Dehn surgeries on knots in product manifolds

Yi Ni

Abstract

We show that if a surgery on a knot in a product sutured manifold yields the same product sutured manifold, then this knot is a 0- or 1-crossing knot. The proof uses techniques from sutured manifold theory.

1. Introduction

An interesting problem on Dehn surgery is: when does a surgery on a knot yield a manifold homeomorphic to the original ambient manifold? The most famous result in this direction is the Knot Complement Theorem proved by Gordon and Luecke [9]: when the ambient manifold is S^3 , only the unknot admits surgeries that yield S^3 .

In this paper, we are going to study this problem for knots in surfaces times an interval. Our main result is as follows.

THEOREM 1.1. Suppose that F is a compact surface and that $K \subset F \times I$ is a knot. Suppose that α is a non-trivial slope on K, and that $N(\alpha)$ is the manifold obtained from $F \times I$ via the α -surgery on K. If the pair $(N(\alpha), (\partial F) \times I)$ is homeomorphic to the pair $(F \times I, (\partial F) \times I)$, then one can isotope K such that its image on F under the natural projection

$$p: F \times I \longrightarrow F$$

has either no crossing or exactly 1-crossing.

The slope α can be determined as follows. Let λ_b be the 'blackboard' frame of K associated with the previous projection; namely, λ_b is the frame specified by the surface F. When the projection has no crossing, $\alpha = 1/n$ for some integer n with respect to λ_b ; when the minimal projection has exactly 1-crossing, $\alpha = \lambda_b$.

It is easy to see that the surgeries in the statement of Theorem 1.1 do not change the homeomorphism type of the pair $(F \times I, (\partial F) \times I)$. In fact, when K is a 0-crossing knot, it is clear that the 1/n-surgery preserves the homeomorphism type of the pair. When K is a 1-crossing knot, we can add a 1-handle to $F \times \frac{1}{2}$ near the crossing to get a Heegaard surface F' for $F \times I$. K can be embedded into F' as in Figure 1. The Heegaard surface F' splits $F \times I$ into two parts U_0 and U_1 , where U_0 is $F \times [0, \frac{1}{2}]$ with a 1-handle added to $F \times \frac{1}{2}$, and U_1 is $F \times [\frac{1}{2}, 1]$ with a 1-handle added to $-F \times \frac{1}{2}$. The embedding of K can be chosen such that K goes through each of the two 1-handles exactly once. Now the blackboard frame λ_b is the frame specified by F', and the λ_b -surgery on F' cancels each 1-handle with a 2-handle. Hence, the new pair is still homeomorphic to $(F \times I, (\partial F) \times I)$.

Received 27 January 2010; revised 20 June 2011; published online 23 September 2011.

2010 Mathematics Subject Classification 57M99, 57R30.

The author was partially supported by an AIM Five-Year Fellowship and NSF grant number DMS-0805807.

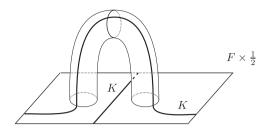


Figure 1. A local picture of the crossing.

DEFINITION 1.2. Notation is as in the previous theorem. Fix a product structure on $(\partial F) \times I$. Up to an isotopy relative to $(\partial F) \times I$, this product structure uniquely extends to a product structure \mathcal{P} on $F \times I$ and a product structure \mathcal{P}_{α} on $N(\alpha)$. (This fact can be proved using Alexander's trick.) Identify F with $F \times 1$. Let $i, i_{\alpha} \colon F \times 0 \to F \times 1$ be the natural identity maps with respect to \mathcal{P} and \mathcal{P}_{α} , respectively. We call

$$\varphi_{\alpha} = i \circ i_{\alpha}^{-1} \colon F \longrightarrow F$$

the map induced by the α -surgery. This map φ_{α} fixes ∂F pointwise, and is unique up to an isotopy relative to ∂F . Hence, φ_{α} can be viewed as an element in the mapping class group $\mathcal{MCG}(F,\partial F)$.

The definition of the map φ_{α} is justified by the following lemma.

LEMMA 1.3. Let $Y(\alpha)$ be the manifold obtained from $F \times S^1$ by α -surgery on K. Then $Y(\alpha)$ can be obtained from $F \times I$ by identifying (x,0) with $(\varphi_{\alpha}(x),1)$ for any $x \in G$.

Proof. The manifold $F \times S^1$ is obtained from $F \times I$ by identifying y with i(y) for each $y \in F \times 0$. Let y = (x,0) with respect to the product structure \mathcal{P}_{α} on $N(\alpha)$; then $i_{\alpha}(y) = (x,1)$ with respect to \mathcal{P}_{α} . We then have

$$i(y) = \varphi_{\alpha}(x, 1) = (\varphi_{\alpha}(x), 1),$$

as we identify F with $F \times 1$ in the above definition. Hence, (x,0) is identified with $(\varphi_{\alpha}(x),1)$ in $Y(\alpha)$ for each $x \in F$.

The following proposition is a consequence of Lemma 5.4.

PROPOSITION 1.4. Notation is as in Theorem 1.1. When the projection of K has no crossing and $\alpha = 1/n$,

$$\varphi_{\alpha} = \tau^n,$$

where τ is the right-hand Dehn twist along $K \subset F$. When the minimal projection of K has exactly 1-crossing, let a,b,c be the simple closed curves obtained by resolving the crossing in two different ways as in Figure 2 and let τ_a, τ_b, τ_c be the right-hand Dehn twists along a,b,c, respectively. Then

$$\varphi_{\alpha} = \tau_a^2 \tau_b^2 \tau_c^{-1}$$

when the crossing is positive, and $\varphi_{\alpha} = \tau_a^{-2} \tau_b^{-2} \tau_c$ when the crossing is negative.

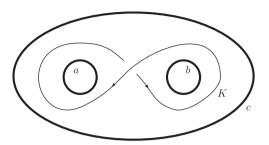


Figure 2. A 1-crossing knot.

This paper can be compared with Ni [10]. In fact, [10, Theorem 1.4] can be stated in a form similar to Theorem 1.1.

THEOREM 1.5. Suppose that F is a compact surface, that $K \subset F \times I$ is a knot and that α is a slope on K. Let $N(\alpha)$ be the manifold obtained by the α -surgery on K. If $F \times \{0\}$ is not Thurston norm minimizing in $H_2(N(\alpha), (\partial F) \times I)$, then there is an ambient isotopy of $F \times I$ that takes K to a curve in $F \times \{\frac{1}{2}\}$. Moreover, α is the frame on K specified by $F \times \{\frac{1}{2}\}$.

The proof of Theorem 1.5 uses Gabai's sutured manifold theory [2, 4, 5] and an argument due to Ghiggini [8]. Using a different method, Scharlemann and Thompson [12] get the same conclusion of Theorem 1.5 under the assumption that $F \times \{0\}$ is compressible in $N(\alpha)$.

This paper is organized as follows. In Section 2, we give some preliminaries on sutured manifold theory and foliations, as well as a characterization of 1-crossing knot projections. In Section 3, we study some warm-up cases. In Section 4, we use the argument in the proof of Theorem 1.5 to reduce our problem to the case where F is a pair of pants. In Section 5, we study this case by analyzing the map induced by surgery and using a variant of the argument in Ni [10].

This article is dedicated to the memory of Professor Andrew Lange.

2. Preliminaries

In this section, we are going to review the sutured manifold theory introduced by Gabai [2]. We also state a uniqueness result for the Euler classes of taut foliations of fibered manifolds. In addition, we define 'double primitive' knots in $F \times I$ and show that they are exactly the knots with a projection consisting of only 1-crossing.

2.1. Sutured manifold decompositions

DEFINITION 2.1. A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$. The core of each component of $A(\gamma)$ is a suture, and the set of sutures is denoted by $s(\gamma)$.

