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Abstract
Every prism manifold can be parametrized by a pair
of relatively prime integers 𝑝 > 1 and 𝑞. In our earlier
papers, we determined a complete list of prism man-
ifolds 𝑃(𝑝, 𝑞) that can be realized by positive integral
surgeries on knots in 𝑆3 when 𝑞 < 0 or 𝑞 > 𝑝; in the
present work, we solve the case when 0 < 𝑞 < 𝑝. This
completes the solution of the realization problem for
prism manifolds.

MSC 2020
57K18, 57K30 (primary)

1 INTRODUCTION

Let 𝑃(𝑝, 𝑞) be an oriented prism manifold with Seifert invariants

(−1; (2, 1), (2, 1), (𝑝, 𝑞)),

where 𝑞 and 𝑝 > 1 are relatively prime integers. See [1, Section 2] for the convention of Seifert
invariants and basic topological properties of prism manifolds. In [1, 2], we solved the Dehn
surgery realization problem of prismmanifolds for 𝑞 < 0 and for 𝑞 > 𝑝. The theme of the present
work is to settle the remaining case 0 < 𝑞 < 𝑝. In [1, Tables 1 and 2], the authors give a tabula-
tion of prism manifolds that can be obtained by positive integral Dehn surgery on Berge–Kang
knots [4]. The tables conjecturally account for all realizable prism manifolds; in particular, [1,
Table 2] suggests that for a realizable 𝑃(𝑝, 𝑞)with 𝑞 > 0, we must have 𝑝 ⩽ 2𝑞 + 1. Indeed, this is
the case:
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842 BALLINGER et al.

TABLE 1  , table of 𝑃(𝑝, 𝑞) that are realizable

Type 𝑷(𝒑, 𝒒) (let 𝑷(−𝒑,−𝒒) = 𝑷(𝒑, 𝒒))
Range of parameters
(𝒑 and 𝒓 are always odd, |𝒑| > 𝟏)

1A 𝑃(𝑝,− 1

2
(𝑝2 − 3𝑝 + 4)) 𝑝 ≠ 3, 5

1B 𝑃(𝑝,− 1

22
(𝑝2 − 3𝑝 + 4)) 𝑝 ≡ 17 or 19 (mod 22)|𝑝| > 22

2 𝑃(𝑝,− 1|4𝑟+2| |𝑟2𝑝 + 1|) 𝑝 ≡ 2𝑟 − 3 (mod 4𝑟 + 2)

𝑟 ≡ −1 (mod 4)

𝑟 ≠ −1, 3

3A 𝑃(𝑝,− 1

2𝑟
(𝑝 + 1)(𝑝 + 4)) 𝑝 ≡ −1 (mod 2𝑟)

𝑟 ⩾ 1 and 𝑝 ⩾ 4𝑟 − 1 if 𝑝 > 0

𝑟 ⩾ 5 and 𝑝 ⩽ −4𝑟 − 1 if 𝑝 < 0

3B 𝑃(𝑝,− 1

2𝑟
(𝑝 + 1)(𝑝 + 4)) 𝑝 ≡ 𝑟 − 4 (mod 2𝑟)

𝑟 ⩾ 5 and 𝑝 ⩾ 3𝑟 − 4 if 𝑝 > 0

𝑟 ⩾ 1 and 𝑝 ⩽ −3𝑟 − 4 if 𝑝 < 0

4 𝑃(𝑝,− 1

2𝑟2
|(2𝑟 + 1)2𝑝 + 1|) 𝑝 ≡ 4𝑟 − 1 (mod 2𝑟2)

𝑟 ≠ −3,−1, 1

5 𝑃(𝑝,− 1

𝑟2−2𝑟−1
|𝑟2𝑝 + 1|) 𝑝 ≡ 2𝑟 − 5 (mod 𝑟2 − 2𝑟 − 1)

𝑟 ≠ 1

Sporadic 𝑃(11, −30), 𝑃(17, −31),
𝑃(13, −47), 𝑃(23, −64)
𝑃(11, 19), 𝑃(13, 34)

Theorem 1.1. If 𝑃(𝑝, 𝑞) with 𝑞 > 0 can be obtained by surgery on a knot 𝐾 ⊂ 𝑆3, then 𝑝 ⩽ 2𝑞 + 1.
If 𝑝 = 2𝑞 + 1, then 𝐾 is the torus knot 𝑇(2𝑞 + 1, 2).

Doig, in [7, Conjecture 12], conjectured that if 𝑃(𝑝, 𝑞) is realizable, then 𝑝 ⩽ 2|𝑞| + 1. The main
result of [1] settles the conjecture for 𝑞 < 0; Theorem 1.1 verifies it for 𝑞 > 0.
Our secondmain result, Theorem 1.2, provides the solution of the realization problem for those

𝑃(𝑝, 𝑞) with 𝑞 < 𝑝 < 2𝑞.

Theorem1.2. The prismmanifold𝑃(𝑝, 𝑞)with 𝑞 < 𝑝 < 2𝑞 can be obtained by 4𝑞–surgery on a knot
𝐾 ⊂ 𝑆3 if and only if 𝑞 = 1

𝑟2−2𝑟−1
(𝑟2𝑝 − 1), with 𝑟 ⩽ −3 odd and 𝑝 ≡ −2𝑟 + 5 (mod 𝑟2 − 2𝑟 − 1),

𝑝 ⩾ −2𝑟 + 5. Moreover, in this case, there exists a Berge–Kang knot 𝐾0 such that 𝑃(𝑝, 𝑞) ≅ 𝑆3
4𝑞
(𝐾0),

and that 𝐾 and 𝐾0 have isomorphic knot Floer homology groups.

Remark 1.3. If we allow 𝑟 = −1 in Theorem 1.2, we get 𝑝 = 2𝑞 + 1: see Theorem 1.1.

1.1 The complete list of realizable prismmanifolds

Theorems 1.1 and 1.2 and our earlier results [1, 2] give a complete classification of prismmanifolds
which can be obtained by Dehn surgery on knots in 𝑆3. These prism manifolds are tabulated in
Table 1.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 843

Remark 1.4. Table 1 is essentially the union of [1, Table 1 and Table 2], with input of the range of
parameters from [2, Table 2] and Theorem 1.2. There are two differences from [1, Table 2]. The
first difference is that we adapt the convention that 𝑃(−𝑝,−𝑞) = 𝑃(𝑝, 𝑞) in the table, so that the
cases 𝑝𝑞 > 0 and 𝑝𝑞 < 0 can be unified in one expression. The second difference is that we move
the family 𝑃(𝑝,−25𝑝+1

18
), 𝑝 < 0, from Type 4 to Type 2, so that the ranges of 𝑟 are the same despite

of the sign of 𝑝𝑞.

Remark 1.5. In the arXiv version of [1], for each prism manifold in Table 1, we listed a Berge–
Kang knot realizing the corresponding surgery following the work of Berge–Kang [4]. However,
since Berge–Kang’s work is not publicly available, we did not include this list of Berge–Kang knots
in the published version of [1]. An explicit list of primitive/Seifert-fibered knots admitting prism
manifold surgeries was given in [21], independent of [4]. The existence of such Berge–Kang knots
now follows from [21].

Remark 1.6. In Table 1, we divide the surgeries into six different types so that no surgery
appears in more than one type. However, a prism manifold may appear in different types, in
the sense that it arises from multiple changemaker vectors and it is obtained from surgeries
on Berge–Kang knots belonging to different families. Such prism manifolds are the two infinite
families

𝑃(8𝑠 + 3,−(16𝑠 + 14)) and 𝑃(8𝑠 + 13, 16𝑠 + 18), 𝑠 ⩾ 0,

and

𝑃(11, −18), 𝑃(5, 22), 𝑃(25, 36), 𝑃(43, 117).

(The two infinite families are essentially the same family, if we allow 𝑠 < 0 and the surgery
slope to be negative.) More information about these surgeries can be found in [1, Table 3] and
[2, Table 3].

1.2 The spherical manifold realization problem

The spherical manifold realization problem asks which spherical manifolds arise from positive
integral surgery along a knot in 𝑆3. Theorems 1.1 and 1.2 and our earlier results [1, 2], combined
withGu’s work [11] andGreene’s work [9], provide a complete classification of realizable spherical
manifolds. The interest is in finding a complete classification of knots in𝑆3 onwhichDehn surgery
produce spherical manifolds. In [3], Berge proposed a complete list of knots in 𝑆3 with lens space
surgeries. Indeed, Berge’s conjecture states that the P/P knots form a complete list of knots in 𝑆3
that admit lens space surgeries. All the known examples of knots on which surgeries will result
in non-lens space spherical manifolds are P/SF knots. We repeat the following conjecture from [1,
Conjecture 1.7]: it is a generalization of Berge’s conjecture.

Conjecture 1.7. Let𝐾 be a knot in 𝑆3 that admits an integral surgery to a spherical manifold. Then
𝐾 is either a 𝑃∕𝑆𝐹 or a 𝑃∕𝑃 knot.

 1460244x, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12472 by C

alifornia Institute O
f T

echno, W
iley O

nline L
ibrary on [17/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



844 BALLINGER et al.

1.3 Methodology

We first provide a brief overview of the methodology undertaken to solve the prism manifold
realization problem in the cases 𝑞 < 0 and 𝑞 > 𝑝: the proof in both cases draws inspiration from
that of Greene for lens spaces [9]. We then discuss how (and why) the methodology is modified
for the case of the present work.
We first require a combinatorial definition.

Definition 1.8. A vector 𝜎 = (𝜎0, 𝜎1, … , 𝜎𝑛+1) ∈ ℤ𝑛+2 that satisfies 0 ⩽ 𝜎0 ⩽ 𝜎1 ⩽ ⋯ ⩽ 𝜎𝑛+1 is
a changemaker vector if for every 𝑘, with 0 ⩽ 𝑘 ⩽ 𝜎0 + 𝜎1 +⋯ + 𝜎𝑛+1, there exists a subset 𝑆 ⊂

{0, 1, … , 𝑛 + 1} such that 𝑘 =
∑

𝑖∈𝑆 𝜎𝑖 .

The key idea is to use the correction terms in Heegaard Floer homology in tandem with
Donaldson’s Theorem A. The following is immediate from [9, Theorem 3.3].

Theorem 1.9. Suppose that 𝑃(𝑝, 𝑞) bounds a sharp four-manifold 𝑋(𝑝, 𝑞). If 𝑃(𝑝, 𝑞) arises from
positive integer surgery on a knot 𝐾 in 𝑆3, then the intersection lattice on 𝑋(𝑝, 𝑞) embeds as the
orthogonal complement 𝜎⟂ of some changemaker vector 𝜎 ∈ ℤ𝑛+2, with 𝑛 + 1 = 𝑏2(𝑋).

See Section 5 for the definition of a sharp four-manifold, and see Subsection 1.4 for the defi-
nition of the intersection lattice. When 𝑞 < 0 or 𝑞 > 𝑝, it turns out that 𝑃(𝑝, 𝑞) bounds a sharp
four-manifold 𝑋(𝑝, 𝑞). We then solved a combinatorial problem: we classified all lattices isomor-
phic to the intersection lattice of 𝑋(𝑝, 𝑞), whose complements are changemakers in ℤ𝑛+2. There
is a heavy analysis of lattices involved that forms the main body of [1, 2]. Finally, we verified
that for every (𝑝, 𝑞) corresponding to such a lattice, 𝑃(𝑝, 𝑞) is indeed realized by surgery on a
P/SF knot.
We now turn our attention to the case 0 < 𝑞 < 𝑝. In light of Theorem 1.1, it suffices to con-

sider 𝑞 < 𝑝 < 2𝑞. When 𝑞 < 𝑝 < 2𝑞, 𝑃(𝑝, 𝑞) does not bound a sharp four-manifold. Thus, we
cannot use the embedding restriction of Theorem 1.9 — an essential step to the classification
of realizable prism manifolds in the previous two cases. Our strategy to prove Theorem 1.2 is
to replace Theorem 1.9 with another lattice theoretic obstruction for 𝑃(𝑝, 𝑞) to being realizable,
as follows. The prism manifold 𝑃(2, 1) bounds a rational homology four-ball 𝑍2 (the left two
components of Figure 2 where the 0-framed unknot is replaced by a dotted circle and 𝑎−1 = 2);
and that there exists a negative definite cobordism 𝑊 from 𝑃(2, 1) to 𝑃(𝑝, 𝑞) (the right 𝑛 + 1

components of Figure 2). Suppose that 𝑃(𝑝, 𝑞) arises from surgery on a knot 𝐾 ⊂ 𝑆3, and let
𝑊4𝑞 = 𝑊4𝑞(𝐾) be the corresponding two-handle cobordism obtained by attaching a two-handle
to the four-ball along the knot 𝐾 with framing 4𝑞. Form 𝑍 ∶= 𝑍2 ∪𝑃(2,1) 𝑊; it will be a smooth
four-manifold with boundary 𝑃(𝑝, 𝑞). The intersection lattice on 𝑍 is Λ(𝑞, −𝑝), which is defined
in Definition 3.1. Form 𝑋 ∶= 𝑊 ∪ (−𝑊4𝑞). We prove that the intersection lattice on 𝑋 is iso-
morphic to 𝐷4 ⊕ ℤ𝑛−2, where 𝐷4 is the sublattice of ℤ4 consisting of vectors the sum of whose
coordinates is even. Finally, form 𝑋 ∶= 𝑍 ∪ (−𝑊4𝑞); see Figure 1. It follows that 𝑋 is a smooth,
closed, simply connected, negative definite four-manifold with 𝑏2(𝑍) = 𝑛 + 2 for some 𝑛 ⩾ 0.
Now, Donaldson’s Theorem A [8] implies that the intersection lattice on 𝑋 is the Euclidean
integer lattice ℤ𝑛+2. This provides a necessary condition for 𝑃(𝑝, 𝑞) to be realizable: the lattice
Λ(𝑞, −𝑝) embeds as a codimension one sublattice of ℤ𝑛+2. Our new obstruction now reads as
follows:
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THE PRISMMANIFOLD REALIZATION PROBLEM III 845

F IGURE 1 Schematic picture of the closed four-manifold 𝑋 = 𝑍2 ∪𝑊 ∪ −𝑊4𝑞 . We have
𝑋 = 𝑊 ∪𝑃(𝑝,𝑞) −𝑊4𝑞 , 𝑍 = 𝑍2 ∪𝑃(2,1) 𝑊

Theorem 1.10. Suppose 𝑃(𝑝, 𝑞) with 𝑞 < 𝑝 < 2𝑞 arises from positive integer surgery on a knot 𝐾
in 𝑆3.

