let \mathcal{B}_{i} be the union of Seifert bands connecting C to Seifert circles in $D_{i}, i=1,2$. We cut F open along $\mathcal{B}_{3-i} \cap C$ to get a disconnected surface. Let F_{i} be the component such that the projection of ∂F_{i} is supported in D_{i}. Then F is a Murasugi sum of F_{1} and F_{2}. Gabai [4] proved that F is a fiber of a fibration of $S^{3} \backslash K$ if and only if each F_{i} is a fiber of a fibration of $S^{3} \backslash \partial F_{i}, i=1,2$.
Definition 3.1 If a diagram contains no nested Seifert circles, then this diagram is special as defined in [11].

Suppose that $\mathcal{D} \subset S^{2}$ is a reduced connected special alternating diagram for a link K. Let S_{1}, \ldots, S_{k} be the Seifert circles in \mathcal{D}. Since \mathcal{D} is special, these Seifert circles bound disjoint disks D_{1}, \ldots, D_{k}. We color the complementary regions of \mathcal{D} by two colors black and white, so that two regions sharing an edge have different colors. The coloring convention is that the disks D_{1}, \ldots, D_{k} have the black color. Clearly, there are no other black regions. We will construct the black graph Γ_{B} and the white graph Γ_{W} as usual. Namely, the vertices in Γ_{B} (or Γ_{W}) are the black (or white) regions, and the edges correspond to the crossings. These two graphs are embedded in S^{2} as a pair of dual graphs. We also construct the reduced black graph Γ_{B}^{r} by deleting all but one edges connecting two vertices v_{i} and v_{j} if there is any edge connecting them.

The following proposition can be found in [1, Propositions 13.24 and 13.25].
Proposition 3.2 Suppose that $\mathcal{D} \subset S^{2}$ is a reduced connected special alternating diagram for a fibered link K, then all but one vertices in Γ_{W} have valence 2. As a result, K is a connected sum of torus links

$$
K=\#_{i=1}^{\ell} T_{k_{i}, 2}
$$

From Proposition 3.2, it is not hard to get the following characterization of \mathcal{D} in terms of Γ_{B}^{r}.
Lemma 3.3 Under the same assumptions as in Proposition 3.2, the graph Γ_{B}^{r} is a tree.

Proof Since D is connected, Γ_{B}^{r} is also connected. If Γ_{B}^{r} contains only two vertices, there is exactly one edge by the definition of Γ_{B}^{r}, so our conclusion holds. From now on, we assume Γ_{B}^{r} has at least three vertices. Let R be a complementary region of Γ_{B}^{r}, then it is not a bigon since any two vertices in Γ_{B}^{r} are connected by at most one edge and Γ_{B}^{r} has at least three vertices. Let v be the vertex corresponding to R in Γ_{W}, then v has valence >2. By Proposition 3.2, Γ_{B}^{r} has at most one complementary region, which means that Γ_{B}^{r} is a tree.

Lemma 3.4 Under the same assumptions as in Proposition 3.2, if two vertices in Γ_{B} are connected by an edge, then they are connected by at least two edges.
Proof Using Lemma 3.3, if D_{i} and D_{j} are connected through only one crossing, then \mathcal{D} is not reduced, a contradiction.

We say two Seifert bands are parallel if they connect the same two Seifert disks. The following lemma is well-known. See, for example, [7, Proposition 5.1].
Lemma 3.5 If two Seifert bands are parallel, then we can deplumb a Hopf band from F. The resulting surface can be obtained by removing one of the bands from F.
Lemma 3.6 Let K be a strongly quasipositive fibered alternating knot, and let \mathcal{D} be a reduced connected alternating diagram for K. Let C be a nested Seifert circle. If C is connected to two pairs of parallel bands, then these two pairs of bands are on the same side of C.
Proof If C is connected to two pairs of parallel bands on different sides of C, then we can deplumb a negative Hopf band from F. See Figure 1. Hence the open book with page F supports an overtwisted contact structure [8, Lemma 4.1], a contradiction.

Figure 1 If two collections of parallel bands are on different sides of a nested Seifert circle, we can deplumb a positive Hopf band and a negative Hopf band. The two dashed circles are the cores of the Hopf bands

Proposition 3.7 Let K be a strongly quasipositive fibered alternating knot. Then K is a connected sum of torus knots of the form $T_{2 n_{i}+1,2}$ for $n_{i}>0$.
Proof If \mathcal{D} is special, by Proposition $3.2, K$ is a connected sum of torus knots $T_{2 n_{i}+1,2}$. Since K is strongly quasipositive, each n_{i} must be positive, so our conclusion holds.

Now we assume that \mathcal{D} contains at least one nested Seifert circle. We say a nested Seifert circle is extremal, if one of its complementary regions contains no other nested Seifert circles.