Every component of $R(\gamma) = \partial M - \operatorname{int}(\gamma)$ is oriented. Define $R_+(\gamma)$ or $R_-(\gamma)$ to be the union of those components of $R(\gamma)$ whose normal vectors point out of or into M, respectively. The orientations on $R(\gamma)$ must be coherent with respect to $s(\gamma)$, hence every component of $A(\gamma)$ lies between a component of $R_+(\gamma)$ and a component of $R_-(\gamma)$.

As an example, let S be a compact oriented surface, $M = S \times I$, $\gamma = (\partial S) \times I$, $R_{-}(\gamma) = S \times 0$, $R_{+}(\gamma) = S \times 1$; then (M, γ) is a sutured manifold. In this case, we say that (M, γ) is a product sutured manifold.

DEFINITION 2.2. Let S be a compact oriented surface with connected components S_1, \ldots, S_n . We define

$$x(S) = \sum_{i} \max\{0, -\chi(S_i)\}.$$

Let M be a compact oriented 3-manifold and A be a compact codimension-0 submanifold of ∂M . Let $h \in H_2(M, A)$. The Thurston norm x(h) of h is defined to be the minimal value of x(S), where S runs over all the properly embedded surfaces in M with $\partial S \subset A$ and |S| = h.

DEFINITION 2.3. Let (M, γ) be a sutured manifold, and S be a properly embedded surface in M, such that no component of ∂S bounds a disk in $R(\gamma)$ and no component of S is a disk with boundary in $R(\gamma)$. Suppose that, for every component λ of $S \cap \gamma$, one of the following holds:

- (1) λ is a properly embedded non-separating arc in γ ;
- (2) λ is a simple closed curve in an annular component A of γ in the same homology class as $A \cap s(\gamma)$;
- (3) λ is a homotopically non-trivial curve in a toral component T of γ , and if δ is another component of $T \cap S$, then λ and δ represent the same homology class in $H_1(T)$.

Then S is called a decomposing surface, and S defines a sutured manifold decomposition

$$(M,\gamma) \stackrel{S}{\leadsto} (M',\gamma'),$$

where M' = M - int(Nd(S)) and

$$\gamma' = (\gamma \cap M') \cup \operatorname{Nd}(S'_{+} \cap R_{-}(\gamma)) \cup \operatorname{Nd}(S'_{-} \cap R_{+}(\gamma)),$$

$$R_{+}(\gamma') = ((R_{+}(\gamma) \cap M') \cup S'_{+}) - \operatorname{int}(\gamma'),$$

$$R_{-}(\gamma') = ((R_{-}(\gamma) \cap M') \cup S'_{-}) - \operatorname{int}(\gamma'),$$

where S'_+ or S'_- is that component of $\partial \text{Nd}(S) \cap M'$ whose normal vector points out of or into M', respectively.

DEFINITION 2.4. A sutured manifold (M, γ) is taut, if M is irreducible and $R(\gamma)$ is Thurston norm minimizing in $H_2(M, \gamma)$.

Suppose that S is a decomposing surface in (M, γ) and that S decomposes (M, γ) to (M', γ') . The surface S is taut if (M', γ') is taut. In this case, we also say that the sutured manifold decomposition is taut.

Definition 2.5. Suppose

$$(M,\gamma) \stackrel{S}{\leadsto} (M',\gamma')$$

is a taut decomposition; by Gabai [2] we can extend this decomposition to a sutured manifold hierarchy of (M, γ) , from which we can construct a taut foliation \mathscr{F} of M, such that $R(\gamma)$ consists of compact leaves of \mathscr{F} . We then call \mathscr{F} a foliation induced by S. Moreover, when $R_+(\gamma)$ is homeomorphic to $R_-(\gamma)$, from M we can obtain a manifold Y with boundary consisting of tori by gluing $R_+(\gamma)$ to $R_-(\gamma)$ via a homeomorphism. The foliation \mathscr{F} then becomes a taut foliation \mathscr{F}_1 of Y. We also say that \mathscr{F}_1 is a foliation induced by S.

DEFINITION 2.6. A decomposing surface is called a product disk if it is a disk that intersects $s(\gamma)$ in exactly two points. A decomposing surface is called a product annulus if it is an annulus with one boundary component in $R_+(\gamma)$ and the other boundary component in $R_-(\gamma)$. The sutured manifold decomposition associated to a product disk or product annulus is called a product decomposition.

By definition, a product annulus is always a decomposing surface, so none of its components can bound a disk in $R(\gamma)$. This rules out some trivial cases.

The following lemma is a standard fact (see Gabai [3, Lemmas 2.2 and 2.5]).

LEMMA 2.7. Suppose $(M, \gamma) \stackrel{S}{\leadsto} (M', \gamma')$ is a product decomposition. Then (M, γ) is a product sutured manifold if and only if (M', γ') is a product sutured manifold.

We recall the main result in Gabai [4], which has been intensively used in Ni [10]. Note that the result is not stated in its original form, but it is contained in the argument in [4]. See also [10, Theorem 2.8] for a sketch of the proof.

DEFINITION 2.8. An *I-cobordism* between closed connected surfaces T_0 and T_1 is a compact 3-manifold V such that $\partial V = T_0 \cup T_1$ and, for i = 0, 1, the induced maps $j_i \colon H_1(T_i) \to H_1(V)$ are injective.

DEFINITION 2.9. Suppose that M is a 3-manifold and that T is a toral component of ∂M . If all tori in M that are I-cobordant to T in M are parallel to T, then we say that M is T-atoroidal.

THEOREM 2.10 (Gabai). Let (M, γ) be a taut sutured 3-manifold. Suppose that T is a toral component of γ , and that S is a decomposing surface such that $S \cap T = \emptyset$ and the decomposition

$$(M,\gamma) \stackrel{S}{\leadsto} (M_1,\gamma_1)$$

is taut. Suppose that M is T-atoroidal; then, for any slope α on T except at most one slope, the decomposition after Dehn filling

$$(M(\alpha), \gamma \backslash T) \stackrel{S}{\leadsto} (M_1(\alpha), \gamma_1 \backslash T)$$

is taut.

A special case of the above theorem is the case $\gamma = \partial M$, which is the original form in [4].

2.2. Euler classes of foliations

We shall need the Euler classes of foliations from Thurston [13, Section 3].

DEFINITION 2.11. Suppose that Y is a compact 3-manifold with ∂Y consisting of tori. We denote by \mathscr{P} an oriented plane field transverse to ∂Y . Let $T(\partial Y)$ be the tangent plane field of ∂Y . The line field $\mathscr{P} \cap T(\partial Y)$ has a natural orientation induced by the orientations of \mathscr{P} and $T(\partial Y)$, thus it has a nowhere vanishing section $v \subset \mathscr{P}|_{\partial Y}$. Then one can define the relative

Euler class

$$e(\mathcal{P}) \in H^2(Y, \partial Y)$$

of \mathscr{P} to be the obstruction to extending v to a nowhere vanishing section of \mathscr{P} . When \mathscr{F} is a foliation of Y that is transverse to ∂Y , let $T\mathscr{F}$ be the tangent plane field of \mathscr{F} and let $e(\mathscr{F}) = e(T\mathscr{F})$.

DEFINITION 2.12. Suppose that C is a properly embedded curve in a compact surface F. We say C is efficient in F if

$$|C \cap \delta| = |[C] \cdot [\delta]|$$
, for each boundary component δ of F .

Suppose that S is a properly embedded surface in a compact 3-manifold Y with boundary consisting of tori. We say S is efficient in Y if $S \cap T$ consists of coherently oriented parallel essential curves for each boundary component T of Y.

PROPOSITION 2.13. Suppose that Y is a compact 3-manifold that fibers over S^1 . Let G be a fiber of the fibration \mathscr{E} . Suppose that \mathscr{F} is a taut foliation of Y that is transverse to ∂Y such that G is a leaf of \mathscr{F} . Then

$$e(\mathscr{F}) = e(\mathscr{E}) \in H^2(Y, \partial Y)/\text{Tors.}$$

Proof. This result follows easily from the fact that the Floer homology of a fibered manifold is 'monic', namely, the topmost term of the Floer homology is one-dimensional. Using this approach, one can even prove that the two Euler classes are equal in $H^2(Y, \partial Y)$. Here we present a more geometric proof.