(a) The linear lattice Λ(𝑞, −𝑝) embeds as the orthogonal complement to a changemaker 𝜎 ∈

ℤ𝑛+2, 𝑛 + 1 = 𝑏2(𝑍).
(b) There is an embedding of 𝐷4 ⊕ ℤ𝑛−2 into ℤ𝑛+2 such that there exists some short characteristic

covector 𝜒 for 𝐷4 ⊕ ℤ𝑛−2 with ⟨𝜒, 𝜎⟩ = 𝑖 if and only if −2𝑞 + g(𝐾) ⩽ 𝑖 ⩽ 2𝑞 − g(𝐾).

The strategy is now apparent: determine the list of all pairs (𝑝, 𝑞) which pass the embedding
restriction of Theorem 1.10. Finally, we verify that every manifold in our list is indeed realized
by a knot surgery: we do so by comparing the list with the list of realizable manifolds tabulated
in [1, Table 2]. The fact that the manifolds in [1, Table 2] are realizable is proved in [21]. It must
be noted that Part (a) of Theorem 1.10 only provides a necessary condition for the prismmanifold
𝑃(𝑝, 𝑞) to be realizable. Indeed, it is easy to find pairs (𝑝, 𝑞) that satisfy Part (a) of Theorem 1.10,
but the corresponding prism manifolds are not realizable; for example, 𝑃(13, 9) and 𝑃(16, 9). The
9-surgery on the torus knot 𝑇(2, 5) is 𝐿(9, 13) ≅ 𝐿(9, 16), then work of Greene [9] shows that the
corresponding linear lattice satisfies Part (a) of Theorem 1.10. However, the manifold 𝑃(16, 9) is
not realizable because of the parity of 16 (𝑝 is always odd for a realizable 𝑃(𝑝, 𝑞) [1]); and neither
is 𝑃(13, 9) by Theorem 1.2.
In the previous cases 𝑞 < 0 and 𝑞 > 𝑝 as well as in the lens space realization problem [9],

the first step was finding a sharp four-manifold bounded by 𝑃(𝑝, 𝑞) (respectively, the lens space
𝐿(𝑝, 𝑞)): in each case, a negative definite four-manifold was found; then it was almost immediate
from the previous works of Ozsváth and Szabó [16, 18] that the four-manifold is sharp. For the case
at hand, however, 𝑃(𝑝, 𝑞) does not bound a sharp four-manifold. We need to carefully analyze the
d-invariants of 𝑃(𝑝, 𝑞) in each Spin𝑐 structure in terms of the d-invariants of certain Spin𝑐 struc-
tures of 𝑃(2, 1) and the grading shift of the cobordism𝑊. In particular, we generalize the notion
of sharpness to cobordisms between rational homology spheres, and show that the cobordism𝑊

is sharp (Proposition 5.3): again, see Figure 1. Using that the intersection lattice on 𝑋 is isomor-
phic to𝐷4 ⊕ ℤ𝑛−2, it will be immediate that𝑋 is a sharp four-manifold (Corollary 6.4). Using this
finding, we are able to prove Theorem 1.10 and translate it into a more practical condition on the
changemaker vector 𝜎 (Proposition 6.11).

1.4 Notations

We use homology groups with integer coefficients throughout the paper. For a compact four-
manifold 𝑋, regard 𝐻2(𝑋) as equipped with the intersection pairing 𝑄𝑋 on 𝑋. Also, we refer to
(𝐻2(𝑋), −𝑄𝑋) as the intersection lattice on 𝑋, where −𝑄𝑋 denotes the negation of the pairing of
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846 BALLINGER et al.

𝑄𝑋 . Finally, we call an oriented three-manifold 𝑌 a realizable manifold if it can be obtained by
positive integral surgery on a knot in 𝑆3 .

1.5 Organization

This paper is organized as follows. In Section 2, we prove Theorem 1.1, thus solve the case of
the realization problem when 2𝑞 < 𝑝. In Section 3, we collect some basic results about linear
lattices and changemaker lattices from [9]. In Section 4, we study the topology of a certain type
of cobordism between rational homology 3-spheres. In Section 5, we define sharp cobordisms,
and prove that the cobordism 𝑊 between 𝑃(2, 1) and 𝑃(𝑝, 𝑞) is sharp. In Section 6, we use the
result in Section 5 to prove a strengthened changemaker condition in the case 𝑞 < 𝑝 < 2𝑞. In
Sections 7 and 8, we use the strengthened changemaker condition to enumerate all the possible
changemaker lattices we can have. In Section 9, we determine the pairs (𝑝, 𝑞) corresponding to
the changemaker lattices, thus finish the proof of Theorem 1.2.

2 PROOF OF THEOREM 1.1

The goal of this section is to prove the following upper bound of 𝑝, and then to prove Theorem 1.1.
Recall that we assume 𝑞 > 0.

Proposition 2.1. If 𝑃(𝑝, 𝑞) is realizable, then 𝑝 ⩽ 2𝑞 + 1.

Remark 2.2. If 𝑃(𝑝, 𝑞) is realizable with 𝑝 = 2|𝑞| ± 1, then 𝐾 must be a torus knot [14, Theo-
rem 1.6]. Recall that for a realizable 𝑃(𝑝, 𝑞), 𝑝 is odd [1]. In particular, if we restrict attention to
hyperbolic knots on which surgeries will result in 𝑃(𝑝, 𝑞), then 𝑝 ⩽ 2|𝑞| − 3.

2.1 The Casson–Walker invariant of 𝑷(𝒑, 𝒒)

Let

Δ𝐾(𝑇) = 𝛼0 +
∑
𝑖>0

𝛼𝑖(𝑇
𝑖 + 𝑇−𝑖) (1)

be the normalized Alexander polynomial of 𝐾. If 𝐾 admits an L-space surgery, then |𝛼𝑖| ⩽ 1,
𝛼g(𝐾) = 1, and +1 and −1 appear alternatingly among the non-zero 𝛼𝑖 [17, Theorem 1.2].
Given a real number 𝑥, let {𝑥} = 𝑥 − ⌊𝑥⌋ be the fractional part of 𝑥. Given a pair of coprime

integers 𝑛,𝑚 with 𝑛 > 0, let 𝐬(𝑚, 𝑛) be the Dedekind sum

𝐬(𝑚, 𝑛) =

𝑛−1∑
𝑖=1

((
𝑖

𝑛

))((
𝑖𝑚

𝑛

))
,

where

((𝑥)) =

{
{𝑥} − 1

2
, if 𝑥 ∈ ℝ ⧵ ℤ,

0, if 𝑥 ∈ ℤ.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 847

Let 𝜆(⋅) be the Casson–Walker invariant [22], normalized so that

𝜆(𝑆31(𝑇(3, 2))) = 2.

By [12, Proposition 6.1.1], the Casson–Walker invariant of 𝑃(𝑝, 𝑞) can be computed by the formula

𝜆(𝑃(𝑝, 𝑞)) =
1

12

(
−
𝑝

𝑞

(
1

𝑝2
−
1

2

)
−
𝑞

𝑝
+ 3 + 12𝐬(𝑞, 𝑝)

)
.

Since the Dedekind sum satisfies the reciprocity law

𝐬(𝑞, 𝑝) + 𝐬(𝑝, 𝑞) =
1

12

(
𝑝

𝑞
+
𝑞

𝑝
+

1

𝑝𝑞

)
−
1

4
,

we get

𝜆(𝑃(𝑝, 𝑞)) =
𝑝

8𝑞
− 𝐬(𝑝, 𝑞). (2)

On the other hand, the surgery formula for the Casson–Walker invariant [5, Theorem 2.8]
implies

𝜆(𝑆34𝑞(𝐾)) = −𝐬(1, 4𝑞) +
1

4𝑞
Δ′′
𝐾(1)

= −
(2𝑞 − 1)(4𝑞 − 1)

24𝑞
+

1

4𝑞
Δ′′
𝐾(1). (3)

Lemma 2.3. For realizable 𝑃(𝑝, 𝑞) with 𝑞 odd, 𝑝 ≡ −1 (mod 4).

Proof. By combining (2) and (3), we have

−
(2𝑞 − 1)(4𝑞 − 1)

24𝑞
+

1

4𝑞
Δ′′
𝐾(1)

= 𝜆(𝑃(𝑝, 𝑞))

≡
𝑝

8𝑞
−

𝑞−1∑
𝑖=1

(
𝑖

𝑞
−
1

2

)(
𝑝𝑖

𝑞
−
1

2

)
(mod 1)

=
𝑝

8𝑞
−
𝑝(𝑞 − 1)(2𝑞 − 1)

6𝑞
+
𝑝(𝑞 − 1)

4
.

Multiplying both sides by 24𝑞, we get

1 − 6𝑞 + 8𝑞2 + 𝑝(−1 + 6𝑞 − 2𝑞2) ≡ 6Δ′′
𝐾(1) (mod 24𝑞).

Since Δ′′
𝐾
(1) is even and 𝑝, 𝑞 are odd, we get

2𝑞 + 1 + 𝑝(2𝑞 + 1) ≡ 0 (mod 4).

So 𝑝 ≡ −1 (mod 4). □
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848 BALLINGER et al.

2.2 The Spin𝒄 structures

The 𝑖th torsion coefficient of a knot 𝐾 is defined to be

𝑡𝑖(𝐾) =
∑
𝑗⩾1

𝑗𝛼𝑖+𝑗,

for 𝑖 ⩾ 0, where the 𝛼𝑖 are as in (1). Let

𝜀𝑖 = 𝑡𝑖 − 𝑡𝑖+1.

When 𝐾 admits an L-space surgery, it is proved in [20, Proposition 7.6] that

𝜀𝑖 ∈ {0, 1}.

Suppose 4𝑞–surgery on 𝐾 is 𝑃(𝑝, 𝑞), then 4𝑞 ⩾ 2g(𝐾) − 1 [19]. So

g(𝐾) ⩽ 2𝑞. (4)

Since 𝛼g(𝐾) = 1 and 𝛼𝑖 = 0 when 𝑖 > g(𝐾), it follows from the definition of 𝑡𝑖 that

𝑡𝑖 = 0 if and only if 𝑖 ⩾ g(𝐾). (5)

In particular, by (4), we get

𝑡2𝑞 = 0. (6)

For 𝑖 > 0,

𝛼𝑖 = 𝑡𝑖−1 − 2𝑡𝑖 + 𝑡𝑖+1

= 𝜀𝑖−1 − 𝜀𝑖.

Since 1 = Δ𝐾(1) = 𝛼0 + 2
∑

𝑖>0 𝛼𝑖 , we can also get

𝛼0 = 1 − 2
∑
𝑖>0

𝛼𝑖.

Thus

Δ𝐾(−1) = 𝛼0 + 2
∑

𝑖>0(−1)
𝑖𝛼𝑖

= 1 − 4
∑

𝑖⩾0(−1)
𝑖𝜀𝑖. (7)

Given a knot 𝐾 ⊂ 𝑆3 and an integer 𝑛 > 0, there is an affine isomorphism [15]

𝜑 ∶ ℤ∕𝑛ℤ → Spinc(𝑆3𝑛(𝐾)).

For simplicity, let 𝑑(𝑆3𝑛(𝐾), 𝑖) = 𝑑(𝑆3𝑛(𝐾), 𝜑(𝑖)).

 1460244x, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12472 by C

alifornia Institute O
f T

echno, W
iley O

nline L
ibrary on [17/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THE PRISMMANIFOLD REALIZATION PROBLEM III 849

From [15], we have

𝑑(𝐿(𝑛, 1), 𝑖) = −
1

4
+
(2𝑖 − 𝑛)2

4𝑛
. (8)

Using [19, Theorem 1.2], we get

𝑑(𝑆3𝑛(𝐾), 𝑖) = 𝑑(𝐿(𝑛, 1), 𝑖) − 2𝑡min{𝑖,𝑛−𝑖}. (9)

Lemma 2.4. Suppose that 𝑃(𝑝, 𝑞) is obtained by the 4𝑞-surgery on 𝐾. Let 𝑖 be an integer with 0 ⩽
𝑖 ⩽ 𝑞. If 𝑖 is even, we have

𝑑(𝑆34𝑞(𝐾), 𝑞 − 𝑖) = 𝑑(𝑆34𝑞(𝐾), 𝑞 + 𝑖),

and

𝑡𝑞−𝑖 − 𝑡𝑞+𝑖 =
𝑖

2
.

If 𝑖 is odd, we have

𝑑(𝑆34𝑞(𝐾), 𝑞 − 𝑖) = 𝑑(𝑆34𝑞(𝐾), 𝑞 + 𝑖) ± 1,

and

𝑡𝑞−𝑖 − 𝑡𝑞+𝑖 =
𝑖 ∓ 1

2
.

Proof. Since 𝑆3
4𝑞
(𝐾) is a prism manifold, it contains a Klein bottle. So the order-2 element in

𝐻1(𝑆
3
4𝑞
(𝐾)) is represented by a curve in the Klein bottle, such that the complement of the curve

in the Klein bottle is an annulus. By [13, Theorem 1.1], for any 𝑗 ∈ ℤ∕4𝑞ℤ, we have

|𝑑(𝑆34𝑞(𝐾), 𝑗) − 𝑑(𝑆34𝑞(𝐾), 𝑗 + 2𝑞)| ⩽ 1. (10)

Since the conjugate of 𝜑(𝑗 + 2𝑞) is 𝜑(2𝑞 − 𝑗), we have

𝑑(𝑆34𝑞(𝐾), 𝑗 + 2𝑞) = 𝑑(𝑆34𝑞(𝐾), 2𝑞 − 𝑗). (11)

Let 𝑗 = 𝑞 − 𝑖. Using (8) and (9), we get

𝑑(𝑆34𝑞(𝐾), 𝑞 − 𝑖) − 𝑑(𝑆34𝑞(𝐾), 𝑞 + 𝑖)

= −
1

4
+
(2𝑞 − 2𝑖 − 4𝑞)2

16𝑞
− 2𝑡𝑞−𝑖 −

(
−
1

4
+
(2𝑞 + 2𝑖 − 4𝑞)2

16𝑞
− 2𝑡𝑞+𝑖

)
= 𝑖 − 2𝑡𝑞−𝑖 + 2𝑡𝑞+𝑖 ∈ ℤ, (12)

so 𝑑(𝑆3
4𝑞
(𝐾), 𝑞 − 𝑖) − 𝑑(𝑆3

4𝑞
(𝐾), 𝑞 + 𝑖) has the same parity as 𝑖. Using (10) and (11), we get

|𝑑(𝑆34𝑞(𝐾), 𝑞 − 𝑖) − 𝑑(𝑆34𝑞(𝐾), 𝑞 + 𝑖)| ⩽ 1.
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850 BALLINGER et al.