Let C_{1}, \ldots, C_{m} be a maximal collection of extremal nested Seifert circles in \mathcal{D}, and let R_{i} be the complementary region of C_{i} which contains no other nested Seifert circles. Then R_{1}, \ldots, R_{m} are mutually disjoint. Let \mathcal{D}^{\prime} be the diagram obtained from \mathcal{D} by Murasugi desumming along $C_{1} \cup \cdots \cup C_{m}$. Let \mathcal{D}_{i} be the part of \mathcal{D}^{\prime} supported in R_{i}, and let

$$
\mathcal{D}^{*}=\mathcal{D}^{\prime} \backslash\left(\bigcup_{i=1}^{m} \mathcal{D}_{i}\right)
$$

By [4], \mathcal{D}^{*} and \mathcal{D}_{i} are alternating diagrams representing fibered links.
Since R_{i} contains no other nested Seifert circles, \mathcal{D}_{i} is special. By Lemma 3.4, C_{i} is connected to another circle in R_{i} by at least a pair of parallel bands.

We claim that \mathcal{D}^{*} is special. Otherwise, let C be an extremal nested Seifert circle, and let R be the complementary region of C which contains no other nested Seifert circles in \mathcal{D}^{*}. Since C_{1}, \ldots, C_{m} is a maximal collection of extremal nested Seifert circles, R must contain at least one C_{i}. By Lemma 3.4, C_{i} is connected to another circle in $R \backslash R_{i}$ (including C) by at least a pair of parallel bands. This is a contradiction to Lemma 3.6.

Now \mathcal{D}^{*} is special. There are at least two Seifert circles in \mathcal{D}^{*}, since C_{1} is nested in \mathcal{D}. By Lemma 3.4, C_{1} is connected to another Seifert circle in \mathcal{D}^{*} by at least a pair of parallel bands. We again get a contradiction to Lemma 3.6. Hence \mathcal{D} does not contain any nested Seifert circle. This finishes our proof.
Proof of Theorem 1.2 By [14], $\widehat{\operatorname{HFK}}\left(S^{3}, K\right)$ is thin. It follows from Proposition 2.2 that K is strongly quasipositive and fibered. Using Proposition 3.7, K is a connected sum of $T_{2 n_{i}+1,2}$. The condition on the Alexander polynomial forces K to be $T_{2 g+1,2}$.

References

[1] Burde, G., Zieschang, H.: Knots, Second Edition, De Gruyter Studies in Mathematics, Vol. 5, Walter de Gruyter \& Co., Berlin, 2003
[2] Crowell, R.: Genus of alternating link types, Ann. of Math. (2), 69, 258-275 (1959)
[3] Fox, R. H.: Some problems in knot theory, In: Topology of 3-manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, 168-176
[4] Gabai, D.: The Murasugi sum is a natural geometric operation, Low-dimensional Topology (San Francisco, Calif., 1981), Contemp. Math., Vol. 20, Amer. Math. Soc., Providence, RI, 1983, 131-143
[5] Gabai, D.: Detecting fibred links in S^{3}, Comment. Math. Helv., 61(4), 519-555 (1986)
[6] Ghiggini, P.: Knot Floer homology detects genus-one fibred knots, Amer. J. Math., 130(5), 1151-1169 (2008)
[7] Goda, H., Hirasawa, M., Yamamoto, R.: Almost alternating diagrams and fibered links in S^{3}. Proc. London Math. Soc. (3), 83(2), 472-492 (2001)
[8] Goodman, N.: Overtwisted open books from sobering arcs. Algebr. Geom. Topol., 5, 1173-1195 (2005)
[9] Hartley, R. I.: On two-bridged knot polynomials. J. Austral. Math. Soc. Ser. A, 28(2), 241-249 (1979)
[10] Hedden, M.: Notions of positivity and the Ozsváth-Szabó concordance invariant. J. Knot Theory Ramifications, 19(5), 617-629 (2010)
[11] Murasugi, K.: On the genus of the alternating knot, I, II. J. Math. Soc. Japan, 10, 94-105, 235-248 (1958)
[12] Murasugi, K.: On the Alexander polynomial of alternating algebraic knots. J. Austral. Math. Soc. Ser. A, 39(3), 317-333 (1985)
[13] Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math., 170(3), 577-608 (2007)
[14] Ozsváth, P., Szabó, Z.: Heegaard Floer homology and alternating knots. Geom. Topol., 7, 225-254 (2003)
[15] Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus. Geom. Topol., 7, 615-639 (2003)
[16] Ozsváth, P., Szabó, Z.: Holomorphic disks and knot invariants. Adv. Math., 186(1), 58-116 (2004)
[17] Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. Geom. Topol., 8, 311-334 (2004)
[18] Rasmussen, J.: Floer homology and knot complements, Thesis (Ph.D.)-Harvard University, ProQuest LLC, Ann Arbor, MI, 2003
[19] Rudolph, L.: Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.), 29(1), 51-59 (1993)
[20] Stallings, J.: Constructions of fibred knots and links, In: Algebraic and Geometric Topology, (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., Vol. XXXII, Amer. Math. Soc., Providence, RI, 1978, 55-60

[^0]: Received July 31, 2020, accepted May 31, 2021
 Supported by NSF (Grant No. DMS-1811900)