To prove the desired result, we only need to show that

$$\langle e(\mathcal{F}), h \rangle = \langle e(\mathcal{E}), h \rangle,$$
 (1)

for any $h \in H_2(Y, \partial Y)$. When h = [G], we have

$$\langle e(\mathscr{F}), [G] \rangle = \langle e(\mathscr{E}), [G] \rangle = \chi(G).$$
 (2)

In general, suppose $\overline{U} \subset Y$ is a proper surface representing h such that $\overline{U} \pitchfork G$. We can choose the representative \overline{U} such that \overline{U} is efficient in Y. Then $\overline{U} \cap G$ can also be made efficient in G. Cutting Y open along G, we get $G \times I$. Let $U \subset G \times I$ be the proper surface obtained by cutting \overline{U} open along $C = \overline{U} \cap G$. Let $C_0, C_1 \subset G$ be proper oriented curves such that

$$-C_0 \times 0 = (\partial U) \cap (G \times 0), \quad C_1 \times 1 = (\partial U) \cap (G \times 1).$$

As C_0 and C_1 are homologous efficient curves in G relative to ∂G , as in the proof of Gabai [4, Lemma 0.6], we can find compact subsurfaces V_1, V_2, \ldots, V_n and efficient curves

$$C_0 = \gamma_0, \gamma_1, \dots, \gamma_{n-1}, \gamma_n = C_1$$

in G, such that

$$\overline{\partial V_i \setminus (\partial G)} = \gamma_i \cup (-\gamma_{i-1}).$$

Let $W_i = \overline{G \setminus V_i}$. Perturbing the surface

$$\bigcup_{i=1}^{n} \left(\left(-\gamma_{i-1} \times \left[\frac{i-1}{n}, \frac{i}{n} \right] \right) \cup \left(V_i \times \frac{i}{n} \right) \right) \tag{3}$$

slightly, we get a proper surface $V \subset G \times I$, such that

$$(\partial V) \cap (G \times 0) = -C_0 \times 0, \quad (\partial V) \cap (G \times 1) = C_1 \times 1.$$

Similarly, perturbing the surface

$$\bigcup_{i=1}^{n} \left(\left(\gamma_{i-1} \times \left[\frac{i-1}{n}, \frac{i}{n} \right] \right) \cup \left(W_i \times \frac{i}{n} \right) \right) \tag{4}$$

slightly, we have a proper surface $W \subset G \times I$, such that

$$(\partial W) \cap (G \times 0) = C_0 \times 0, \quad (\partial W) \cap (G \times 1) = -C_1 \times 1.$$

Let $\overline{V} \subset Y$ be the proper surface obtained from V by identifying $C_0 \times 0$ and $C_1 \times 1$ with $C \subset G \subset Y$. Similarly, define $\overline{W} \subset Y$. Note that

$$[\overline{V}] - [\overline{U}] = [V \cup (-U)] \in H_2(Y, \partial Y).$$

Perturbing $V \cup (-U)$ slightly, we get a properly immersed surface in Y, which is disjoint from the fiber G. So $[V \cup (-U)] = m[G]$ for some integer m. Using (2), in order to check (1) for $h = [\overline{U}]$, we only need to check it for $h = [\overline{V}]$.

As \mathscr{F} is taut, by Thurston [13, Corollary 1] we have

$$\chi(\overline{V}) \leqslant \langle e(\mathscr{F}), [\overline{V}] \rangle,
\chi(\overline{W}) \leqslant \langle e(\mathscr{F}), [\overline{W}] \rangle.$$

Adding the two inequalities together, we get

$$\chi(\overline{V}) + \chi(\overline{W}) \leqslant \langle e(\mathscr{F}), [\overline{V}] + [\overline{W}] \rangle.$$
(5)

By the constructions (3) and (4), the result of doing oriented cut-and-pastes to \overline{V} and \overline{W} is n copies of G. So the left-hand side of (5) is $n\chi(G)$, whereas the right-hand side is $\langle e(\mathscr{F}), n[G] \rangle = n\chi(G)$. So the equality holds. In particular, we should have

$$\chi(\overline{V}) = \langle e(\mathscr{F}), [\overline{V}] \rangle.$$

The same argument shows that

$$\chi(\overline{V}) = \langle e(\mathscr{E}), [\overline{V}] \rangle,$$

so (1) holds for $h = [\overline{V}]$. As we have checked (1) for all elements $h \in H_2(Y, \partial Y)$, $e(\mathscr{F})$ is equal to $e(\mathscr{E})$ up to a torsion element in $H^2(Y, \partial Y)$.

2.3. A characterization of 1-crossing knot projections

In this subsection, we give a characterization of 1-crossing knot projections in terms of double primitive knots. This fact is not used in the current paper, but it is useful to bear this in mind.

DEFINITION 2.14. Let $F' \subset F \times I$ be a connected surface of genus g(F)+1, and $\partial F' = (\partial F) \times \frac{1}{2}$. Suppose that F' is a Heegaard surface; namely, F' splits $F \times I$ into two parts U_0 and U_1 , such that U_0 is homeomorphic to $(F \times [0, \frac{1}{2}]) \cup H_1$, and U_1 is homeomorphic to $(F \times [\frac{1}{2}, 1]) \cup H_2$, where H_1 is a 1-handle with feet on $F \times \frac{1}{2}$ and H_2 is a 1-handle with feet on $-F \times \frac{1}{2}$. A knot $K \subset F \times I$ is a double primitive knot if it is isotopic to a curve on F' that goes through each of H_1, H_2 exactly once.

LEMMA 2.15. A knot $K \subset F \times I$ is double primitive if and only if it has a projection that has only 1-crossing.

Proof. If a knot has a 1-crossing projection, then it is double primitive as shown in Section 1. Now assume that K is double primitive; then K is embedded into a Heegaard surface F' as in the above definition.

We claim that F' is stabilized; namely, there is a compressing disk $D_0 \subset U_0$ and a compressing disk $D_1 \subset U_1$ such that $|(\partial D_0) \cap (\partial D_1)| = 1$. When F is closed, this follows from the theorem of Scharlemann and Thompson [11] that the Heegaard splittings of $F \times I$ are standard. When F is not closed, let R be the torus with one hole. We can glue a copy of R to each component of ∂F ; then F becomes a closed surface G and F' becomes a Heegaard surface G' in $G \times I$. Using Scharlemann and Thompson's theorem, G' is stabilized, hence there are compressing disks D_0 and D_1 in the two compression bodies separated by G', such that $|(\partial D_0) \cap (\partial D_1)| = 1$. Using standard arguments, we can isotope D_0 and D_1 to be disjoint from the copies of $R \times I$, so $D_0 \subset U_0$ and $D_1 \subset U_1$; thus our claim follows.

As g(F') = g(F) + 1, after compressing F' along D_0 , we get a surface homeomorphic to F (and hence parallel to $F \times 0$ in $F \times I$). In other words, if we cut U_0 open along D_0 , then we get a submanifold isotopic to $F \times [0, \frac{1}{2}]$. Thus, we can think of D_0 as the cocore of a 1-handle attaching to $F \times [0, \frac{1}{2}]$. Let $D_0^+, D_0^- \subset F \times [\frac{1}{2}]$ be the attaching regions of this 1-handle.

We claim that D_0 is the unique non-separating compressing disk in U_0 up to isotopy. Otherwise, suppose that D_0' is another non-separating compressing disk. A standard outermost-disk argument enables us to isotope D_0' to be disjoint from D_0 . As $F \times \frac{1}{2}$ is incompressible and $F \times [0, \frac{1}{2}]$ is irreducible, $\partial D_0'$ bounds a disk Δ_0 in $F \times \frac{1}{2}$ and $D_0' \cup \Delta_0$ bounds a 3-ball. As D_0' is a compressing disk in U_0 , Δ_0 must contain at least one of the attaching regions D_0^+ , D_0^- . On the other hand, Δ_0 can contain at most one of D_0^+ , D_0 , as D_0' is non-separating. Hence, D_0' is isotopic to D_0 .