So 𝑑(𝑆3
4𝑞
(𝐾), 𝑞 − 𝑖) − 𝑑(𝑆3

4𝑞
(𝐾), 𝑞 + 𝑖) = 0 when 𝑖 is even, and 𝑑(𝑆3

4𝑞
(𝐾), 𝑞 − 𝑖) − 𝑑(𝑆3

4𝑞
(𝐾), 𝑞 +

𝑖) = ±1 when 𝑖 is odd. Now 𝑡𝑞−𝑖 − 𝑡𝑞+𝑖 can be computed from (12). □

2.3 The proof of Proposition 2.1

Proof of Proposition 2.1. By Lemma 2.4 and (6),

𝑡0 = 𝑡0 − 𝑡2𝑞 ⩽

⌊
𝑞 + 1

2

⌋
.

By [14, Lemma 6.1], 𝑝 = |Δ𝐾(−1)|. Using (7), we get
𝑝 ⩽ 1 + 4

∑
𝑖⩾0

𝜀𝑖

= 1 + 4𝑡0

⩽ 1 + 4

⌊
𝑞 + 1

2

⌋
.

When 𝑞 is even, 𝑝 ⩽ 2𝑞 + 1. When 𝑞 is odd, 𝑝 ⩽ 2𝑞 + 3. By Lemma 2.3, 𝑝 ≠ 2𝑞 + 3, so we must
have 𝑝 ⩽ 2𝑞 + 1. □

Proof of Theorem 1.1. The first statement is Proposition 2.1. The second statement follows from
combining [14, Theorem 1.6] and [1, Lemma 2.1]. □

3 INPUT FROM LATTICE THEORY

This section assembles facts about lattices that will be used in the paper. We mainly follow the
treatment of [1, 2, 9, 10].
Recall that an integral lattice is a finitely generated free abelian group 𝐿 endowedwith a positive

definite symmetric bilinear form ⟨, ⟩ ∶ 𝐿 × 𝐿 → ℤ. Given 𝑣 ∈ 𝐿, let |𝑣| = ⟨𝑣, 𝑣⟩ be the norm of 𝑣.
We can extend ⟨, ⟩ to a ℚ–valued pairing on 𝐿 ⊗ ℚ; using it we define

𝐿∗ = {𝑥 ∈ 𝐿 ⊗ ℚ|⟨𝑥, 𝑦⟩ ∈ ℤ, ∀𝑦 ∈ 𝐿}.

The pairing on𝐿 descends to a non-degenerate, symmetric bilinear formon thediscriminant group
𝐿 = 𝐿∗∕𝐿

𝑏 ∶ 𝐿 × 𝐿 → ℚ∕ℤ

𝑏(𝑥, 𝑦) ≡ ⟨𝑥, 𝑦⟩ (mod 1),

the linking form, where 𝑥 denotes the class of 𝑥 ∈ 𝐿 in 𝐿. The discriminant of 𝐿 is the order of the
finite group 𝐿. Let

Char(𝐿) = {𝑥 ∈ 𝐿∗|⟨𝑥, 𝑦⟩ ≡ ⟨𝑦, 𝑦⟩ (mod 2), ∀𝑦 ∈ 𝐿}
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THE PRISMMANIFOLD REALIZATION PROBLEM III 851

denote the set of characteristic covectors for 𝐿. The set 𝐶(𝐿) = Char(𝐿)∕2𝐿 forms a torsor over the
discriminant group 𝐿. Given 𝜒 ∈ 𝐶(𝐿), define

𝑑𝐿([𝜒]) = min

{ |𝜒′| − rk(𝐿)
4

||||𝜒′ ∈ [𝜒]

}
, (13)

and call an element 𝜒 ∈ Char(𝐿) short if its norm is minimal in [𝜒]. We call the pair (𝐶(𝐿), 𝑑𝐿)
the d-invariant of the lattice 𝐿; in particular it is an invariant of the stable isomorphism type of
the lattice 𝐿 [18, Theorem 4.7]. We drop 𝐿 from the notation when the lattice 𝐿 is understood from
the context.

3.1 Linear lattices

Given a pair of relatively prime positive integers 𝑝, 𝑞, write 𝑝

𝑞
in a Hirzebruch–Jung continued

fraction

𝑝

𝑞
= 𝑎−1 −

1

𝑎0 −
1

⋱ −
1

𝑎𝑛

= [𝑎−1, 𝑎0, … , 𝑎𝑛]
−, (14)

with 𝑎𝑖 ⩾ 2 when 𝑖 ⩾ 0 in equation (14).

Definition 3.1. The linear lattice Λ(𝑞, −𝑝) has a basis

{𝑥0, … , 𝑥𝑛}, (15)

and inner product given by

⟨𝑥𝑖, 𝑥𝑗⟩ = ⎧⎪⎨⎪⎩
𝑎𝑖, 𝑖 = 𝑗

−1, |𝑖 − 𝑗| = 1

0, |𝑖 − 𝑗| > 1,

(16)

where the coefficients 𝑎𝑖 , for 𝑖 ∈ {0, … , 𝑛}, are defined by the continued fraction (14). We call (15)
the vertex basis of Λ(𝑞, −𝑝).

Remark 3.2. The reason that we use Λ(𝑞, −𝑝) instead of Λ(𝑞, 𝑝) is that our convention for lens
spaces is different from that of [9]. In our paper, the lens space 𝐿(𝑞, 𝑝) is oriented as the 𝑞

𝑝
–surgery

on the unknot, and 𝑃(𝑝, 𝑞) is the 𝑞

𝑝
-surgery on ℝ𝑃1#ℝ𝑃1 ⊂ ℝ𝑃3#ℝ𝑃3, so they both bound 4-

manifolds with intersection lattice Λ(𝑞, −𝑝).

An element 𝓁 ∈ 𝐿 is reducible if 𝓁 = 𝑥 + 𝑦 for some non-zero 𝑥, 𝑦 ∈ 𝐿 with ⟨𝑥, 𝑦⟩ ⩾ 0, and irre-
ducible otherwise. An element 𝓁 ∈ 𝐿 is breakable if 𝓁 = 𝑥 + 𝑦 with |𝑥|, |𝑦| ⩾ 3 and ⟨𝑥, 𝑦⟩ = −1,
and unbreakable otherwise.
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852 BALLINGER et al.

Definition 3.3. In a linear lattice, if 𝐼 is any subset of {𝑥0, 𝑥1, … , 𝑥𝑛} then write [𝐼] =
∑

𝑥∈𝐼 𝑥. An
interval is an element of the form [𝐼]with 𝐼 = {𝑥𝑎, 𝑥𝑎+1, … , 𝑥𝑏} for 0 ⩽ 𝑎 ⩽ 𝑏 ⩽ 𝑛. We say that 𝑎 is
the left endpoint of the interval, and 𝑏 is the right endpoint of the interval. Say that [𝐼] contains
𝑥𝑖 if 𝐼 does: we often write 𝑥𝑖 ∈ [𝐼] in this case.

When [𝐼] is an interval, it is easy to compute

|[𝐼]| = 2 +
∑
𝑥𝑖∈[𝐼]

(|𝑥𝑖| − 2). (17)

Proposition 3.4 [9, Proposition 3.3]. If 𝑣 ∈ Λ(𝑞, −𝑝) is irreducible, 𝑣 = 𝜖[𝐼] for some 𝜖 = ±1 and
[𝐼] an interval.

From now on, let [𝑣] be the interval corresponding to 𝑣 when 𝑣 is irreducible.

Definition 3.5. A vertex 𝑥𝑖 has high weight if |𝑥𝑖| = 𝑎𝑖 > 2.

Proposition 3.6 [9, Corollary 3.5(4)]. An element 𝜖[𝐼] ∈ Λ(𝑞, −𝑝) with 𝜖 ∈ {±1} is unbreakable if
and only if [𝐼] contains at most one vertex with high weight.

Definition 3.7. For two intervals [𝐼] and [𝐽] with left endpoints 𝑖0, 𝑗0 and right endpoints 𝑖1, 𝑗1,
say that [𝐼] and [𝐽] are distant if either 𝑖1 + 1 < 𝑗0 or 𝑗1 + 1 < 𝑖0, that [𝐼] and [𝐽] share a common
end if 𝑖0 = 𝑗0 or 𝑖1 = 𝑗1, and that [𝐼] and [𝐽] are consecutive if 𝑖1 + 1 = 𝑗0 or 𝑗1 + 1 = 𝑖0. Write
[𝐼] ≺ [𝐽] if 𝐼 ⊂ 𝐽 and [𝐼] and [𝐽] share a common end, and [𝐼] † [𝐽] if they are consecutive. If [𝐼]
and [𝐽] are either consecutive or share a common end, say that they abut. If 𝐼 ∩ 𝐽 is non-empty
and [𝐼] and [𝐽] do not share a common end, write [𝐼] ⋔ [𝐽].

Direct computations show the following lemma.

Lemma 3.8. Let [𝐼], [𝐽] be two intervals. Then

⟨[𝐼], [𝐽]⟩ =
⎧⎪⎪⎨⎪⎪⎩

0, [𝐼] and [𝐽] are distant,|[𝐼 ∩ 𝐽]| − 1, [𝐼] and [𝐽] share a common end,
−1, [𝐼] and [𝐽] are consecutive,|[𝐼 ∩ 𝐽]| − 2, [𝐼] ⋔ [𝐽].

Proposition 3.9 [9, Corollary 3.5(2)]. The lattice Λ(𝑞, −𝑝) is indecomposable; that is, Λ(𝑞, −𝑝) is
not the direct sum of two non-trivial lattices.

Proposition 3.10 (Proposition 3.6 of [9]). If Λ(𝑞, 𝑝) ≅ Λ(𝑞′, 𝑝′), then 𝑞 = 𝑞′ and either 𝑝 ≡ 𝑝′ or
𝑝𝑝′ ≡ 1 (mod 𝑞).

3.2 Changemaker lattices

When a lattice 𝐿 is isomorphic to 𝜎⟂, the orthogonal complement of a changemaker vector 𝜎 ∈

ℤ𝑛+2, 𝐿 is called a changemaker lattice.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 853

Definition 3.11. The standard basis of 𝜎⟂ is the collection 𝑆 = {𝑣1, … , 𝑣𝑛+1}, where

𝑣𝑗 =

(
2𝑒0 +

𝑗−1∑
𝑖=1

𝑒𝑖

)
− 𝑒𝑗,

whenever 𝜎𝑗 = 1 + 𝜎0 +⋯ + 𝜎𝑗−1, and

𝑣𝑗 =

(∑
𝑖∈𝐴

𝑒𝑖

)
− 𝑒𝑗

whenever 𝜎𝑗 =
∑

𝑖∈𝐴 𝜎𝑖 , with𝐴 ⊂ {0, … , 𝑗 − 1} chosen tomaximize the quantity
∑

𝑖∈𝐴 2
𝑖 . A vector

𝑣𝑗 ∈ 𝑆 is called tight in the first case, just right in the second case as long as 𝑖 < 𝑗 − 1 and 𝑖 ∈ 𝐴

implies that 𝑖 + 1 ∈ 𝐴, and gappy if there is some index 𝑖with 𝑖 ∈ 𝐴, 𝑖 < 𝑗 − 1, and 𝑖 + 1 ∉ 𝐴. Such
an index, 𝑖, is a gappy index for 𝑣𝑗 .

Definition 3.12. For 𝑣 ∈ ℤ𝑛+2, supp 𝑣 = {𝑖|⟨𝑒𝑖, 𝑣⟩ ≠ 0}.

Lemma 3.13 (Lemma 3.12 (3) in [9]). If |𝑣𝑘+1| = 2, then 𝑘 is not a gappy index for any 𝑣𝑗 with
𝑗 ∈ {1, … , 𝑛 + 1}.

Lemma3.14 (Lemma 3.13 in [9]).Each 𝑣𝑗 ∈ 𝑆 is irreducible. Furthermore, for any𝐴 ⊂ {0, 1, … , 𝑗 −

1}, if the vector

−𝑒𝑗 +
∑
𝑖∈𝐴

𝑒𝑖

is in 𝜎⟂, then it is irreducible.

Lemma 3.15. Let 𝑣 =
∑

𝑖∈𝐴 𝑏𝑖𝑒𝑖 ∈ 𝜎⟂, with𝐴 ⊂ {0, 1, … , 𝑛 + 1} and each 𝑏𝑖 ∈ {−1, 1}. If 𝑣 = 𝑥 + 𝑦

with ⟨𝑥, 𝑦⟩ ⩾ 0, then there exists a subset 𝐵 ⊂ 𝐴 such that

𝑥 =
∑
𝑖∈𝐵

𝑏𝑖𝑒𝑖, 𝑦 =
∑

𝑖∈𝐴⧵𝐵

𝑏𝑖𝑒𝑖.

Proof. Let𝑥 =
∑
𝑥𝑖𝑒𝑖, 𝑦 =

∑
𝑦𝑖𝑒𝑖 . Since𝑥𝑖 + 𝑦𝑖 ∈ {−1, 0, 1},𝑥𝑖𝑦𝑖 ⩽ 0. If ⟨𝑥, 𝑦⟩ ⩾ 0, then each𝑥𝑖𝑦𝑖 =

0, namely, one of 𝑥𝑖, 𝑦𝑖 is 0. So our conclusion holds. □

Lemma 3.16 (Lemma 3.15 in [9]). If 𝑣𝑗 ∈ 𝑆 is breakable, then it is tight.

Lemma 3.17 (Lemma 4.2(1) in [9]). If Λ(𝑞, −𝑝) is isomorphic to a changemaker lattice, then it
contains at most one tight standard basis vector.

Lemma 3.18 (Lemma 3.12(1) in [9]). For any 𝑣𝑗 ∈ 𝑆, we have 𝑗 − 1 ∈ supp(𝑣𝑗).

