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Abstract Let K be a genus g alternating knot with Alexander polynomial ΔK(T ) =
∑g

i=−g aiT
i.

We show that if |ag| = |ag−1|, then K is the torus knot T2g+1,±2. This is a special case of the Fox

Trapezoidal Conjecture. The proof uses Ozsváth and Szabó’s work on alternating knots.
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1 Introduction

Alternating knots have many good properties. For example, the information from the Alexander
polynomial of an alternating knot K determines the genus of K and whether K is fibered [2, 11].
Even so, there are still some open problems about alternating knots. One of these problems is
the following conjecture made by Fox [3, Problem 12].

Conjecture 1.1 (Fox Trapezoidal Conjecture) Let K be an alternating knot with normalized
Alexander polynomial

ΔK(T ) =
g∑

i=−g

aiT
i, (1.1)

where g is the genus of K. Then

|ai| ≤ |ai−1| when 0 < i ≤ g.

Moreover, if |ai| = |ai−1| for some i, then |aj | = |ai| whenever 0 ≤ j ≤ i.

This conjecture was known for 2–bridge knots [9] and alternating arborescent knots [12].
Using Heegaard Floer homology, Ozsváth and Szabó [14] proved the first part of the conjecture
for i = g. See (2.2) for the precise inequality. As a result, they proved the conjecture for
genus–2 knots.

In this paper, we will prove the second part of Conjecture 1.1 for i = g. In this case, we
will get a stronger conclusion.

Theorem 1.2 Let K be an alternating knot with normalized Alexander polynomial given by
(1.1), where g is the genus of K. If |ag| = |ag−1|, then K or its mirror is the torus knot T2g+1,2.
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Our proof uses Ozsváth and Szabó’s work [14].
This paper is organized as follows. In Section 2, we prove that if a knot K has thin knot

Floer homology, and |ag| = |ag−1|, then K is a strongly quasipositive fibered knot. In Section 3,
we prove that strongly quasipositive fibered alternating knots are connected sums of torus knots
of the form T2n+1,2. Hence we get a proof of Theorem 1.2.

2 Thin Knots with |ag| = |ag−1|
Let K ⊂ S3 be a knot with knot Floer homology [16, 18]

̂HFK(S3, K) =
⊕

i,j∈Z2

̂HFKj(S3, K, i).

We say the knot Floer homology is thin, if it is supported in the line

j = i − τ,

where τ = τ (K) is the concordance invariant defined in [15].
By work of Hedden [10], we will make the following definition of strongly quasipositive

fibered knots. We do not need the original definition of strong quasipositivity in [19].

Definition 2.1 A strongly quasipositive fibered knot is a fibered knot K ⊂ S3, such that the
open book with binding K supports the tight contact structure on S3.

Now we can state the main result we will prove in this section.

Proposition 2.2 Let K ⊂ S3 be a knot with thin knot Floer homology. Let the normalized
Alexander polynomial be given by (1.1). If |ag| = |ag−1|, then K or its mirror is a strongly
quasipositive fibered knot.

Let S3
0(K) be the manifold obtained by 0-surgery on K. Ozsváth and Szabó proved that if

̂HFK(S3, K) is thin and τ (K) ≥ 0, then

HF+(S3
0(K), s) ∼= Z

bs ⊕ (Z[U ]/Uδ(−2τ,s)) (2.1)

for s > 0, where

δ(−2τ, s) = max
{

0,

⌈ |τ | − |s|
2

⌉}

and

(−1)s−τbs = δ(−2τ, s) − ts(K)

with

ts(K) =
∞∑

j=1

jas+j .

See [14, Theorem 1.4] and the paragraph after it.
Using (2.1), one can deduce the following inequality as in [14]:

|ag−1| ≥ 2|ag| +

⎧
⎪⎪⎨

⎪⎪⎩

−1 if |τ | = g,

1 if |τ | = g − 1,

0 otherwise.

(2.2)
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Proof of Proposition 2.2 It follows from [17] that ag �= 0. If |ag| = |ag−1|, then by (2.2) we
must have

|ag| = 1, |τ | = g.

By [6, 13], K is fibered. Replacing K with its mirror if necessary, we may assume τ = g. It
follows from [14, Corollary 1.7] that the open book with binding K supports the tight contact
structure. �

3 Strongly Quasipositive Fibered Alternating Knots

Suppose that K is a fibered alternating link. Let D ⊂ S2 be a reduced connected alternating
diagram of K. Applying Seifert’s algorithm to D, we can get a Seifert surface F which is a union
of disks and twisted bands corresponding to the crossings in D. We call the disks Seifert disks
with boundary Seifert circles, and call the twisted bands Seifert bands. By [5, Theorem 5.1], F

is a fiber of the fibration of S3 \ K over S1.
Following [7], we say a Seifert circle is nested, if each of its complementary regions contains

another Seifert circle. It is well-known that F decomposes as a Murasugi sum of two surfaces
along a nested Seifert circle C [11, 20]. More precisely, let D1, D2 be the two disks bounded
by C. Let Bi be the union of Seifert bands connecting C to Seifert circles in Di, i = 1, 2. We
cut F open along B3−i ∩ C to get a disconnected surface. Let Fi be the component such that
the projection of ∂Fi is supported in Di. Then F is a Murasugi sum of F1 and F2. Gabai [4]
proved that F is a fiber of a fibration of S3 \K if and only if each Fi is a fiber of a fibration of
S3 \ ∂Fi, i = 1, 2.