The last paragraph shows that there is (up to isotopy) only one 1-handle H_0 in U_0 that can be viewed as attached to $F' \times [0, \frac{1}{2}]$. The disk D_1 is attached to U_0 such that ∂D_1 goes through the 1-handle exactly once. Similarly, D_1 is the cocore of the unique 1-handle H_1 in U_1 .

Consider a neighborhood of $D_0 \cup D_1$. The local picture of F' in this neighborhood looks exactly like in Figure 1. The knot K goes through the 1-handle H_0 once and intersects ∂D_1 once, so there is a crossing near D_1 and no crossing elsewhere.

3. Warm-up cases

In this section, we are going to prove some easy cases of our main theorem. When F is a disk or sphere, our result follows from Gordon and Luecke's Knot Complement Theorem [9]. When F is an annulus, we have the following lemma.

Lemma 3.1. Theorem 1.1 is true when F is an annulus.

Proof. Let \mathcal{M} be the meridian of the solid torus $V = F \times I$, and \mathcal{L} be the frame of V specified by ∂F . By Gabai [6], if K is non-trivial, then K is a 0- or 1-bridge braid in $F \times I$.

Capping off one boundary component of F with a disk, we get a disk D. Let λ be the Seifert frame of K in $D \times I$ and μ be the meridian of K.

If K is the core of V, then the surgery preserves the homeomorphism type of $(F \times I, (\partial F) \times I)$ if and only if the slope is $\mu + n\lambda$ for some integer n.

From now on we assume that the braid index of K is greater than 1.

If K is a 0-bridge braid, then K is isotopic to $p\mathcal{L} + q\mathcal{M}$ on ∂V for some $p, q \in \mathbb{Z}$. Let Λ be the frame on K specified by ∂V ; then $\Lambda = pq\mu + \lambda$. A surgery on K yields a solid torus if and only if the slope α of the surgery satisfies $\Delta(\alpha, \Lambda) = 1$, namely, when the slope α is $\mu + n\Lambda$ for some integer n. Now $p\alpha = p\mu + pn\Lambda$ is homologous to $\mathcal{M} + pn(p\mathcal{L} + q\mathcal{M})$ in $V \setminus K$, so the meridian of the new ambient solid torus after surgery is $(1 + pqn)\mathcal{M} + p^2n\mathcal{L}$. As the surgery preserves the homeomorphism type of the pair $(F \times I, (\partial F) \times I)$, we must have $\Delta((1 + pqn)\mathcal{M} + p^2n\mathcal{L}, \mathcal{L}) = 1$, thus $1 + pqn = \pm 1$. As p > 1, $n \neq 0$, we have (p, q, n) = 1

(2,1,-1) or (2,-1,1). When (p,q)=(2,1), the slope α on K is

$$\mu + n(pq\mu + \lambda) = (1 + pqn)\mu + n\lambda,$$

which is 1 with respect to the frame λ , and the meridian of the new ambient solid torus is $\mathcal{M}+4\mathcal{L}$; when (p,q)=(2,-1), the slope α on K is -1, and the meridian of the new ambient solid torus is $\mathcal{M}-4\mathcal{L}$. As K is a $(2,\pm 1)$ -cable in V, the projection of K on F has exactly 1-crossing. We can check that α is the blackboard frame.

If K is a 1-bridge braid, then K is determined by three parameters ω, b, t by Gabai [7]. Here $\omega > 0$ is the braid index, $1 \le b \le \omega - 2$, $t \equiv r \pmod{\omega}$ for some integer r with $1 \le r \le \omega - 2$. As the α -surgery yields a solid torus, by Gabai [7, Lemma 3.2] the slope of the surgery is $\lambda - (t\omega + d)\mu$, where $d \in \{b, b+1\}$. So $t\omega + d = \pm 1$, which is impossible for any ω, b, t satisfying the previous restrictions.

LEMMA 3.2. In the above lemma, let $\varphi_{\alpha} \in \mathcal{MCG}(F, \partial F)$ be the map induced by the α -surgery. If K is the core of $F \times I$ and $\alpha = 1/n$, then $\varphi_{\alpha} = \tau^n$, where τ is the right-hand Dehn twist in F; if K is the $(2, \pm 1)$ -cable in $F \times I$, then $\varphi_{\alpha} = \tau^{\pm 4}$.

Proof. When K is the core of $F \times I$, the conclusion is well known. When K is the $(2, \pm 1)$ -cable, then, from the proof of the previous lemma, we know that the meridian of the new ambient solid torus is $\mathcal{M} \pm 4\mathcal{L}$, hence the conclusion follows from the first case.

The following lemma easily follows from Lemma 2.7.

LEMMA 3.3. Suppose $(C \times I) \subset (F \times I)$ is a product disk or product annulus, $(C \times I) \cap K = \emptyset$. Let F_1 be the surface obtained from F by cutting F open along C, and let N_1 be the manifold obtained from $N = (F \times I) \setminus \operatorname{int}(\operatorname{Nd}(K))$ by cutting N open along $C \times I$. Then the pair $(N(\alpha), (\partial F) \times I)$ is homeomorphic to $(F \times I, (\partial F) \times I)$ if and only if the pair $(N_1(\alpha), (\partial F_1) \times I)$ is homeomorphic to $(F_1 \times I, (\partial F_1) \times I)$.

LEMMA 3.4. Theorem 1.1 is true when F is a torus.

Proof. Let $C \subset F$ be a simple closed curve such that K is homologous to a multiple of C. Consider the homology class $[C \times I] \in H_2(F \times I, \partial(F \times I))$; then $[C \times I] \cdot [K] = 0$. It follows that $[C \times I]$ is also a homology class in $H_2((F \times I) \setminus K, \partial(F \times I))$.

Let $(S, \partial S) \subset ((F \times I) \setminus K, \partial (F \times I))$ be a taut surface representing $[C \times I]$. By Theorem 2.10, S remains taut in at least one of the original $F \times I$ and $N(\alpha) \cong F \times I$. Hence, S must be a product annulus. Cutting $F \times I$ open along S, K becomes a knot in (annulus $\times I$). Now we can apply Lemmas 3.1 and 3.3 to get our conclusion.

LEMMA 3.5. If the conclusion of Theorem 1.1 holds for all knots whose exteriors are $\partial(Nd(K))$ -atoroidal, then the conclusion holds for all knots in $F \times I$.

Proof. By assumption, we only need to consider the case where there is a torus in $N = F \times I \setminus \operatorname{int}(\operatorname{Nd}(K))$, which is I-cobordant but not parallel to $\partial \operatorname{Nd}(K)$. Let R be an 'innermost' such torus.

By Ni [10, Lemma 3.1], R bounds a solid torus U in $F \times I$, such that $K \subset U$. As R is innermost in N, if a torus in $(F \times I) \setminus \operatorname{int}(U)$ is I-cobordant to $\partial U = R$, then this torus is parallel to R. Let V be the manifold obtained from U by α -surgery on K.

By Gabai [6], one of the following cases holds.

The manifold (1) $V = D^2 \times S^1$. In this case, K is a 0-bridge or 1-bridge braid in U, and the core K' of the surgery is also a 0-bridge or 1-bridge braid in V. Moreover, K and K' have the same braid index ω .

The manifold (2) $V = (D^2 \times S^1) \# W$, where W is a closed 3-manifold and $1 < |H_1(W)| < \infty$. The manifold (3) V is irreducible and ∂V is incompressible.

As $V \subset N(\alpha) \cong F \times I$, Cases (2) and (3) cannot occur, so the only possible case is (1). Thus, the core of U is a knot such that a surgery on the knot yields the pair $(N(\alpha), (\partial F) \times I)$, which is homeomorphic to $(F \times I, (\partial F) \times I)$. Moreover, $N \setminus \text{int}(U)$ is ∂U -atoroidal. By our assumption, the core of U is a 0-crossing or 1-crossing knot in $F \times I$.