Definition 3.19. If 𝑇 is a set of irreducible vectors in a linear lattice Λ(𝑞, −𝑝), the intersection
graph 𝐺(𝑇) has vertex set 𝑇, and an edge between 𝑣 and 𝑤 if the intervals corresponding to 𝑣 and
𝑤 abut. We write 𝑣 ∼ 𝑤 if 𝑣 and 𝑤 are connected in 𝐺(𝑇).
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854 BALLINGER et al.

Lemma 3.20. If 𝑣, 𝑤 are irreducible elements of a linear lattice and the intervals corresponding [𝑣]
and [𝑤] abut, then ⟨𝑣, 𝑤⟩ ≠ 0.

Lemma 3.21 (Lemma 4.4 in [9]). If 𝑣𝑖 and 𝑣𝑗 are distinct unbreakable standard basis vectors with|𝑣𝑖|, |𝑣𝑗| ⩾ 3, then |⟨𝑣𝑖, 𝑣𝑗⟩| ⩽ 1, with equality if and only if [𝑣𝑖] † [𝑣𝑗].

Lemma 3.22 (Corollary 4.5 in [9]). If 𝑣𝑖 and 𝑣𝑗 are distinct unbreakable standard basis vectors with|𝑣𝑖|, |𝑣𝑗| ⩾ 3, then the high weight vertices contained in [𝑣𝑖], [𝑣𝑗] are different.

Definition 3.23. A claw in a graph 𝐺 is a quadruple (𝑣; 𝑤1, 𝑤2, 𝑤3) of vertices such that 𝑣
neighbors all the 𝑤𝑖 , but no two of the 𝑤𝑖 neighbor each other.

Lemma 3.24 (Lemma 4.8 of [9]). For any set 𝑇 of irreducible elements in a linear lattice, the
intersection graph 𝐺(𝑇) has no claws.

Definition 3.25. Given a set 𝑇 of unbreakable elements in a linear lattice and 𝑣1, 𝑣2, 𝑣3 ∈ 𝑇,
(𝑣1, 𝑣2, 𝑣3) is a heavy triple if |𝑣𝑖| ⩾ 3, and if each pair among the 𝑣𝑖 is connected by a path in 𝐺(𝑇)
disjoint from the third.

Lemma3.26 (Based on Lemma 4.10 of [9]).For any set𝑇 of unbreakable elements in a linear lattice,
𝐺(𝑇) has no heavy triples.

4 THE TOPOLOGY OF CERTAIN COBORDISMS

In this section, we will consider the topology of a certain cobordism 𝑊 ∶ 𝑌0 → 𝑌1. We assume
that 𝑊 is obtained by adding 𝑛 + 1 two-handles along a link 𝐿 ⊂ 𝑌0, such that one component
𝐿0 of 𝐿 represents a 2-torsion in 𝐻1(𝑌0), and all other components of 𝐿 are null-homologous in
𝑌0. Moreover, we assume that |𝐻1(𝑌0)| = 4 and𝑊 is negative definite. Under these assumptions,
𝑌1 is a rational homology sphere. Let 𝜄𝑖 ∶ 𝑌𝑖 → 𝑊 be the inclusion map, 𝜄∗

𝑖
∶ 𝐻2(𝑊) → 𝐻2(𝑌𝑖) be

the induced maps on cohomology, and 𝜄𝑠
𝑖
∶ Spinc(𝑊) → Spinc(𝑌𝑖) be the induced maps on Spinc,

𝑖 = 0, 1.
We make the further assumption that 𝑌0 is the boundary of a compact 4-manifold 𝑍0 with

𝐻1(𝑍0) ≅ ℤ∕2ℤ and𝐻2(𝑍0) = 0, and 𝐿0 is null-homologous in 𝑍0. Let 𝑍 = 𝑍0 ∪𝑌0 𝑊.
From the handle structure of𝑊, we can compute

𝐻1(𝑊) ≅ ℤ∕2ℤ,𝐻2(𝑊) ≅ ℤ𝑛+1,𝐻1(𝑊,𝑌𝑖) = 0,𝐻2(𝑊,𝑌𝑖) ≅ ℤ𝑛+1, 𝑖 = 0, 1.

By the Universal Coefficient Theorem,

𝐻2(𝑊) ≅ ℤ𝑛+1 ⊕ ℤ∕2ℤ.

In particular, there exists a unique torsion class 𝛼 ∈ 𝐻2(𝑊). Let 𝛼𝑖 = 𝜄∗
𝑖
(𝛼), 𝑖 = 0, 1.

Since 𝑍 is obtained by adding two-handles to 𝑍0, such that all attaching curves are
null-homologous in 𝑍0, we have

𝐻1(𝑍) ≅ 𝐻1(𝑍0) ≅ ℤ∕2ℤ,

and the map𝐻2(𝑍) → 𝐻2(𝑍, 𝑍0) is an isomorphism.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 855

Lemma 4.1. The map 𝜄∗
𝑊,𝑍

∶ 𝐻2(𝑍) → 𝐻2(𝑊) is injective with image containing 𝛼. The map
𝜄∗
𝑌0,𝑍0

∶ 𝐻2(𝑍0) → 𝐻2(𝑌0) is injective with image generated by 𝛼0. Moreover, [𝐿0] ∈ 𝐻1(𝑌0) is the
Poincaré dual of 𝛼0.

Proof. Using the long exact sequences

𝐻2(𝑍,𝑊) → 𝐻2(𝑍) → 𝐻2(𝑊), 𝐻2(𝑍0, 𝑌0) → 𝐻2(𝑍0) → 𝐻2(𝑌0),

and the fact that 0 = 𝐻2(𝑍0, 𝑌0) ≅ 𝐻2(𝑍,𝑊), we get that 𝜄∗
𝑊,𝑍

and 𝜄∗
𝑌0,𝑍0

are injective.
By the Universal Coefficient Theorem,𝐻2(𝑍) ≅ 𝐻𝑜𝑚(𝐻2(𝑍), ℤ) ⊕ ℤ∕2ℤ, so it has a unique 2-

torsion 𝛼. Since 𝜄∗
𝑊,𝑍

is injective, 𝜄∗
𝑊,𝑍

(𝛼) is a 2-torsion in 𝐻2(𝑊), which must be 𝛼. Let 𝛼0 be the
restriction of 𝛼 to 𝐻2(𝑍0). Using the commutative diagram

we see that 𝜄∗
𝑌0,𝑍0

(𝛼0) = 𝛼0. Since𝐻2(𝑍0) ≅ ℤ∕2ℤ, the image of 𝜄∗
𝑌0,𝑍0

is generated by 𝛼0.
Since 𝐿0 is null-homologous in 𝑍0, there exists a properly embedded oriented surface 𝐹0 ⊂ 𝑍0

such that 𝜕𝐹0 = 𝐿0. Thus the image of the Poincaré dual of [𝐹0] under 𝜄∗𝑌0,𝑍0 is the Poincaré dual
of [𝐿0]. Since both [𝐿0] and [𝛼0] have order 2, and 𝜄∗𝑌0,𝑍0(𝛼0) = 𝛼0, we get that [𝐿0] is the Poincaré
dual of 𝛼0. □

Lemma 4.2.

(1) For 𝑖 = 0, 1, we have ker 𝜄∗
𝑖
≅ 𝐻2(𝑊,𝑌𝑖), and 𝜄∗𝑖 is surjective. In particular, 𝛼𝑖 ≠ 0 in𝐻2(𝑌𝑖).

(2) The kernel of the restriction map (𝜄′
0
)∗ ∶ ker 𝜄∗

1
→ 𝐻2(𝑌0) is isomorphic to 𝐻2(𝑊, 𝜕𝑊), and its

image is generated by 𝛼0.

Proof.

(1) The first statement follows from the long exact sequence

0 = 𝐻1(𝑌𝑖) → 𝐻2(𝑊,𝑌𝑖) → 𝐻2(𝑊)
𝜄∗
𝑖

⟶ 𝐻2(𝑌𝑖) → 𝐻3(𝑊,𝑌𝑖) = 0.

It follows that ker 𝜄∗
𝑖
is torision-free, so 𝛼 ∉ ker 𝜄∗

𝑖
. Thus 𝛼𝑖 ≠ 0.

(2) By (1), the map (𝜄′
0
)∗ can be identified with 𝐻2(𝑊,𝑌1) → 𝐻2(𝑌0), which is part of the long

exact sequence

0 = 𝐻1(𝜕𝑊,𝑌1) → 𝐻2(𝑊, 𝜕𝑊) → 𝐻2(𝑊,𝑌1) → 𝐻2(𝜕𝑊,𝑌1) = 𝐻2(𝑌0).

Thus ker(𝜄′
0
)∗ is𝐻2(𝑊, 𝜕𝑊).

By Poincaré duality, (𝜄′
0
)∗ can be identified with the boundary map 𝜕′

0
∶ 𝐻2(𝑊,𝑌0) → 𝐻1(𝑌0). By

the handle decomposition of𝑊, we see that the image of 𝜕′
0
is generated by [𝐿0]. By Lemma 4.1,

im(𝜄′
0
)∗ is generated by 𝛼0. □
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856 BALLINGER et al.

Corollary 4.3. For each 𝔱 ∈ Spinc(𝑌1), there exists a subset

ℜ(𝔱) = {𝔯0, 𝔯1 = 𝔯0 + 𝛼0} ⊂ Spinc(𝑌0)

such that for each 𝔯 ∈ Spinc(𝑌0), the set

(𝜄𝑠0, 𝜄
𝑠
1)
−1(𝔯, 𝔱) ∶= (𝜄𝑠0)

−1(𝔯) ∩ (𝜄𝑠1)
−1(𝔱) (18)

is non-empty if and only if 𝔯 ∈ ℜ(𝔱). Moreover, the set (18) is an 𝐻2(𝑊, 𝜕𝑊)–torsor when it is non-
empty.

Proof. This follows from Lemma 4.2 and the fact that Spinc is an𝐻2-torsor. □

By the long exact sequence

0 = 𝐻2(𝑌0) → 𝐻2(𝑊) → 𝐻2(𝑊,𝑌0) → 𝐻1(𝑌0),

𝐻2(𝑊) embeds as an index-2 subgroup of𝐻2(𝑊,𝑌0) ≅ ℤ𝑛+1. Thus we can extend the intersection
form on𝐻2(𝑊) to𝐻2(𝑊,𝑌0), with value in

1

4
ℤ. Let

 ≅ 𝐻2(𝑊,𝑌0) ≅ 𝐻2(𝑍, 𝑍0) ≅ 𝐻2(𝑍)

be the intersection lattice on the pair (𝑊,𝑌0). Suppose that the generators corresponding to the
two-handles are 𝑥0, … , 𝑥𝑛, where 𝑥0 corresponds to the two-handle attached along 𝐿0. Let

0 = ⟨2𝑥0, 𝑥1, … , 𝑥𝑛⟩
be the sublattice of  generated by 2𝑥0, 𝑥1, … , 𝑥𝑛; then 0 can be identified with the intersection
lattice𝐻2(𝑊). Let

∗ = 𝐻𝑜𝑚(, ℤ),∗
0 = 𝐻𝑜𝑚(0, ℤ) ⊃ ∗.

Using the inner product on , we can embed ∗ and ∗
0
as sublattices of ⊗ℚ.

Let

̃ = {𝑦 ∈ ∗
0|⟨𝑦, 2𝑥0⟩ ≡ ⟨2𝑥0, 2𝑥0⟩, ⟨𝑦, 𝑥𝑗⟩ ≡ ⟨𝑥𝑗, 𝑥𝑗⟩ (mod 2), 𝑗 > 0}.

Let𝐻
2
(𝑊) = 𝐻2(𝑊)∕Tors = ∗

0
, and let 𝑐1 ∶ Spinc(𝑊) → 𝐻

2
(𝑊) be the composition of the map

𝑐1 ∶ Spin
c(𝑊) → 𝐻2(𝑊) and the quotient map𝐻2(𝑊) → 𝐻

2
(𝑊). Then ̃ is the image of 𝑐1.

Proposition 4.4.

(1) The quotient Spinc(𝑌1)∕⟨𝛼1⟩ can be identified with ̃∕2.
(2) Under the previous identification, suppose that the ⟨𝛼1⟩–orbit {𝔱, 𝔱 + 𝛼1} is identifiedwith 𝑦 + 2

for some 𝑦 ∈ ̃. Letℜ(𝔱) = {𝔯0, 𝔯1}. Then there exist 𝑦0, 𝑦1 ∈ 𝑦 + 2, such that

𝑐1((𝜄
𝑠
0, 𝜄

𝑠
1)
−1(𝔯0, 𝔱)) = 𝑦0 + 20, 𝑐1((𝜄

𝑠
0, 𝜄

𝑠
1)
−1(𝔯1, 𝔱)) = 𝑦1 + 20,
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THE PRISMMANIFOLD REALIZATION PROBLEM III 857

and

𝑐1((𝜄
𝑠
0, 𝜄

𝑠
1)
−1(𝔯0, 𝔱 + 𝛼1)) = 𝑦1 + 20, 𝑐1((𝜄

𝑠
0, 𝜄

𝑠
1)
−1(𝔯1, 𝔱 + 𝛼1)) = 𝑦0 + 20.

Proof.

(1) By Lemma 4.2, every 𝔱 ∈ Spinc(𝑌1) is in the image of 𝜄𝑠
1
, and 𝔰1, 𝔰2 ∈ Spinc(𝑊) restrict to

the same 𝔱 ∈ Spinc(𝑌1) if and only if 𝔰1 − 𝔰2 ∈ 𝐻2(𝑊,𝑌1) ≅ 𝐻2(𝑊,𝑌0) = . So Spinc(𝑌1) ≅

Spinc(𝑊)∕. Consider the map 𝑐1 ∶ Spinc(𝑊) → ̃. It is surjective, and 𝑐1(𝔰1) = 𝑐1(𝔰2) if and
only if 𝔰1 − 𝔰2 ∈ ⟨𝛼⟩. Using the formula

𝑐1(𝔰1) − 𝑐1(𝔰2) = 2(𝔰1 − 𝔰2)

we get that Spinc(𝑌1)∕⟨𝛼1⟩ ≅ Spinc(𝑊)∕( + ⟨𝛼⟩) ≅ ̃∕2.
(2) By Corollary 4.3, there exist 𝔰0, 𝔰1 ∈ Spinc(𝑊), such that

(𝜄𝑠0, 𝜄
𝑠
1)
−1(𝔯0, 𝔱) = 𝔰0 + 0, (𝜄𝑠0, 𝜄

𝑠
1)
−1(𝔯1, 𝔱) = 𝔰1 + 0.