Definition 3.1 If a diagram contains no nested Seifert circles, then this diagram is special
as defined in [11].

Suppose that D ⊂ S2 is a reduced connected special alternating diagram for a link K. Let
S1, . . . , Sk be the Seifert circles in D. Since D is special, these Seifert circles bound disjoint
disks D1, . . . , Dk. We color the complementary regions of D by two colors black and white, so
that two regions sharing an edge have different colors. The coloring convention is that the disks
D1, . . . , Dk have the black color. Clearly, there are no other black regions. We will construct
the black graph ΓB and the white graph ΓW as usual. Namely, the vertices in ΓB (or ΓW )
are the black (or white) regions, and the edges correspond to the crossings. These two graphs
are embedded in S2 as a pair of dual graphs. We also construct the reduced black graph Γr

B

by deleting all but one edges connecting two vertices vi and vj if there is any edge connecting
them.

The following proposition can be found in [1, Propositions 13.24 and 13.25].

Proposition 3.2 Suppose that D ⊂ S2 is a reduced connected special alternating diagram for
a fibered link K, then all but one vertices in ΓW have valence 2. As a result, K is a connected
sum of torus links

K = #�
i=1Tki,2.

From Proposition 3.2, it is not hard to get the following characterization of D in terms of
Γr

B.

Lemma 3.3 Under the same assumptions as in Proposition 3.2, the graph Γr
B is a tree.
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Proof Since D is connected, Γr
B is also connected. If Γr

B contains only two vertices, there is
exactly one edge by the definition of Γr

B, so our conclusion holds. From now on, we assume Γr
B

has at least three vertices. Let R be a complementary region of Γr
B, then it is not a bigon since

any two vertices in Γr
B are connected by at most one edge and Γr

B has at least three vertices.
Let v be the vertex corresponding to R in ΓW , then v has valence > 2. By Proposition 3.2, Γr

B

has at most one complementary region, which means that Γr
B is a tree. �

Lemma 3.4 Under the same assumptions as in Proposition 3.2, if two vertices in ΓB are
connected by an edge, then they are connected by at least two edges.

Proof Using Lemma 3.3, if Di and Dj are connected through only one crossing, then D is not
reduced, a contradiction. �

We say two Seifert bands are parallel if they connect the same two Seifert disks. The
following lemma is well-known. See, for example, [7, Proposition 5.1].

Lemma 3.5 If two Seifert bands are parallel, then we can deplumb a Hopf band from F . The
resulting surface can be obtained by removing one of the bands from F .

Lemma 3.6 Let K be a strongly quasipositive fibered alternating knot, and let D be a reduced
connected alternating diagram for K. Let C be a nested Seifert circle. If C is connected to two
pairs of parallel bands, then these two pairs of bands are on the same side of C.

Proof If C is connected to two pairs of parallel bands on different sides of C, then we can
deplumb a negative Hopf band from F . See Figure 1. Hence the open book with page F

supports an overtwisted contact structure [8, Lemma 4.1], a contradiction. �

Figure 1 If two collections of parallel bands are on different sides of a nested Seifert circle, we can

deplumb a positive Hopf band and a negative Hopf band. The two dashed circles are the cores of the

Hopf bands

Proposition 3.7 Let K be a strongly quasipositive fibered alternating knot. Then K is a
connected sum of torus knots of the form T2ni+1,2 for ni > 0.

Proof If D is special, by Proposition 3.2, K is a connected sum of torus knots T2ni+1,2. Since
K is strongly quasipositive, each ni must be positive, so our conclusion holds.

Now we assume that D contains at least one nested Seifert circle. We say a nested Seifert
circle is extremal, if one of its complementary regions contains no other nested Seifert circles.
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Let C1, . . . , Cm be a maximal collection of extremal nested Seifert circles in D, and let Ri be the
complementary region of Ci which contains no other nested Seifert circles. Then R1, . . . , Rm

are mutually disjoint. Let D′ be the diagram obtained from D by Murasugi desumming along
C1 ∪ · · · ∪ Cm. Let Di be the part of D′ supported in Ri, and let

D∗ = D′ \
( m⋃

i=1

Di

)

.

By [4], D∗ and Di are alternating diagrams representing fibered links.
Since Ri contains no other nested Seifert circles, Di is special. By Lemma 3.4, Ci is con-

nected to another circle in Ri by at least a pair of parallel bands.
We claim that D∗ is special. Otherwise, let C be an extremal nested Seifert circle, and let

R be the complementary region of C which contains no other nested Seifert circles in D∗. Since
C1, . . . , Cm is a maximal collection of extremal nested Seifert circles, R must contain at least
one Ci. By Lemma 3.4, Ci is connected to another circle in R \ Ri (including C) by at least a
pair of parallel bands. This is a contradiction to Lemma 3.6.

Now D∗ is special. There are at least two Seifert circles in D∗, since C1 is nested in D. By
Lemma 3.4, C1 is connected to another Seifert circle in D∗ by at least a pair of parallel bands.
We again get a contradiction to Lemma 3.6. Hence D does not contain any nested Seifert circle.
This finishes our proof. �
Proof of Theorem 1.2 By [14], ̂HFK(S3, K) is thin. It follows from Proposition 2.2 that K

is strongly quasipositive and fibered. Using Proposition 3.7, K is a connected sum of T2ni+1,2.
The condition on the Alexander polynomial forces K to be T2g+1,2. �
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