If the core of U is isotopic to $\eta \times \{\frac{1}{2}\}$ for some simple closed curve $\eta \subset F$, let $G \subset F$ be a tubular neighborhood of η , and then K lies in $G \times I$ after an isotopy. Let $M = (G \times I) \setminus \operatorname{int}(\operatorname{Nd}(K))$. By Lemma 3.3, $(M(\alpha), (\partial G) \times I)$ is homeomorphic to $(G \times I, (\partial G) \times I)$. Applying Lemma 3.1, we find that K is the $(2, \pm 1)$ -cable of the core of $G \times I$, and the slope α is the blackboard frame λ_b .

If the core of U is a 1-crossing knot, then the blackboard frame λ_b' on ∂U is the meridian of V, so λ_b' cobounds a punctured disk with ω oriented copies of α in $U \setminus \operatorname{int}(\operatorname{Nd}(K))$. Moreover, the meridian μ' on ∂U cobounds a punctured disk with ω oriented copies of μ in $U \setminus \operatorname{int}(\operatorname{Nd}(K))$. As $[\lambda_b'] \cdot [\mu'] = 1$, considering the intersection of the two punctured disks, we conclude that $\omega = 1$. Hence, ∂U is parallel to $\partial \operatorname{Nd}(K)$, which is a contradiction.

In light of the above lemma, from now on we assume that the exterior of the knot K is $\partial(\mathrm{Nd}(K))$ -atoroidal.

4. Comparing Euler classes of foliations

Suppose $K \subset F \times I$ is a knot satisfying the hypothesis of Theorem 1.1. Let E be a maximal (up to isotopy) compact essential subsurface of F, such that K can be isotoped in $F \times I$ to be disjoint from $E \times I$. Let $G = \overline{F \setminus E}$.

The goal of this section is to prove the following proposition.

Proposition 4.1. The subsurface G is either an annulus or a pair of pants.

```
Let T = \partial(\operatorname{Nd}(K)), \ \gamma = ((\partial G) \times I) \cup T.
Let N = (F \times I) \setminus \operatorname{int}(\operatorname{Nd}(K)), M = (G \times I) \setminus \operatorname{int}(\operatorname{Nd}(K)).
```

Then the sutured manifold (M, γ) contains no product disks or product annuli. For a proper surface $S \subset M$, let $\partial_i(S) = S \cap (G \times i)$, i = 0, 1.

Let $X = (G \times S^1) \setminus \operatorname{int}(\operatorname{Nd}(K))$ be the manifold obtained from M by gluing $G \times 1$ to $G \times 0$ via the identity map of G. Suppose that ξ is a slope on K. Let $N(\xi), M(\xi), X(\xi)$ be the manifolds obtained from N, M, X by ξ -filling on T, respectively. Let $K(\xi) \subset M(\xi)$ be the core of the new solid torus.

By Lemma 3.3, $X(\xi)$ is a surface bundle over S^1 with fiber G when $\xi = \infty$ or α . We then let $\mathscr{E}(\xi)$ be the fibration of $X(\xi)$.

LEMMA 4.2. Let $K \subset F \times I$ be as in Theorem 1.1. Suppose that N is T-atoroidal. Let $\overline{S} \subset X$ be the surface obtained from S by gluing $\partial_0 S$ to $\partial_1 S$ via the identity map. Let \mathscr{F} be a

taut foliation of X induced by S. Then

$$\langle e(\mathscr{F}), [\overline{S}] \rangle = \langle e(\mathscr{E}(\xi)), [\overline{S}] \rangle = \chi(\overline{S}),$$

for some $\xi \in \{\infty, \alpha\}$.

Proof. By Theorem 2.10, S remains taut in $M(\xi)$ for some $\xi \in \{\infty, \alpha\}$. Let \mathscr{F}' be a taut foliation of $X(\xi)$ induced by S. By Proposition 2.13,

$$e(\mathscr{F}') = e(\mathscr{E}(\xi)) \in H^2(X(\xi), \partial X(\xi); \mathbb{Q}).$$

As both \mathscr{F} and \mathscr{F}' are induced by S, we have

$$\chi(\overline{S}) = \langle e(\mathscr{F}), |\overline{S}| \rangle = \langle e(\mathscr{F}'), |\overline{S}| \rangle = \langle e(\mathscr{E}(\xi)), |\overline{S}| \rangle.$$

PROPOSITION 4.3. Let $K \subset F \times I$ be as in Theorem 1.1. Suppose that N is T-atoroidal.

$$i_*: H_1(K; \mathbb{Q}) \longrightarrow H_1(G; \mathbb{Q}).$$

Let

$$\mathcal{V} = \{ v \in H_1(G, \partial G; \mathbb{Q}) | v \cdot i_*[K] = 0 \}.$$

Then the dimension of \mathcal{V} is at most 1.

Let

$$\rho_{\xi} \colon H^2(X, \partial X; \mathbb{Q}) \longrightarrow H^2(X(\xi), \partial X(\xi); \mathbb{Q})$$

be the map induced by the map of pairs

$$(X(\xi), \partial X(\xi)) \longrightarrow (X(\xi), (\partial X(\xi)) \cup K(\xi)).$$

LEMMA 4.4. Notation is as in Proposition 4.3. If the dimension of V is greater than 1, then there exists a properly embedded surface $H \subset X$ such that the following conditions are satisfied:

- (1) [H] is not a multiple of [G];
- (2) $H \cap T = \emptyset$;
- (3) for any two elements $\varepsilon_{\infty} \in \rho_{\infty}^{-1}(e(\mathscr{E}(\infty))), \varepsilon_{\alpha} \in \rho_{\alpha}^{-1}(e(\mathscr{E}(\alpha))), \text{ we have}$

$$\langle \varepsilon_{\infty}, [H] \rangle = \langle \varepsilon_{\alpha}, [H] \rangle.$$

Proof. There is a natural injective map

$$\sigma \colon H_1(G, \partial G) \longrightarrow H_2(G \times S^1, \partial G \times S^1)$$

defined via multiplying with the S^1 factor. Moreover, all elements in $\sigma(\mathcal{V})$ are represented by surfaces that are disjoint from K, hence $\sigma|\mathcal{V}$ induces an injective map

$$\widetilde{\sigma} \colon \mathcal{V} \longrightarrow H_2(X, \partial X; \mathbb{Q}).$$

We pick two elements $\varepsilon_{\infty}' \in \rho_{\infty}^{-1}(e(\mathscr{E}(\infty)))$ and $\varepsilon_{\alpha}' \in \rho_{\alpha}^{-1}(e(\mathscr{E}(\alpha)))$. If dim $\mathcal{V} > 1$, then there exists a non-zero integral element $h \in \widetilde{\sigma}(\mathcal{V})$ such that

$$\langle \varepsilon_{\infty}', h \rangle = \langle \varepsilon_{\alpha}', h \rangle.$$

Let $H \subset X$ be a proper surface representing h such that $H \cap T = \emptyset$. We claim that this H is what we need. We only need to check (3) as the first two conditions are obvious.

From the Mayer-Vietoris sequence

$$H^1(K(\xi)) \longrightarrow H^2(X, \partial X) \xrightarrow{\rho_{\xi}} H^2(X(\xi), \partial X(\xi)),$$

and the fact that $h \cdot [T] = 0$, we conclude that $\langle \varepsilon_{\xi}, h \rangle$ does not depend on the choice of $\varepsilon_{\xi} \in \rho_{\varepsilon}^{-1}(e(\mathscr{E}(\xi)))$. Hence, (3) holds.

Assume that the dimension of \mathcal{V} is greater than 1, let H be a surface as in Lemma 4.4 and suppose $H \cap G$. Without loss of generality, we can assume that no component of $C = H \cap G$ is null-homologous in $H_1(G, \partial G)$, and H is efficient in $G \times S^1$, hence we can also assume $H \cap G$ is efficient in G.