Since

𝜄𝑠0(𝔰1 + 𝛼) = 𝜄𝑠0(𝔰1) + 𝛼0 = 𝔯1 + 𝛼0 = 𝔯0, 𝜄
𝑠
0(𝔰0 + 𝛼) = 𝔯1,

we also have

(𝜄𝑠0, 𝜄
𝑠
1)
−1(𝔯0, 𝔱 + 𝛼1) = 𝔰1 + 𝛼 + 0, (𝜄𝑠0, 𝜄

𝑠
1)
−1(𝔯1, 𝔱 + 𝛼1) = 𝔰0 + 𝛼 + 0.

Applying 𝑐1 to the above equalities, we get our conclusion. □

For any 𝔰 ∈ Spinc(𝑊), let

g𝑟(𝑊, 𝔰) =
𝑐2
1
(𝔰) + 𝑏2(𝑊)

4
. (19)

For any 𝔱 ∈ Spinc(𝑌1), let

𝐷𝑊(𝑌1, 𝔱) = max
𝔰∈Spinc(𝑊)

𝔰|𝑌1=𝔱
(𝑑(𝑌0, 𝔰|𝑌0) + g𝑟(𝑊, 𝔰)). (20)

Lemma 4.5. There are exactly two Spin𝑐 structures 𝔢0, 𝔢1 ∈ Spinc(𝑌0) which can be extended over
𝑍0. Moreover,

𝔢1 = 𝔢0 + 𝛼0, 𝑑(𝑌0, 𝔢𝑖) = 0, 𝑖 = 0, 1.

Proof. By Lemma 4.1, 𝛼0 is the restriction of a cohomology class in𝐻2(𝑍0). Let 𝔢0 ∈ Spinc(𝑌0) be a
Spin𝑐 structure which is the restriction of a Spin𝑐 structure on 𝑍0, then 𝔢1 ∶= 𝔢0 + 𝛼0 also extends
over𝑍0. Since𝐻2(𝑍0) ≅ ℤ∕2ℤ, 𝔢0, 𝔢1 are the only two Spin𝑐 structures which can be extended over
𝑍0. It follows from [15, Proposition 9.9] that 𝑑(𝑌0, 𝔢𝑖) = 0. □
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858 BALLINGER et al.

Lemma 4.6. The image of

𝑐1 ∶ (𝜄
𝑠
0)
−1({𝔢0, 𝔢1}) → 𝐻

2
(𝑊)

is  ∶= Char().

Proof. Let 𝔰0 be the restriction of a Spin𝑐 structure on 𝑍 to𝑊, then 𝔰0 ∈ (𝜄𝑠
0
)−1({𝔢0, 𝔢1}). Clearly,

𝑐1(𝔰0) ∈ . By Lemma 4.1, 𝜄∗
𝑊,𝑍

is injective, so the image of 𝐻2(𝑍) in 𝐻
2
(𝑊) can be identified

with 𝐻𝑜𝑚(𝐻2(𝑍), ℤ) = 𝐻𝑜𝑚(𝐻2(𝑊,𝑌0), ℤ) = ∗. Thus 𝑐1((𝜄𝑠0)
−1({𝔢0, 𝔢1})) is a 2∗-torsor. Since

 is the unique 2∗-torsor containing 𝑐1(𝔰0), our conclusion holds. □

Corollary 4.7. The sum ∑
𝔱∈Spinc(𝑌1)

𝐷𝑊(𝑌1, 𝔱) (21)

only depends on the lattice  and the correction terms of 𝑌0. In fact, if we write (21) as a function

D(, {𝑑0, 𝑑1})

of  and the multiset {𝑑0, 𝑑1} of the correction terms of the two Spin𝑐 structures other than 𝔢0, 𝔢1,
then

D(, {𝑑0 + 𝑐, 𝑑1 + 𝑐}) = D(, {𝑑0, 𝑑1}) + 𝑐|∗
0∕| (22)

for any 𝑐 ∈ ℚ. Note that, by Proposition 4.4, |𝐻1(𝑌1)| = 2|∗
0
∕|.

Proof. We will give the procedure of computing (21) from  and the correction terms of 𝑌0. Let
𝔬0, 𝔬1 be the two Spin𝑐 structures other than 𝔢0, 𝔢1 on 𝑌0. We choose [𝑧] ∈ ̃∕2. By Proposi-
tion 4.4, [𝑧] corresponds to a pair of Spin𝑐 structures 𝔱0, 𝔱1 = 𝔱0 + 𝛼1 ∈ Spinc(𝑌1). There are exactly
two 20-torsors contained in 𝑧 + 2, denoted by 0, 1.
Next we check whether 𝑧 + 2 is contained in . If it is contained in , it follows from

Lemma 4.6 that each 𝔱𝑖 is cobordant to 𝔢0 and 𝔢1, 𝑖 = 0, 1. Since 𝑑(𝑌0, 𝔢0) = 𝑑(𝑌0, 𝔢1) = 0, by
Proposition 4.4,

𝐷𝑊(𝑌1, 𝔱0) = 𝐷𝑊(𝑌1, 𝔱1) = 0 + max
𝑦∈𝑧+2

−⟨𝑦, 𝑦⟩ + 𝑏2(𝑊)

4
.

If 𝑧 + 2 is not contained in , then each 𝔱𝑖 is cobordant to 𝔬0 and 𝔬1. By Proposition 4.4, the
multiset {𝐷𝑊(𝑌1, 𝔱0), 𝐷𝑊(𝑌1, 𝔱1)} is equal to{

max

{
𝑑(𝑌0, 𝔬0) + max

𝑦∈0

−⟨𝑦, 𝑦⟩ + 𝑏2(𝑊)

4
, 𝑑(𝑌0, 𝔬1) + max

𝑦∈1

−⟨𝑦, 𝑦⟩ + 𝑏2(𝑊)

4

}
,

max

{
𝑑(𝑌0, 𝔬0) + max

𝑦∈1

−⟨𝑦, 𝑦⟩ + 𝑏2(𝑊)

4
, 𝑑(𝑌0, 𝔬1) + max

𝑦∈0

−⟨𝑦, 𝑦⟩ + 𝑏2(𝑊)

4

}}
.

Finally, to get (21), we add all the 𝐷𝑊(𝑌1, 𝔱0) + 𝐷𝑊(𝑌1, 𝔱1) together, for all [𝑧] ∈ ̃∕2.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 859

The equality (22) follows from the above procedure, since exactly 1

2
|𝐻1(𝑌1)| values of𝐷𝑊(𝑌1, 𝔱)

are increased by 𝑐 after increasing 𝑑(𝑌0, 𝔬𝑖) by 𝑐, 𝑖 = 0, 1. □

5 SHARP COBORDISMS

In this section, we will generalize the notion of sharp 4-manifolds defined by Greene [10] to 4-
dimensional cobordisms, and prove that certain cobordisms between prism manifolds are sharp.
Recall that a smooth, compact, negative definite 4-manifold 𝑋 with 𝜕𝑋 = 𝑌 is sharp if for every
𝔱 ∈ Spin𝑐(𝑌), there exists some 𝔰 ∈ Spin𝑐(𝑋) extending 𝔱 such that

𝑐1(𝔰)
2 + 𝑏2(𝑋) = 4𝑑(𝑌, 𝔱)

Definition 5.1. Let𝑊 ∶ 𝑌0 → 𝑌1 be a smooth, connected, negative definite cobordism between
two rational homology spheres 𝑌0 and 𝑌1. We say𝑊 is sharp, if for any 𝔱 ∈ Spinc(𝑌1), we have

𝑑(𝑌1, 𝔱) = 𝐷𝑊(𝑌1, 𝔱).

Here 𝐷𝑊 is defined using the formula (20).

Lemma 5.2. Let 𝑌1, 𝑌2, 𝑌3 be rational homology spheres, 𝑊1 ∶ 𝑌1 → 𝑌2 and 𝑊2 ∶ 𝑌2 → 𝑌3 be
two negative definite cobordisms. If𝑊 = 𝑊1 ∪𝑌2 𝑊2 is sharp, then𝑊2 is sharp.

Proof. Let 𝔰 ∈ Spinc(𝑊) and let 𝔰𝑖 = 𝔰|𝑊𝑖 , 𝑖 = 1, 2, then

𝑐21(𝔰) = 𝑐21(𝔰1) + 𝑐21(𝔰2).

Our conclusion follows from the above equality. □

5.1 A Kirby diagram of 𝑷(𝒑, 𝒒)

Suppose that
𝑝

𝑞
= [𝑎−1, 𝑎0, … , 𝑎𝑛]

−

as in (14), where each 𝑎𝑖 is ⩾ 2 when 𝑖 ⩾ 0.
Figure 2 is a surgery diagram of 𝑃(𝑝, 𝑞). The leftmost two components give rise to a surgery

diagram of 𝑃(𝑎−1, 1), and other components give rise to a negative definite cobordism

𝑊(𝑝, 𝑞) ∶ 𝑃(𝑎−1, 1) → 𝑃(𝑝, 𝑞).

If we replace the leftmost component, which is unknotted with slope 0, with a dotted circle
representing a one-handle, we get a negative definite 4-manifold 𝑍(𝑝, 𝑞) bounded by 𝑃(𝑝, 𝑞), and
the two leftmost components give rise to a rational homology ball 𝑍𝑎−1 bounded by 𝑃(𝑎−1, 1), with
𝐻1(𝑍𝑎−1) = ℤ∕2ℤ.
The main result of this section is the following proposition.

Proposition 5.3. The cobordism𝑊(𝑝, 𝑞) is sharp.
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860 BALLINGER et al.

F IGURE 2 Amanifold bounded by 𝑃(𝑝, 𝑞). If we replace the leftmost component with a dotted circle, we
get a negative definite 4-manifold 𝑍(𝑝, 𝑞)

For simplicity, we only prove the case 𝑞 < 𝑝 < 2𝑞. The proof of the general case is similar. From
now on, let𝑊 = 𝑊(𝑝, 𝑞).

5.2 More Kirby diagrams

We will consider three other cobordisms.
When 𝑞 < 𝑝 < 2𝑞, 𝑎−1 = 2. We have

2𝑞 − (𝑝 − 𝑞)

𝑞 − (𝑝 − 𝑞)
= 1 +

𝑞

2𝑞 − 𝑝
= [𝑎0 + 1, 𝑎1, … , 𝑎𝑛]

−.

Consider the following surgery diagram of 𝑃(𝑝 − 𝑞, 𝑞). By [2], this diagram gives rise to a sharp
4-manifold bounded by 𝑃(𝑝 − 𝑞, 𝑞). The component with label−4 gives rise to 𝑃(1, 1) = 𝐿(4, −1),
and the other two-handles give rise to a cobordism

𝑊1 ∶ 𝑃(1, 1) → 𝑃(𝑝 − 𝑞, 𝑞).

Let
𝑝 + 𝑞

𝑝
= [𝑎′0, 𝑎

′
1, … , 𝑎′𝑚]

−.

By [1], 𝑃(𝑝,−𝑞) has a surgery diagram as in Figure 4, which gives rise to a sharp 4–manifold
bounded by 𝑃(𝑝,−𝑞). The two components with label−2 give rise to 𝑃(0, 1) = ℝ𝑃3#ℝ𝑃3, and the
other two-handles give rise to a cobordism

𝑊′ ∶ 𝑃(0, 1) → 𝑃(𝑝,−𝑞).

Using the continued fraction

−2𝑞 − (𝑝 − 𝑞)

−𝑞 − (𝑝 − 𝑞)
=

𝑝 + 𝑞

𝑝
= [𝑎′0, 𝑎

′
1, … , 𝑎′𝑚]

−,

by [2], we get a surgery diagram of 𝑃(𝑝 − 𝑞,−𝑞) as in Figure 5, which gives rise to a sharp 4-
manifold bounded by 𝑃(𝑝 − 𝑞,−𝑞). The component with label −4 gives rise to 𝑃(1, 1) = 𝐿(4, −1),
and the other two-handles give rise to a cobordism

𝑊′
1 ∶ 𝑃(1, 1) → 𝑃(𝑝 − 𝑞,−𝑞).
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THE PRISMMANIFOLD REALIZATION PROBLEM III 861

F IGURE 3 A sharp 4-manifold 𝑋(𝑝 − 𝑞, 𝑞) bounded by 𝑃(𝑝 − 𝑞, 𝑞)

By Lemma 5.2,𝑊1,𝑊
′,𝑊′

1
are all sharp cobordisms.

Lemma 5.4. The intersection lattices on (𝑊, 𝑃(2, 1)) and (𝑊1, 𝑃(1, 1)) are isomorphic; also, the
intersection lattices on (𝑊′, 𝑃(0, 1)) and (𝑊′

1
, 𝑃(1, 1)) are isomorphic.

Proof. In Figure 2, consider the knot 𝐿0 with label −𝑎0. The canonical longitude on 𝐿0 is
clearly rationally null-homologous in 𝑃(2, 1) ⧵ 𝐿0. As a result, the square of the generator of
𝐻2(𝑊, 𝑃(2, 1)) corresponding to the two-handle attached along 𝐿0 is −𝑎0. In Figure 3, consider
the knot𝐾0 with label−(𝑎0 + 1). If the framing on𝐾0 is−1, the manifold we get by doing surgery
on the two leftmost components is 𝑃(1, 0)which has 𝑏1 > 0. Thus the slope−1 on 𝐾0 is rationally
null-homologous in 𝑃(1, 1) ⧵ 𝐾0. As a result, the square of the generator of𝐻2(𝑊1, 𝑃(1, 1)) corre-
sponding to the two-handle attached along 𝐾0 is −𝑎0. So the intersection lattices on (𝑊, 𝑃(2, 1))

and (𝑊1, 𝑃(1, 1)) are isomorphic.
Similarly, we see that the square of the generator of 𝐻2(𝑊

′, 𝑃(0, 1)) and 𝐻2(𝑊
′
1
, 𝑃(1, 1)) cor-

responding to the two-handle attached along the knot with label −𝑎′
0
is −(𝑎′

0
− 1). So the

intersection lattices are isomorphic. □

Lemma 5.5. All four cobordisms 𝑊,𝑊1,𝑊
′,𝑊′

1
satisfy the assumptions in the beginning of

Section 4.

Proof. The cobordism𝑊 satisfies the assumptions by its construction.
For𝑊1,𝑊

′
1
, note that 𝑃(1, 1) bounds a rational homology ball 𝑍1 with 𝐻1(𝑍1) ≅ ℤ∕2ℤ. Since

𝐻1(𝑃(1, 1)) is cyclic, the kernel of the surjective map 𝐻1(𝑃(1, 1)) → 𝐻1(𝑍1) is 2𝐻1(𝑃(1, 1)). From
Figures 3 and 5, we see that the knot with label −(𝑎0 + 1) or −𝑎′

0
represents an element in

2𝐻1(𝑃(1, 1)). So𝑊1,𝑊
′
1
satisfy the assumptions.

For𝑊′, the rational ball bounded byℝ𝑃3#ℝ𝑃3 is 𝑍0 = (ℝ𝑃3 ⧵ 𝐵3) × 𝐼. Clearly, the knot labeled
with −𝑎′

0
in Figure 4 is null-homologous in 𝑍0. □

5.3 The proof of Proposition 5.3

Recall from Section 5.1 that 𝑃(𝑎, 1) bounds a rational homology ball 𝑍𝑎 with 𝐻1(𝑍𝑎) ≅ ℤ∕2ℤ.
There are exactly two Spin𝑐 structures 𝔢0, 𝔢1 ∈ Spinc(𝑃(𝑎, 1)) which extend over 𝑍𝑎. Let 𝔬0, 𝔬1 ∈
Spinc(𝑃(𝑎, 1)) be two other Spin𝑐 structures, such that 𝑑(𝑃(𝑎, 1), 𝔬1) ⩾ 𝑑(𝑃(𝑎, 1), 𝔬0).
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862 BALLINGER et al.

F IGURE 4 A sharp 4-manifold bounded by 𝑃(𝑝,−𝑞)

F IGURE 5 A sharp 4-manifold bounded by 𝑃(𝑝 − 𝑞,−𝑞)

Lemma 5.6. The correction terms of 𝑃(𝑎, 1) are

𝑑(𝑃(𝑎, 1), 𝔢0) = 𝑑(𝑃(𝑎, 1), 𝔢1) = 0,

𝑑(𝑃(𝑎, 1), 𝔬0) = −
𝑎 + 2

4
, 𝑑(𝑃(𝑎, 1), 𝔬1) = −

𝑎 − 2

4
.

Proof. The correction terms of 𝑃(𝑎, 1) are computed in [6, Example 15], and they are
{0, 0, −𝑎+2

4
, 𝑎−2

4
}. It is a standard fact that 𝑑(𝑃(𝑎, 1), 𝔢𝑖) = 0, 𝑖 = 0, 1 [15, Proposition 9.9]. So we

must have 𝑑(𝑃(𝑎, 1), 𝔬𝑖) = −𝑎+2

4
+ 𝑖, 𝑖 = 0, 1, by our choice of 𝔬0, 𝔬1. □

Proof of Proposition 5.3 in the case 𝑞 < 𝑝 < 2𝑞. By [15, Theorem 9.6],

𝑑(𝑃(𝑝, 𝑞), 𝔱) ⩾ 𝐷𝑊(𝑃(𝑝, 𝑞), 𝔱). (23)

Also, since𝑊1,𝑊
′,𝑊′

1
are sharp, we have

𝑑(𝑃(𝑝 − 𝑞, 𝑞), 𝔱1) = 𝐷𝑊1
(𝑃(𝑝 − 𝑞, 𝑞), 𝔱1),

𝑑(𝑃(𝑝, −𝑞), 𝔱) = 𝐷𝑊′(𝑃(𝑝, −𝑞), 𝔱)

𝑑(𝑃(𝑝 − 𝑞,−𝑞), 𝔱1) = 𝐷𝑊′
1
(𝑃(𝑝 − 𝑞,−𝑞), 𝔱1).
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THE PRISMMANIFOLD REALIZATION PROBLEM III 863

By Corollary 4.7, Lemma 5.4 and Lemma 5.6,∑
𝔱∈Spinc(𝑃(𝑝,𝑞))

𝐷𝑊(𝑃(𝑝, 𝑞), 𝔱) = −
2𝑞

4
+

∑
𝔱1∈Spin

c(𝑃(𝑝−𝑞,𝑞))

𝐷𝑊1
(𝑃(𝑝 − 𝑞, 𝑞), 𝔱1),

−
2𝑞

4
+

∑
𝔱∈Spinc(𝑃(𝑝,−𝑞))

𝐷𝑊′(𝑃(𝑝, −𝑞), 𝔱) =
∑

𝔱1∈Spin
c(𝑃(𝑝−𝑞,−𝑞))

𝐷𝑊′
1
(𝑃(𝑝 − 𝑞,−𝑞), 𝔱1).

Adding the above two equalities together, and using (23) and the three equalities after it, we get

0 =
∑

𝔱∈Spinc(𝑃(𝑝,𝑞))

𝑑(𝑃(𝑝, 𝑞), 𝔱) +
∑

𝔱∈Spinc(𝑃(𝑝,−𝑞))

𝑑(𝑃(𝑝, −𝑞), 𝔱) (since 𝑃(𝑝, 𝑞) = −𝑃(𝑝,−𝑞))

⩾
∑

𝔱∈Spinc(𝑃(𝑝,𝑞))

𝐷𝑊(𝑃(𝑝, 𝑞), 𝔱) +
∑

𝔱∈Spinc(𝑃(𝑝,−𝑞))

𝐷𝑊′(𝑃(𝑝, −𝑞), 𝔱)

=
∑

𝔱1∈Spin
c(𝑃(𝑝−𝑞,𝑞))

𝐷𝑊1
(𝑃(𝑝 − 𝑞, 𝑞), 𝔱1) +

∑
𝔱1∈Spin

c(𝑃(𝑝−𝑞,−𝑞))

𝐷𝑊′
1
(𝑃(𝑝 − 𝑞,−𝑞), 𝔱1)

=
∑

𝔱1∈Spin
c(𝑃(𝑝−𝑞,𝑞))

𝑑(𝑃(𝑝 − 𝑞, 𝑞), 𝔱1) +
∑

𝔱1∈Spin
c(𝑃(𝑝−𝑞,−𝑞))

𝑑(𝑃(𝑝 − 𝑞,−𝑞), 𝔱1)

= 0.

So the equality in (23) must hold. □

6 THE CHANGEMAKER CONDITIONWHEN 𝒒 < 𝒑 < 𝟐𝒒

6.1 Positive definite manifold with boundary 𝑷(𝟐, 𝟏)

The goal of this subsection is to prove the following proposition.

Proposition 6.1. If𝑋 is a positive definite, simply connected four-manifold with 𝜕𝑋 ≅ 𝑃(2, 1), then
the intersection form of 𝑋 is isomorphic to 𝐷4 ⊕ ℤ𝑛−4 for some 𝑛.

Here, 𝐷𝑘 is the sublattice of ℤ𝑘 consisting of vectors for which the sum of the coefficients is
even.

Lemma 6.2. If 𝐿 ⊂ ℤ𝑛 is an index-two sublattice, then 𝐿 ≅ 𝐷𝑘 ⊕ ℤ𝑛−𝑘 for some 𝑘 ⩾ 1. In fact, there
are indices 𝑖1, … , 𝑖𝑘 such that 𝐿 contains exactly the elements of ℤ𝑛 that have even pairing with 𝑒𝑖1 +
⋯ + 𝑒𝑖𝑘 . There are always two elements 𝑥 ∈ 𝐿 with 𝑏(𝑥, 𝑥) = 0 (mod 1), and the other two elements
satisfy 𝑏(𝑥, 𝑥) = 𝑘∕4 (mod 1).

Proof. Let 𝐿 ⊂ ℤ𝑛 have index two, and let 𝑖1, … , 𝑖𝑘 be an enumeration of the indices 𝑖 for which
𝑒𝑖 ∉ 𝐿. Since 𝐿 has index two, the elements ±𝑒𝑖𝑗 ± 𝑒𝑖𝑗′ are all in 𝐿. Since these elements generate
𝐷𝑘, we have 𝐿 ≅ 𝐷𝑘 ⊕ ℤ𝑛−𝑘.
The dual lattice 𝐿∗ is the set of elements of ℚ𝑛 with integral inner product with each element

of 𝐿, and in this representation we have that 𝐿∗ is the set of vectors with integer components in
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864 BALLINGER et al.

all entries other than 𝑖1, … , 𝑖𝑘, and with the components in entries 𝑖1, … , 𝑖𝑘 either all integers or
all half integers. Therefore, the discriminant group 𝐿 can be represented by the four vectors 0,
𝑧 = 𝑒𝑖1 , and

𝑎 =
1

2

(
𝑒𝑖1 + 𝑒𝑖2 +⋯ + 𝑒𝑖𝑘

)
,

𝑏 =
1

2

(
−𝑒𝑖1 + 𝑒𝑖2 +⋯ + 𝑒𝑖𝑘

)
.

We have ⟨𝑧, 𝑧⟩ = 1 ≡ 0 (mod 1), and ⟨𝑎, 𝑎⟩ = ⟨𝑏, 𝑏⟩ = 𝑘∕4. □

Lemma 6.3. The d-invariant of 𝐿 = 𝐷𝑘 ⊕ ℤ𝑛−𝑘 takes on the values 0, 0, −𝑘∕4, 1 − 𝑘∕4.

Proof. The d-invariant is invariant under stable isomorphisms, so we can assume 𝐿 = 𝐷𝑘. Then
a set of short representatives of the classes of characteristic covectors is (1, … , 1), (−1, 1, … , 1),
(0, … , 0), and (2, 0, … , 0). These have norms 𝑘, 𝑘, 0, and 4. The result now follows: see
equation (13). □

Proof of Proposition 6.1. As in Section 5.1, 𝑃(2, 1) bounds a rational homology ball 𝑍2 with

𝐻1(𝑍2) ≅ ℤ∕2ℤ,𝐻2(𝑍2) = 0.

If 𝑋 is any simply connected positive definite 4-manifold with boundary 𝑃(2, 1), then 𝑋 ∶=

𝑋 ∪𝑃(2,1) (−𝑍2) is a closed, positive definite 4-manifold. Since𝑋 can be obtained from𝑋 by attach-
ing a two-handle, a three-handle and a four-handle, 𝑋 is also simply connected. By [8], 𝑋 has
intersection form ℤ𝑛.
In the long exact sequence for the pair (𝑋, 𝑋), we have

𝐻3(𝑋,𝑋) → 𝐻2(𝑋) → 𝐻2(𝑋) → 𝐻2(𝑋,𝑋) → 𝐻1(𝑋).

We have

𝐻3(𝑋,𝑋) ≅ 𝐻3(𝑍2, 𝜕𝑍2) ≅ 𝐻1(𝑍2) = 0, 𝐻2(𝑋, 𝑋) ≅ 𝐻2(𝑍2) ≅ ℤ∕2ℤ, 𝐻1(𝑋) = 0,

and both𝐻2(𝑋) and𝐻2(𝑋) are torsionfree. Therefore, we have a short exact sequence

0 → 𝐻2(𝑋) → 𝐻2(𝑋) → ℤ∕2ℤ → 0,

so 𝐻2(𝑋) is an index-two subgroup of 𝐻2(𝑋) under the natural inclusion map. Since 𝑋 has inter-
section lattice ℤ𝑛, the intersection lattice of 𝑋 is an index-two sublattice of ℤ𝑛, so, by Lemma 6.2,
is isomorphic to 𝐷𝑘 ⊕ ℤ𝑛−𝑘.
Let 𝑋0 be the positive definite plumbing 4-manifold with intersection form 𝐷4, then 𝑃(2, 1) =

𝜕𝑋0. Since the discriminant group and linking pairing of the intersection form of a 4-manifold are
invariants of its boundary, Lemma 6.2 implies that 𝑘 must be divisible by 4. Since the d-invariant
of the intersection form of a positive definite 4-manifold gives an upper bound on the d-invariant
of its boundary [15] and −𝑋0 is sharp [16], Lemma 6.3 implies 𝑘 ⩽ 4. Therefore, 𝑘 = 4, and the
result follows. □

Corollary 6.4. Any negative definite, simply connected 4-manifoldwith boundary−𝑃(2, 1) is sharp.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 865

Proof. The 4-manifold−𝑋0 is sharp. By Proposition 6.1, any negative definite, simply connected 4-
manifold with boundary−𝑃(2, 1) has the same intersection form as that of−𝑋0#(𝑛 − 4)ℂ𝑃2. □

6.2 The changemaker condition

Whenever 𝑞 < 𝑝 < 2𝑞, using Proposition 5.3, there is a sharp cobordism𝑊 from 𝑃(2, 1) to 𝑃(𝑝, 𝑞).
Suppose 𝑃(𝑝, 𝑞) is positive surgery on some knot𝐾 ⊂ 𝑆3. Let𝑋 = 𝑊 ∪𝑃(𝑝,𝑞) (−𝑊4𝑞(𝐾)), then𝑋 is
a negative definite manifold with boundary−𝑃(2, 1). Since𝑋 is obtained from𝑊4𝑞 (which is sim-
ply connected) by adding two-handles, 𝑋 is simply connected. By combining Corollary 6.4 and
Proposition 6.1, 𝑋 is sharp and has intersection lattice −(𝐷4 ⊕ ℤ𝑛−2). Also, for 𝑍2 the rational
homology ball with boundary 𝑃(2, 1), the manifold 𝑋 = 𝑋 ∪𝑃(2,1) (−𝑍2) is closed, simply con-
nected and negative definite, so has intersection lattice −ℤ𝑛+2. From Kirby diagrams for𝑊 and
𝑍 = 𝑊 ∪𝑃(2,1) (−𝑍2) (see Figure 2), we can also see that the intersection lattice of 𝑍 is the linear
lattice Λ(𝑞, −𝑝) with vertex basis 𝑥0, … , 𝑥𝑛, and the intersection lattice of𝑊 is (as a sublattice of
Λ(𝑞, −𝑝)) spanned by 2𝑥0, 𝑥1, … , 𝑥𝑛. Therefore, the following diagram of homology groups

with maps induced by inclusions is isomorphic to the diagram

Lemma 6.5. As subgroups of𝐻2(𝑋),

𝐻2(𝑊) = 𝐻2(𝑍) ∩ 𝐻2(𝑋).