Let $p \in G \setminus C$ be a point. Performing cut-and-paste of H with copies of G or -G if necessary, we may assume that

$$[H] \cdot [p \times S^1] = 0.$$

Let $S_m(+C)$ be the set of properly embedded oriented surfaces $S \subset G \times I$, such that $S \cap K = \emptyset$, $\partial_0 S = -C \times 0$, $\partial_1 S = C \times 1$, and the algebraic intersection number between S and $p \times I$ is m. Similarly, let $S_m(-C)$ be the set of properly embedded surfaces $S \subset G \times I$, such that $S \cap K = \emptyset$, $\partial_0 S = C \times 0$, $\partial_1 S = -C \times 1$, and the algebraic intersection number of S with $p \times I$ is m. As $[C] \cdot i_*([K]) = 0$, it follows that $S_m(\pm C) \neq \emptyset$.

Suppose $S \subset M$ is a properly embedded surface that is transverse to $\partial G \times 0$. For any component S_0 of S we define

$$y(S_0) = \max\left\{\frac{|S_0 \cap (\partial G \times 0)|}{2} - \chi(S_0), 0\right\},\,$$

and let y(S) be the sum of $y(S_i)$ with S_i running over all components of S. Let $y(S_m(\pm C))$ be the minimal value of y(S) for all $S \in S_m(\pm C)$.

LEMMA 4.5. When m is sufficiently large, there exist surfaces $S_1 \in \mathcal{S}_m(+C)$ and $S_2 \in \mathcal{S}_m(-C)$ such that they are taut.

Proof. Let $x(\cdot)$ be the Thurston norm in $H_2(X, \partial X)$. There exists $N \geqslant 0$, such that if k > N, then x([H] + (k+1)[G]) = x([H] + k[G]) + x(G). As in the proof of Gabai [2, Theorem 3.13], if \overline{Q} is a Thurston norm-minimizing surface in the homology class [H] + k[G], and $\overline{Q} \cap G$ consists of essential curves in G, then Q gives a taut decomposition of M, where Q is obtained from \overline{Q} by cutting open along $\overline{Q} \cap G$. Moreover, we can assume that \overline{Q} is efficient in X. Hence, $\overline{Q} \cap T = \emptyset$ and for each boundary component δ of $G \times i$, $|\partial Q \cap \delta| = |[\partial Q] \cdot [\delta]|$.

Now we can apply Gabai [4, Lemma 0.6] to get a new taut surface Q' such that $\partial_0 Q' = -C \times 0$, $\partial_1 Q' = C \times 1$. When m is sufficiently large, let S_1 be the surface obtained by doing oriented cut-and-pastes of Q' with $(m - Q' \cdot (p \times I))$ copies of G; then $S_1 \in \mathcal{S}_m(+C)$ is the surface we need. Similarly, we can find the surface $S_2 \in \mathcal{S}_m(-C)$.

CORRECTION 4.6. After the statement in [10, Proposition 3.4], Ni claims that there exists a circle or arc $C \subset G$ such that $[C] \cdot i_*[K] = 0$. This claim is not true. The correct statement should be that there exists an essential efficient curve C in G such that $[C] \cdot i_*[K] = 0$. The proof only needs slight changes: one can make use of the above Lemma 4.5 to find taut surfaces.

The following result is due to Ni [10, Lemma 3.6], whose proof uses the assumption that (M, γ) contains no essential product disks or product annuli and an argument of Gabai [5].

LEMMA 4.7. For any positive integers p, q,

$$y(\mathcal{S}_p(+C)) + y(\mathcal{S}_q(-C)) > (p+q)y(G).$$

Proof of Proposition 4.3. By Lemma 4.5, when m is large, there exist taut surfaces $S_1 \in \mathcal{S}_m(+C)$, $S_2 \in \mathcal{S}_m(-C)$. By Theorem 2.10, S_i remains taut in $M(\xi_i)$ for some $\xi_i \in \{\infty, \alpha\}$, i = 1, 2. Let \mathscr{F}_i be a taut foliation of $X(\xi_i)$ induced by S_i .

Let $\overline{S_1}, \overline{S_2} \subset X$ be the surfaces obtained from S_1, S_2 by gluing $C \times 0$ to $C \times 1$. We have

$$[\overline{S_1}] = [H] + m[G], \quad [\overline{S_2}] = -[H] + m[G]$$

in $H_2(X, \partial X)$ and $H_2(X(\alpha), \partial X(\alpha))$.

We have

$$\chi(\overline{S_i}) = \chi(S_i) - |\partial_0 S_i| = -y(S_i),$$

and, by Proposition 2.13,

$$\begin{split} \chi(\overline{S_1}) &= \langle e(\mathscr{F}_1), [\overline{S_1}] \rangle \\ &= \langle e(\mathscr{E}(\xi_1)), [H] + m[G] \rangle, \\ \chi(\overline{S_2}) &= \langle e(\mathscr{F}_2), [\overline{S_2}] \rangle \\ &= \langle e(\mathscr{E}(\xi_2)), -[H] + m[G] \rangle. \end{split}$$

By Lemma 4.4, $\langle e(\mathcal{E}(\xi_1)), [H] \rangle = \langle e(\mathcal{E}(\xi_2)), [H] \rangle$. So

$$\chi(\overline{S_1}) + \chi(\overline{S_2}) = \langle \mathscr{E}(\xi_1), m[G] \rangle + \langle \mathscr{E}(\xi_2), m[G] \rangle$$
$$= 2m\chi(G),$$

which contradicts Lemma 4.7.

Proof of Proposition 4.1. By Proposition 4.3, $b_1(G) \leq 2$, so G is an annulus, a pair of pants or a genus-1 surface with one boundary component. We only need to show that the last case is not possible.

Suppose g(G)=1 and $|\partial G|=1$. Let $C\subset G$ be a simple closed curve such that $[C]\cdot i_*[K]=0$; then there exists a closed taut surface $H\subset X$ such that $[H]=[C\times S^1]$ and $H\cap T=\emptyset$. As M does not contain any product annuli, H is not a torus, hence H is not taut in $X(\infty)$. By Theorem 2.10, H is taut in $X(\alpha)$.

Consider the monodromy φ of $X(\alpha)$; the surface $H \subset X(\alpha)$ forces $\varphi_*[C] = [C]$. As G is a once-punctured torus, $\varphi(C)$ is isotopic to C. Thus, there exists a torus $R \subset X(\alpha)$ such that $R \cap G = C = H \cap G$, which implies that [H] = [R] + m[G] for some integer m. As H is closed, m = 0. This contradicts the facts that H is taut in $X(\alpha)$ and that H is not a torus.

5. Knots in pants $\times I$

In this section, we study the case where G is a pair of pants.

The following elementary observation is stated without proof.

LEMMA 5.1. Suppose $C_1, C_2 \subset G$ are two efficient curves consisting of essential arcs. If they are homologous in $H_1(G, \partial G)$, then they are isotopic.

Let a, b, c be the three boundary components of G, and let u, v, w be three mutually disjoint oriented arcs in G such that u connects b to c, v connects c to a, and w connects a to b. Then

$$[u] + [v] + [w] = 0 \in H_1(G, \partial G).$$
 (6)

LEMMA 5.2. None of u, v, w has zero intersection number with $i_*[K]$.

Proof. The argument is similar to the once-punctured torus case of Proposition 4.1. Assume $[u] \cdot i_*[K] = 0$; then there exists a taut surface $H \subset X$ such that $[H] = [u \times S^1]$. We may assume that H is efficient in X, hence H has two boundary components and $H \cap T = \emptyset$. By Lemma 5.1 we may assume $H \cap G = u$.