Proof. By the exact sequence𝐻2(𝑍) → 𝐻2(𝑋) → 𝐻2(𝑋, 𝑍), an element 𝛽 ∈ 𝐻2(𝑋) is contained in
the image of𝐻2(𝑍) if and only if the image of 𝛽 in𝐻2(𝑋, 𝑍) ≅ 𝐻2(𝑊4𝑞(𝐾), 𝜕𝑊4𝑞(𝐾)) is zero. Sim-
ilarly, 𝛽 is contained in the image of𝐻2(𝑋) if and only if the image of 𝛽 in𝐻2(𝑋,𝑋) ≅ 𝐻2(𝑍2, 𝜕𝑍2)

is zero, and 𝛽 is contained in the image of 𝐻2(𝑊) if and only if the image of 𝛽 in 𝐻2(𝑋,𝑊) ≅

𝐻2(𝑍2, 𝜕𝑍2) ⊕ 𝐻2(𝑊4𝑞(𝐾), 𝜕𝑊4𝑞(𝐾)) is zero. Our conclusion follows easily. □

The last piece of data we need is the class [𝐹] ∈ 𝐻2(−𝑊4𝑞(𝐾)) ⊂ 𝐻2(𝑋), where 𝐹 is obtained
by smoothly gluing the core of the handle attachment to a copy of a minimal genus Seifert surface
𝐹 for𝐾; its homology class generates the second homology. Note that𝐻2(−𝑊4𝑞(𝐾)) is orthogonal
to all of 𝐻2(𝑊) and satisfies ⟨[𝐹], [𝐹]⟩ = −4𝑞 since −𝑊4𝑞(𝐾) is negative definite. Let

𝜑 ∶ ℤ∕4𝑞ℤ → Spinc(𝑃(𝑝, 𝑞))
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866 BALLINGER et al.

be the correspondence with 𝜑(𝑖) equal 𝔰0|𝑃(𝑝,𝑞) for 𝔰0 any Spinc structure on−𝑊4𝑞(𝐾) satisfying

⟨𝑐1(𝔰0), [𝐹]⟩ ≡ −4𝑞 + 2𝑖 (mod 8𝑞).

Proposition 6.6. There is an extension 𝔯 ∈ Spinc(𝑋) of 𝜑(𝑖) over𝑋 with 𝑐1(𝔯) a short characteristic
covector of 𝐷4 ⊕ ℤ𝑛−2 if any only if g(𝐾) ⩽ 𝑖 ⩽ 4𝑞 − g(𝐾).

Proof. Since 𝑋 has boundary −𝑃(2, 1) and 𝑏2(𝑋) = 𝑛 + 2, we have that for any 𝔯 ∈ Spinc(𝑋),

𝑑(−𝑃(2, 1), 𝔯|𝑃(2,1)) ⩾ (𝑐1(𝔯))
2 + (𝑛 + 2)

4
, (24)

and since 𝑋 is sharp this is an equality if and only if 𝑐1(𝔯) is a short characteristic covector of
−𝐻2(𝑋) = 𝐷4 ⊕ ℤ𝑛−2. Similarly, for any 𝔰1 ∈ Spinc(𝑊),

𝑑(𝑃(𝑝, 𝑞), 𝔰1|𝑃(𝑝,𝑞)) ⩾ 𝑑(𝑃(2, 1), 𝔰1|𝑃(2,1)) + (𝑐1(𝔰1))
2 + (𝑛 + 1)

4
(25)

and since𝑊 is sharp as a cobordism, for each 𝔱 ∈ Spinc(𝑃(𝑝, 𝑞)) there is some 𝔰1 ∈ Spinc(𝑊) such
that this is an equality and 𝔰1|𝑃(𝑝,𝑞) = 𝔱.
For 𝔰0 ∈ Spinc(−𝑊4𝑞(𝐾)) with

⟨𝑐1(𝔰0), [𝐹]⟩ = −4𝑞 + 2𝑖

(so that in particular 𝜑(𝑖) = 𝔰0|𝑃(𝑝,𝑞)), we have
(𝑐1(𝔰0))

2 = −
(−4𝑞 + 2𝑖)2

4𝑞
.

Using (8) and (9), we have

𝑑(𝑃(𝑝, 𝑞), 𝔰0|𝑃(𝑝,𝑞)) = −(𝑐1(𝔰0))
2 − 1

4
− 2𝑡min{𝑖,4𝑞−𝑖}(𝐾).

Since 𝑡𝑖(𝐾) ⩾ 0 and (5),

𝑑(𝑃(𝑝, 𝑞), 𝔰0|𝑃(𝑝,𝑞)) ⩽ −(𝑐1(𝔰0))
2 − 1

4
(26)

with equality if and only if ⟨𝑐1(𝔰0), [𝐹]⟩ = −4𝑞 + 2𝑖 for some 𝑖 with g(𝐾) ⩽ 𝑖 ⩽ 4𝑞 − g(𝐾). Note
that inequality (24) is the difference of inequalities (26) and (25) if 𝔰0|𝑃(𝑝,𝑞) = 𝔰1|𝑃(𝑝,𝑞). If g(𝐾) ⩽
𝑖 ⩽ 4𝑞 − g(𝐾), then there is some extension 𝔰0 of 𝜑(𝑖) over−𝑊4𝑞(𝐾) that achieves equality in (26),
and there is always some extension 𝑠1 of 𝜑(𝑖) over𝑊 achieving equality in (25). These two Spinc

structures glue to a Spinc structure 𝔯 on 𝑋 = 𝑊 ∪ (−𝑊4𝑞(𝐾)) that will achieve equality in (24), so
𝑐1(𝔯) is short and 𝔯|𝑃(𝑝,𝑞) = 𝜑(𝑖).
Conversely, if 𝔯 ∈ Spinc(𝑋) has 𝑐1(𝔯) short, then 𝔯 achieves equality in (24), so 𝔰0 = 𝔯|−𝑊4𝑞(𝐾)

and 𝔰1 = 𝔯|𝑊 will achieve equality in (25) and (26), respectively. Therefore, 𝔰0|𝑃(𝑝,𝑞) = 𝔯|𝑃(𝑝,𝑞) will
equal 𝜑(𝑖) for some g(𝐾) ⩽ 𝑖 ⩽ 4𝑞 − g(𝐾). □
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THE PRISMMANIFOLD REALIZATION PROBLEM III 867

Putting all of these together, we have a Euclidean lattice ℤ𝑛+2 = −𝐻2(𝑋), with a corank–1,
linear sublattice

−𝐻2(𝑊) ≅ Λ(𝑞, −𝑝) = ⟨𝑥0, … , 𝑥𝑛⟩
and a sublattice 𝐷4 ⊕ ℤ𝑛−2 = −𝐻2(𝑋) such that

⟨2𝑥0, … , 𝑥𝑛⟩ = ⟨𝑥0, … , 𝑥𝑛⟩ ∩ (𝐷4 ⊕ ℤ𝑛−2). (27)

Since Λ(𝑞, −𝑝) has discriminant 𝑞 and corank 1 and is embedded primitively in ℤ𝑛+2 (this fol-
lows from the long exact sequence of the pair (𝑋 ∪ 𝑍0,𝑊 ∪ 𝑍0)), the orthogonal complement
of Λ(𝑞, −𝑝) has discriminant 𝑞 and rank 1, so is generated by a vector 𝜎 with ⟨𝜎, 𝜎⟩ = 𝑞. Since|⟨[𝐹], [𝐹]⟩| = 4𝑞 and [𝐹] is contained in the orthogonal complement of Λ(𝑞, −𝑝), we must have
[𝐹] = 2𝜎. Therefore, Proposition 6.6 gives the following:

Proposition 6.7. If 𝑃(𝑝, 𝑞) is the result of 4𝑞 surgery on some knot 𝐾 ⊂ 𝑆3 and 𝑞 < 𝑝 < 2𝑞, then
there is an embedding of Λ(𝑞, −𝑝) into ℤ𝑛+2 as the orthogonal complement of a vector 𝜎 and an
embedding 𝐷4 ⊕ ℤ𝑛−2 ↪ ℤ𝑛+2 such that there exists some short characteristic covector 𝜒 for 𝐷4 ⊕

ℤ𝑛−2 with ⟨𝜒, 𝜎⟩ = 𝑖 if and only if −2𝑞 + g(𝐾) ⩽ 𝑖 ⩽ 2𝑞 − g(𝐾).

Pushing the logic of Proposition 6.6 a little further, the Alexander polynomial of 𝐾 can be
recovered from 𝜎:

Proposition 6.8. For 0 ⩽ 𝑖 ⩽ 2𝑞, the torsion coefficient 𝑡𝑖(𝐾) satisfies

𝑡𝑖(𝐾) = min
𝜒∈Char(𝐷4⊕ℤ𝑛−2)⟨𝜒,𝜎⟩=2𝑞−𝑖

⌈⟨𝜒, 𝜒⟩ − 𝑛 − 2

8

⌉
.

Proof. Since [𝐹] = 2𝜎 and the intersection lattice on 𝑋 is 𝐷4 ⊕ ℤ𝑛−2, any characteristic covector
𝜒 for 𝐷4 ⊕ ℤ𝑛−2 with ⟨𝜒, 𝜎⟩ = 2𝑞 − 𝑖 is the first Chern class of a Spinc structure 𝔯 on 𝑋 with

⟨𝑐1(𝔯), [𝐹]⟩ = −4𝑞 + 2𝑖. (28)

(Note that we need to change the sign of the inner product.) Then, exactly as in the proof of
Proposition 6.6, the restriction of 𝔯 to −𝑊4𝑞 = −𝑊4𝑞(𝐾) satisfies

𝑑(𝑃(𝑝, 𝑞), 𝔯|𝑃(𝑝,𝑞)) = −(𝑐1(𝔯|−𝑊4𝑞
))2 − 1

4
− 2𝑡𝑖(𝐾). (29)

Let 𝔰1 be the restriction of 𝔯 to𝑊, then 𝔰1 satisfies

𝑑(𝑃(𝑝, 𝑞), 𝔰1|𝑃(𝑝,𝑞)) ⩾ 𝑑(𝑃(2, 1), 𝔰1|𝑃(2,1)) + (𝑐1(𝔰1))
2 + (𝑛 + 1)

4
(30)

Combining (29) and (30) together,

𝑡𝑖(𝐾) ⩽
−(𝑐1(𝔯))

2 − (𝑛 + 2)

8
−
𝑑(𝑃(2, 1), 𝔯|𝑃(2,1))

2
. (31)
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868 BALLINGER et al.

Using Proposition 5.3, some 𝔰1 ∈ Spinc(𝑊) achieves equality in (30) with 𝔰1|𝑃(𝑝,𝑞) = 𝜑(𝑖). Let
𝔯 ∈ Spinc(𝑋) be the extension of 𝔰1 with (28), then 𝔯 achieves equality in (31). Therefore,

𝑡𝑖(𝐾) = min
𝔯∈Spinc(𝑋)⟨𝑐1(𝔯),[𝐹]⟩=−4𝑞+2𝑖

−(𝑐1(𝔯))
2 − (𝑛 + 2)

8
−
𝑑(𝑃(2, 1), 𝔯|𝑃(2,1))

2
(32)

Since 𝑡𝑖(𝐾) is an integer and 𝑑(𝑃(2, 1), 𝔯|𝑃(2,1)) will always be either 0 or −1, we get
𝑡𝑖(𝐾) = min

𝔯∈Spinc(𝑋)⟨𝑐1(𝔯),[𝐹]⟩=−4𝑞+2𝑖
⌈
−(𝑐1(𝔯))

2 − (𝑛 + 2)

8

⌉
. (33)

Finally, Spinc structures 𝔯 on 𝑋 with (28) correspond (under the first Chern class and a change
in the sign of the inner product) with characteristic covectors𝜒 of𝐷4 ⊕ ℤ𝑛−2 with ⟨𝜒, 𝜎⟩ = 2𝑞 − 𝑖,
and −(𝑐1(𝔯))2 = ⟨𝜒, 𝜒⟩, so the desired formula follows. □

By Proposition 6.2, specifying a sublattice 𝐷4 ⊕ ℤ𝑛−2 ⊂ ℤ𝑛+2 is equivalent to choosing four
indices 𝑎 > 𝑏 > 𝑐 > 𝑑 such that for 𝑣 ∈ ℤ𝑛+2, 𝑣 ∈ 𝐷4 ⊕ ℤ𝑛−2 if and only if ⟨𝑣, 𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑑⟩ is
even. The characteristic covectors for𝐷4 ⊕ ℤ𝑛−2 come in two types: those that are the restrictions
of characteristic covectors of ℤ𝑛+2, which can be represented by elements of ℤ𝑛+2 with all entries
odd, and those that are not, which can be represented by elements of ℤ𝑛+2 with the entries in
positions 𝑎, 𝑏, 𝑐, and 𝑑 even and all other entries odd. Call these two types of covectors even and
odd, respectively. The short characteristic covectors are exactly the ones with all odd entries equal
to ±1, and the even entries (if any) equal to ±2, 0, 0, and 0 in some order.
As in [9], we will assume 𝜎 = (𝜎0, 𝜎1, … , 𝜎𝑛+1) with

0 ⩽ 𝜎0 ⩽ 𝜎1 ⩽ ⋯ ⩽ 𝜎𝑛+1.

Moreover, we can assume that for any two indices 𝑖, 𝑗 ∈ {0, 1, … , 𝑛 + 1}, we always have

𝑖 > 𝑗, if 𝜎𝑖 = 𝜎𝑗, 𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, and 𝑗 ∉ {𝑎, 𝑏, 𝑐, 𝑑}. (34)

Definition 6.9. Let Short(𝐷4 ⊕ ℤ𝑛−2) = Short0 ∪ Short1, with Short0 = Short(ℤ𝑛) the set of
even short characteristic covectors and Short1 = Short(𝐷4 ⊕ ℤ𝑛−2) − Short0 the set of odd
characteristic covectors. Let

𝜒0 = −

𝑛+3∑
𝑖=0

𝑒𝑖

and

𝜒1 = −2𝑒𝑎 −
∑

𝑖∉{𝑎,𝑏,𝑐,𝑑}

𝑒𝑖

be the elements of Short0 and Short1, respectively, minimizing ⟨𝜒, 𝜎⟩. Let
0 =

{
1

2
(𝜒 − 𝜒0)

||||𝜒 ∈ Short0

}
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THE PRISMMANIFOLD REALIZATION PROBLEM III 869

and

1 =

{
1

2
(𝜒 − 𝜒1)

||||𝜒 ∈ Short1

}
be called the sets of even and odd test vectors, respectively.