As M does not contain any product disks, H is not an annulus, hence H is not taut in $X(\infty) = G \times S^1$. By Theorem 2.10, H is taut in $X(\alpha)$. Let φ be the monodromy of $X(\alpha)$; then H forces $\varphi(u)$ to be homologous and hence isotopic to u by Lemma 5.1. Thus, there exists an annulus $A \subset X(\alpha)$ such that $A \cap G = u = H \cap G$, which implies that [H] = [A] + m[G] for some integers. As H has only two boundary components, m = 0. This contradicts the facts that H is taut in $X(\alpha)$ and H is not an annulus.

LEMMA 5.3. The intersection number of $i_*[K]$ with each of u, v, w is ± 1 or ± 2 .

Proof. Capping off a with a disk, we get an annulus G_a . Let \widehat{X} be the exterior of K in $G_a \times I$. By assumption there exists a homeomorphism

$$f: (X(\infty), \partial G \times I) \longrightarrow (X(\alpha), \partial G \times I).$$

Postcomposing f with a homeomorphism of $(G \times I, \partial G \times I)$ if necessary, we can assume that f sends $a \times I$ to $a \times I$, and then f extends to a homeomorphism

$$\hat{f}: (\widehat{X}(\infty), \partial G_a \times I) \longrightarrow (\widehat{X}(\alpha), \partial G_a \times I).$$

Hence, the α -surgery on K does not change the homeomorphism type of the pair $(G_a \times I, (\partial G_a) \times I)$. By the previous lemma, K is non-trivial in $G_a \times I$. By Lemma 3.1, K is the core or the $(2, \pm 1)$ -cable in $G_a \times I$, so $i_*[K] \cdot [u]$ is ± 1 or ± 2 . The same argument applies to v and w.

Using the previous two lemmas and (6), we may assume

$$[u] \cdot i_*[K] = [v] \cdot i_*[K] = 1, \quad [w] \cdot i_*[K] = -2,$$
 (7)

after reversing the orientation of K and renumbering a, b, c, u, v, w if necessary. We give a, b, c the boundary orientation induced from G; then

$$[v] \cdot [a] = [w] \cdot [b] = -[u] \cdot [b] = [u] \cdot [c] = 1.$$
 (8)

See Figure 3 for the homology class of K.

Let τ_a, τ_b, τ_c be the right-hand Dehn twists along (parallel copies of) a, b, c. The mapping class group $\mathcal{MCG}(G, \partial G)$ of G is generated by τ_a, τ_b, τ_c . (See, for example, Farb–Margalit [1] for preliminaries on the mapping class groups of surfaces with boundary.) As a, b, c are disjoint, $\mathcal{MCG}(G, \partial G) \cong \mathbb{Z}^3$.

LEMMA 5.4. If K is the (2,1)-cable in $G_c \times I$, then the map induced by the α -surgery is

$$\varphi_{\alpha} = \tau_a^2 \tau_b^2 \tau_c^{-1}$$
.

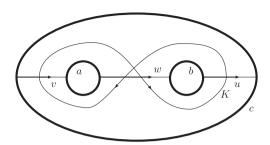


FIGURE 3. The homology class of K in $G \times I$.

If K is the (2,-1)-cable in $G_c \times I$, then

$$\varphi_{\alpha} = \tau_a^{-2} \tau_b^{-2} \tau_c.$$

Proof. Capping off a, b with two disks, G becomes a disk G_{ab} . The knot K has a canonical frame λ , which is null-homologous in $(G_{ab} \times I) \setminus K$. Hence, λ is homologous to l[a] + m[b] in M for some integers l, m. By (7) and (8), we conclude that λ is homologous to a - b in M. Hence, λ is also the canonical frame in $G_c \times I$, where G_c is obtained from G by capping off c with a disk.

Suppose $\varphi_{\alpha} = \tau_a^p \tau_b^q \tau_c^r$. If K is the (2,1)-cable in $G_c \times I$, then by Lemma 3.1, the slope α is 1 with respect to λ .

There is a natural map

$$q_a \colon \mathcal{MCG}(G, \partial G) \to \mathcal{MCG}(G_a, \partial G_a),$$

where $\mathcal{MCG}(G_a, \partial G_a)$ is generated by τ_b . As K is the core in $G_a \times I$ and the slope α is 1, $q_a(\varphi_\alpha)$ must be τ_b by Lemma 3.2. The map q_a sends both τ_b and τ_c to τ_b , and sends τ_a to 1. So $q_a(\varphi_\alpha) = \tau_b^{q+r}$, thus q+r=1. The same argument shows p+r=1.

Now consider the natural map

$$q_c \colon \mathcal{MCG}(G, \partial G) \longrightarrow \mathcal{MCG}(G_c, \partial G_c) = \langle \tau_a \rangle.$$

By Lemma 3.2, $q_c(\varphi_\alpha) = \tau_a^4$. Hence, p+q=4. So we conclude that p=q=2, r=-1. The same argument works when K is the (2,-1)-cable in $G_c \times I$.

Proposition 1.4 follows from the above lemma.

The manifold $G \times S^1$ has a unique product structure. Let $\omega, \omega_{\alpha} \subset c \times S^1$ be S^1 -fibers with respect to the product structures on $X(\infty)$ and $X(\alpha)$, respectively.

LEMMA 5.5. If K is the (2,1)-cable in $G_c \times I$, then

$$[\omega_{\alpha}] = [\omega] + [c].$$

Proof. The manifold $X(\infty)$ is obtained from $G \times I$ by identifying (x,0) with (x,1) for each $x \in G$. By Lemma 1.3, $X(\alpha)$ is obtained from $G \times I$ by identifying (x,0) with $(\varphi_{\alpha}(x),1)$ for each $x \in G$. Choose parallel copies of a,b,c in G, denoted by a',b',c', respectively. Let φ_{α} be supported in the three annuli bounded by a-a', b-b' and c-c'. Pick points $p \in c, p' \in c'$; then $p' \times S^1$ is an S^1 -fiber of the product structures on both $X(\infty)$ and $X(\alpha)$, whereas $p \times S^1$ is an S^1 -fiber of the product structure on $X(\infty)$.

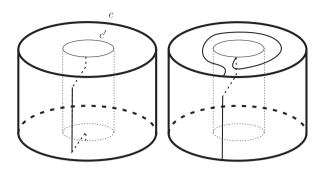


FIGURE 4. Local pictures of $X(\alpha)$ near $c \times S^1$.

In $X(\alpha)$, we isotope $p' \times S^1$ such that it becomes a curve \mathcal{S} , which is the union of four segments $J, J_{\epsilon}, J_{1-\epsilon}, J'$, where J is a vertical segment in the interior of $c \times I$, $J_{\epsilon} \subset G \times \epsilon$, $J_{1-\epsilon} \subset G \times (1-\epsilon)$, and J' is a vertical segment in $c' \times S^1$. See the left-hand side of Figure 4.

We push the previous curve S down in distance ϵ to get a new curve S_- , then J_{ϵ} becomes an arc on $G \times 1$. See the right-hand side of Figure 4. Using Lemma 1.3, this new arc is $\varphi_{\alpha}(J_{\epsilon}) = \tau_c^{-1}(J_{\epsilon})$. The curve S_- is a fiber of $X(\alpha)$, and it is homologous to $[p \times S^1] + [c \times 1]$. Hence, our conclusion holds.

LEMMA 5.6. Let C = v - u. Pick a point $p \in c \setminus (\partial C)$; we can then define $\mathcal{S}_m(\pm C)$ as in Section 4. Then there exists a connected surface $S \in S_1(C)$ such that y(S) = 1. Moreover, let $S' \subset G \times [0,1]$ be the surface obtained from $-C \times I$ and $G \times 0$ by oriented cut-and-pastes; then S is isotopic to S' in $G \times [0,1]$.

Proof. For any homology class $h \in H_2(X, (\partial G) \times S^1)$, let $x(h), x_{\infty}(h), x_{\alpha}(h)$ denote its Thurston norm in $X, X(\infty), X(\alpha)$, respectively.

Let $U = -[u \times S^1], V = -[v \times S^1] \in H_2(G \times S^1, (\partial G) \times S^1)$. As $(V - U) \cdot [K] = 0, V - U$ also represents an element in $H_2(X, (\partial G) \times S^1)$. Note that the Thurston norm of $h \in H_2(G \times S^1, (\partial G) \times S^1)$ is the absolute value of its algebraic intersection number with the S^1 -fiber. Consider V - U + m[G] for $m \ge 0$. Using Lemma 5.5, we can compute

$$\begin{split} x_{\infty}(V - U + m[G]) &= m, \\ x_{\alpha}(V - U + m[G]) &= (V - U + m[G]) \cdot ([\omega] + [c]) = |m - 2|. \end{split}$$

As $x_{\infty}(V-U+[G])=x_{\alpha}(V-U+[G])=1$, Theorem 2.10 implies that x(V-U+[G])=1. Let $\overline{S}\subset X$ be a taut surface in this homology class such that \overline{S} is efficient in X. Then \overline{S} is disjoint from T. Isotope \overline{S} so that it is transverse to G and its intersection with G contains no trivial loops. Now $\overline{S}\cap G$ is homologous to G. Moreover, $\overline{S}\cap G$ can be made efficient in G. So $\overline{S}\cap G$ is isotopic to G by Lemma 5.1. Without loss of generality, we can assume

$$\overline{S} \cap G = C$$
 and $\overline{S} \cap ((\partial C) \times S^1) \subset G$.

Cutting \overline{S} open along C, we get a surface $S \in \mathcal{S}_1(+C)$ such that y(S) = 1. After an isotopy of S, we can assume that the two surfaces $S, C \times [0,1] \subset G \times [0,1]$ are transverse. As $S \cap ((\partial C) \times (0,1)) = \emptyset$, $S \cap (C \times (0,1))$ consists of closed curves that bound disks in $C \times (0,1)$. As S is incompressible and $G \times [0,1]$ is irreducible, we can isotope S such that $S \cap (C \times (0,1)) = \emptyset$, hence $S \cap (C \times [0,1]) = C \times \{0,1\}$. Now we glue S and $C \times [0,1]$ together along $C \times \{0,1\}$ and perturb the resulting surface slightly; then we get a connected surface S0 with S1 and S2 is parallel to S3 in S4 in S5 in S5 in S6 in S7 in S7 in S8 in S9 in S

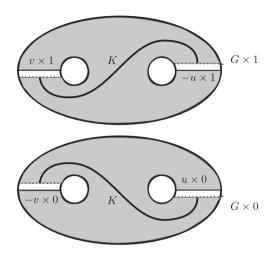


FIGURE 5. The surface $R_+(\gamma_1)$ containing the knot K.

LEMMA 5.7. Let S be the surface obtained in Lemma 5.6. Let

$$G \times I \stackrel{S}{\leadsto} (M_1(\infty), \gamma_1)$$

be the sutured manifold decomposition associated with S; then $(M_1(\infty), \gamma_1)$ is a product manifold, and there is an ambient isotopy of $M_1(\infty)$ that takes K to a curve in $R_+(\gamma_1)$ such that the frame of K specified by $R_+(\gamma_1)$ is α .

Proof. By Lemma 5.6, S is obtained from $-C \times I$ and $G \times 0$ by oriented cut-and-pastes. So $(M_1(\infty), \gamma_1)$ is a product sutured manifold and $R_+(\gamma_1)$ is an annulus.

Let $(M_1(\alpha), \gamma_1)$ be the sutured manifold obtained from $M(\alpha)$ by decomposing along S. Then $M_1(\alpha)$ can also be obtained from $M_1(\infty)$ by α -surgery on K.

We claim that $M_1(\alpha)$ is not taut. In fact, let S'' be the surface obtained from S and $G \times 0$ by oriented cut-and-pastes. Let $\overline{S''} \subset X$ be the surface obtained from S'' by gluing $\partial_0 S''$ to $\partial_1 S''$. Then $x(\overline{S''}) = 2$ and $\overline{S''}$ represents V - U + 2[G]. We already computed

$$x_{\infty}(V - U + 2[G]) = 2 > x_{\alpha}(V - U + 2[G]) = 0,$$

so $\overline{S''}$ is not taut in $X(\alpha)$. Let $M''(\alpha)$ be the non-taut sutured manifold obtained by decomposing $X(\alpha)$ along $\overline{S''}$.

As S'' is obtained from S and $G \times 0$ by oriented cut-and-pastes, and $S \cap (G \times 0) = -C \times 0$ consists of two arcs, there exist two product disks in $M''(\alpha)$ such that the result of decomposing $M''(\alpha)$ along these two disks is $(M_1(\alpha), \gamma_1)$. See the proof of Gabai [2, Theorem 3.13] for an explanation of this fact. So $(M_1(\alpha), \gamma_1)$ is not taut by Gabai [4, Lemma 0.4].

Now Theorem 1.5 implies our conclusion.

Proof of Theorem 1.1. By the results in Sections 3 and 4, we only need to consider the case F = G is a pair of pants. By Lemma 5.7, K lies on $R_+(\gamma_1)$, and the frame specified by $R_+(\gamma_1)$ is α .

As $R_+(\gamma_1)$ is an annulus, the only essential curve on it is its core. As in Figure 5, $R_+(\gamma_1)$ can be constructed in the following way. Cut $G \times \{0,1\}$ open along $(v-u) \times \{0,1\}$; we get two octagons P_0, P_1 . There are two edges of P_0 that are copies of $v \times 0$ with different orientations. We call these two edges $v \times 0, -v \times 0$. Similarly, there are edges $\pm u \times 0, \pm v \times 1, \pm u \times 1$. Now we glue two product disks to P_0, P_1 , such that one product disk connects $v \times 0$ to $-v \times 1$ and

the other connects $-u \times 0$ to $u \times 1$. The annulus we get is isotopic to $R_+(\gamma_1)$. The core of this annulus is clearly a 1-crossing knot in $G \times I$. The result about the frame also follows as the vertical projection $p: R_+(\gamma_1) \to G$ is an immersion.

Acknowledgement. We are grateful to Danny Calegari for helpful discussions on mapping class groups. This article is dedicated to the memory of Professor Andrew Lange.

References

- 1. B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series (Princeton University Press, Princeton, NJ), http://www.math.utah.edu/~margalit/primer/
- 2. D. Gabai, 'Foliations and the topology of 3-manifolds', J. Differential Geom. 18 (1983) 445-503.
- 3. D. Gabai, 'Detecting fibred links in \widetilde{S}^3 ', Comment. Math. Helv. 61 (1986) 519–555.
- D. Gabal, 'Foliations and the topology of 3-manifolds II', J. Differential Geom. 26 (1987) 461–478.
 D. Gabal, 'Foliations and the topology of 3-manifolds III', J. Differential Geom. 26 (1987) 479–536.
- 6. D. Gabai, 'Surgery on knots in solid tori', Topology 28 (1989) 1-6.
- 7. D. Gabai, '1-bridge braids in solid tori', Topology Appl. 37 (1990) 221–235.
- 8. P. GHIGGINI, 'Knot Floer homology detects genus-one fibred knots', Amer. J. Math. 130 (2008) 1151-1169.
- 9. C. GORDON and J. LUECKE, 'Knots are determined by their complements', J. Amer. Math. Soc. 2 (1989) 371 - 415.
- 10. Y. NI, 'Dehn surgeries that yield fibred 3-manifolds', Math. Ann. 344 (2009) 863-876.
- 11. M. Scharlemann and A. Thompson, 'Heegaard splittings of (surface) × I are standard', Math. Ann. 295 (1993) 549-564.
- 12. M. Scharlemann and A. Thompson, 'Surgery on a knot in (surface × I)', Algebr. Geom. Topol. 9 (2009) 1825 - 1835.
- 13. W. Thurston, 'A norm for the homology of 3-manifolds', Mem. Amer. Math. Soc. 59 (1986) i-vi and 99 - 130.

Yi Ni Department of Mathematics Caltech, MC 253-37 1200 E. California Blvd Pasadena, CA 91125 USA

vini@caltech.edu