For 𝜒 ∈ ℤ𝑛+2, let 𝜒𝑖 denote the component of 𝜒 corresponding to the index 𝑖. The following
result is easy to see.

Proposition 6.10. For 𝜒 ∈ 1, (𝜒𝑑, 𝜒𝑐, 𝜒𝑏, 𝜒𝑎) is one of (±1, 0, 0, 1), or (0, ±1, 0, 1), or (0, 0, ±1, 1),
or (0,0,0,2), or (0,0,0,0).

Proposition 6.11. The sets {⟨𝜒, 𝜎⟩ | 𝜒 ∈ 0} and {⟨𝜒, 𝜎⟩ | 𝜒 ∈ 1} are both intervals of integers
beginning at 0. Also,

𝑛+1∑
𝑖=0

𝜎𝑖 = max{⟨𝜒, 𝜎⟩ | 𝜒 ∈ 0} = max{⟨𝜒, 𝜎⟩ | 𝜒 ∈ 1} ± 1. (35)

Proof. By Proposition 6.7, the set {⟨𝜒, 𝜎⟩ | 𝜒 ∈ Short(𝐷4 ⊕ ℤ𝑛−2)} is an interval of integers. For
each 𝑖 ∈ {0, 1}, the set {⟨𝜒, 𝜎⟩ | 𝜒 ∈ Short𝑖} contains the elements of this interval with the same
parity. So the parities are different for 𝑖 = 0 and 𝑖 = 1. In particular, both sets are arithmetic pro-
gressions of step size 2, so subtracting off the smallest element and dividing by 2 gives intervals
beginning at 0. □

Corollary 6.12. 𝜎 is a changemaker.

Proof. The set 0 consists of just vectors with all entries 0 or 1. □

Proof of Theorem 1.10. This follows from the combination of Corollary 6.12 and Proposi-
tion 6.7. □

Corollary 6.13. 𝜎𝑎 = 𝜎𝑏 + 𝜎𝑐 + 𝜎𝑑 + 𝜃, where 𝜃 ∈ {−1, 1}.

Proof. Using (35), we see that

𝑛+1∑
𝑖=0

𝜎𝑖 = 2𝜎𝑎 +

( ∑
𝑗∉{𝑎,𝑏,𝑐,𝑑}

𝜎𝑗

)
± 1.

The result is now immediate. □

Lemma 6.14. An irreducible vector 𝑣 ∈ 𝜎⟂ has an odd pairing with the vector 𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑑 if
and only if [𝑣] contains 𝑥0.

Proof. Suppose 𝑣 ∈ 𝜎⟂ is irreducible. The pairing ⟨𝑣, 𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑑⟩ is even if and only if 𝑣 ∈
𝐷4 ⊕ ℤ𝑛−2, which is equivalent to 𝑣 ∈ ⟨2𝑥0, … , 𝑥𝑛⟩ by (27). Since 𝑣 is irreducible, 𝑣 ∉ ⟨2𝑥0, … , 𝑥𝑛⟩
if and only if [𝑣] contains 𝑥0. □
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870 BALLINGER et al.

Let

𝐺 = 1 + 𝜎0 + 𝜎1 +⋯ + 𝜎𝑑−1. (36)

Lemma 6.15. There exists 𝜒 ∈ 1 with ⟨𝜒, 𝜎⟩ = 𝐺. Let 𝑓 be the minimal index such that 𝑓 > 𝑑 and
𝑓 ∉ {𝑎, 𝑏, 𝑐}. If 𝜒𝑎 = 0, then

𝐺 ⩾ 𝜎𝑓.

If 𝜒𝑎 ≠ 0, then

𝐺 ⩾ 𝜎𝑎 − 𝜎𝑏 = 𝜎𝑐 + 𝜎𝑑 + 𝜃.

Proof. Using Proposition 6.11, there exists𝜒 ∈ 1with ⟨𝜒, 𝜎⟩ = 𝐺. If𝜒𝑎 = 0, by Proposition 6.10we
have 𝜒𝑏 = 𝜒𝑐 = 𝜒𝑑 = 0, then there must be an index 𝑖 > 𝑑, 𝑖 ∉ {𝑎, 𝑏, 𝑐}, with 𝜒𝑖 ≠ 0 as otherwise⟨𝜒, 𝜎⟩ < 𝐺. So

𝐺 = ⟨𝜒, 𝜎⟩ ⩾ 𝜎𝑖 ⩾ 𝜎𝑓.

If 𝜒𝑎 ≠ 0, by Proposition 6.10, we have

𝐺 = ⟨𝜒, 𝜎⟩ ⩾ 𝜎𝑎 − 𝜎𝑏 = 𝜎𝑐 + 𝜎𝑑 + 𝜃. □

7 BOUNDING THE INDEX 𝒅

In Sections 7 and 8, we will classify the linear changemaker lattices restricted by Theorem 1.10.
As in our previous papers [1, 2], we will use the techniques introduced by Greene [9]. The basic
strategy is, for such a lattice 𝜎⟂, we will analyze the standard basis vectors, which are irreducible
by Lemma 3.14, and other irreducible vectors of interest. By Proposition 3.4, irreducible vectors
are intervals up to sign reversal, hence the pairings between them can be computed (up to sign
reversal) by (17) and Lemma 3.8, which only involve the weights of high weight vertices and the
relative positions of intervals.
In this section, we will prove that 𝑑 = 0, where 𝑑 is the index defined after the proof of

Proposition 6.8. We assume that 𝑑 > 0 for contradiction.
Recall that we write (𝑒0, 𝑒1, … , 𝑒𝑛+1) for the orthonormal basis of ℤ𝑛+2, and 𝜎 =

∑
𝑖 𝜎𝑖𝑒𝑖 . Since

Λ(𝑞, −𝑝) is indecomposable (Proposition 3.9), 𝜎0 ≠ 0, otherwise 𝜎⟂ would have a direct summand
ℤ. So 𝜎0 = 1. By Lemma 6.14, we have that [𝑣𝑑] contains 𝑥0. Set

𝑤 = 𝜃𝑒0 + 𝑒𝑑 + 𝑒𝑐 + 𝑒𝑏 − 𝑒𝑎, (37)

where 𝜃 ∈ {−1, 1} is as in Corollary 6.13. The strategy in this section is to analyze 𝑣𝑑 and 𝑤.

Lemma 7.1. 𝑤 is an irreducible vector of 𝜎⟂. Also, 𝑥0 ∉ [𝑤].

Proof. Corollary 6.13 shows that 𝑤 is in 𝜎⟂. Suppose 𝑤 = 𝑥 + 𝑦 with 𝑥, 𝑦 ∈ 𝜎⟂ and ⟨𝑥, 𝑦⟩ ⩾ 0.
If both 𝑥, 𝑦 are non-zero, by Lemma 3.15 we may assume that one of the vectors is 𝑒𝑑 − 𝑒0 and
the other is −𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐. Both vectors will then be irreducible and 𝑥0 ∈ [𝑥], [𝑦] by Lemma 6.14.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 871

That implies ⟨𝑥, 𝑦⟩ ≠ 0, which is a contradiction. The second statement is immediate from
Lemma 6.14. □

Corollary 7.2. If one of the following two conditions holds, then 𝜃 = 1:

(1) 𝜎𝑑 = 1;
(2) there exists a vector 𝑣 with ⟨𝑣, 𝑒0⟩ = −⟨𝑣, 𝑒𝑑⟩ = 1,max supp(𝑣) = 𝑑 and |⟨𝑣, 𝑤⟩| ⩽ 1.

Proof. If 𝜎𝑑 = 1 and 𝜃 = −1, then 𝑤 = (−𝑒0 + 𝑒𝑑) + (𝑒𝑐 + 𝑒𝑏 − 𝑒𝑎) is reducible, a contradiction to
Lemma 7.1.
If there exists a vector 𝑣 as in the statement, then since ⟨𝑣, 𝑒0⟩ = −⟨𝑣, 𝑒𝑑⟩ = 1 and

max supp(𝑣) = 𝑑, we have ⟨𝑣, 𝑤⟩ = 𝜃 − 1. Using |⟨𝑣, 𝑤⟩| ⩽ 1, we have 𝜃 = 1. □

Remark 7.3. When 𝑑 > 0, we have [𝑣𝑑] contains 𝑥0. For any 0 < 𝑖 < 𝑑, [𝑣𝑖] does not contain 𝑥0.
Also, supp(𝑣𝑖) ∩ supp(𝑤) = ∅ or {0}, so |⟨𝑤, 𝑣𝑖⟩| ⩽ 2.

Lemma 7.4. Suppose that 0 ∉ supp(𝑣𝑑), then [𝑣𝑑] † [𝑤].

Proof. Since 0 ∉ supp(𝑣𝑑), we can compute

⟨𝑤, 𝑣𝑑⟩ = −1. (38)

Note that 𝑥0 ∈ [𝑣𝑑] and 𝑥0 ∉ [𝑤]. Assume that [𝑣𝑑] † [𝑤] does not happen, then either [𝑤] ≺ [𝑣𝑑]

or [𝑣𝑑] ⋔ [𝑤].
If [𝑤] ≺ [𝑣𝑑], then by Lemma 3.8 we have |⟨𝑤, 𝑣𝑑⟩| = |𝑤| − 1 = 4, contradicting (38).
If [𝑣𝑑] ⋔ [𝑤], by Lemma 3.8 and (38), we have |[𝑣𝑑] ∩ [𝑤]| = 3, and there exists 𝜖 ∈ {−1, 1}

such that 𝑤 = 𝜖[𝑤] and 𝑣𝑑 = −𝜖[𝑣𝑑]. So 𝑤 + 𝑣𝑑 = 𝜖([𝑤] − [𝑣𝑑]) = 𝑥 + 𝑦 with [𝑥] and [𝑦] being
distant, and we may assume 𝑥0 ∈ [𝑥]. Since 𝑣𝑑 is not tight, 𝑣𝑑 is unbreakable (Lemma 3.16). By
Proposition 3.6 and (17), |𝑣𝑑| = |[𝑤] ∩ [𝑣𝑑]| = 3, and |𝑥| = 2. We get 𝑣𝑑 = 𝑒𝑖 + 𝑒𝑑−1 − 𝑒𝑑 for some
0 < 𝑖 < 𝑑 − 1, and

𝑤 + 𝑣𝑑 = 𝜃𝑒0 + 𝑒𝑖 + 𝑒𝑑−1 + 𝑒𝑐 + 𝑒𝑏 − 𝑒𝑎.

Using Lemmas 3.15 and 6.14, and the fact that 𝑥0 ∈ [𝑥], we have either 𝑥 = 𝑒𝑗 − 𝑒𝑎 for some 𝑗 ∈
{0, 𝑖, 𝑑 − 1} or 𝑥 = −𝑒0 + 𝑒𝑘 for some 𝑘 ∈ {𝑐, 𝑏}. If 𝑥 = 𝑒𝑗 − 𝑒𝑎, then 𝜎𝑗 = 𝜎𝑎, which forces 𝜎𝑎 =
𝜎𝑏, contradicting Corollary 6.13. If 𝑥 = −𝑒0 + 𝑒𝑘, then 𝜃 = −1 and 𝜎𝑘 = 1, which forces 𝜎𝑑 = 1,
contradicting Corollary 7.2. □

Lemma 7.5. Suppose that 0 ∉ supp(𝑣𝑑) and |⟨𝑣𝑖, 𝑣𝑑⟩| = 1 for some 𝑖 with 0 < 𝑖 < 𝑑. Then 𝑖 = 1.

Proof. Since 𝑖 < 𝑑, 𝑥0 ∉ [𝑣𝑖] by Lemma 6.14. We have [𝑣𝑑] † [𝑤] by Lemma 7.4.
If [𝑣𝑖] † [𝑣𝑑], then [𝑣𝑖] and [𝑤] share their left end. If |𝑣𝑖| > 2, by Lemma 3.8 we have 2 ⩽|⟨𝑣𝑖, 𝑤⟩|, and the equality holds only when |𝑣𝑖| = 3. Since ⟨𝑣𝑖, 𝑤⟩ = ⟨𝑣𝑖, 𝑒0⟩, we have ⟨𝑣𝑖, 𝑒0⟩ = 2

and |𝑣𝑖| = 3, which is not possible. So |𝑣𝑖| = 2 in this case.
If [𝑣𝑖] and [𝑣𝑑] share their right end, then we must have |𝑣𝑖| = 2 by Lemma 3.8.
In the above two cases, we have |𝑣𝑖| = 2 and [𝑣𝑖] abuts the right end of [𝑣𝑑], so |⟨𝑣𝑖, 𝑤⟩| = 1,

which implies 𝑖 = 1 since 𝑣𝑖 = 𝑒𝑖−1 − 𝑒𝑖 by Lemma 3.18.
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872 BALLINGER et al.

If [𝑣𝑖] ⋔ [𝑣𝑑], then |[𝑣𝑖] ∩ [𝑣𝑑]| = |𝑣𝑑| = 3. By Lemma 3.22, 𝑣𝑖 is tight. If 𝑖 > 1, |𝑣𝑖| ⩾ 6 = |𝑤| +|𝑣𝑑| − 2 = |[𝑣𝑑] ∪ [𝑤]|. Since [𝑣𝑑] † [𝑤], the interval [𝑣𝑖]must contain all high weight vertices of
[𝑤] by (17). Thus |⟨𝑤, 𝑣𝑖⟩| ⩾ |𝑤| − 2 = 3, a contradiction (Remark 7.3). □

Lemma 7.6. 𝑣𝑑 is not gappy.

Proof. Suppose for contradiction that 𝑣𝑑 is gappy. Take the index 𝑖 to be the smallest gappy index
of 𝑣𝑑. First suppose that 𝑖 = 0. Then, using Lemma 3.13, 𝑣1 will be tight with |𝑣1| = 5. Note that⟨𝑤, 𝑣1⟩ = 2𝜃, |𝑣1| = |𝑤| = 5, so [𝑤] ⋔ [𝑣1] with |[𝑣1] ∩ [𝑤]| = 4, and there exists 𝜖 ∈ {−1, 1} such
that 𝑤 = 𝜖[𝑤] and 𝑣1 = 𝜃𝜖[𝑣1]. It follows that 𝑤 − 𝜃𝑣1 = 𝑥 + 𝑦 with [𝑥] and [𝑦] being distant,|𝑥| = |𝑦| = 3. Now

𝑤 − 𝜃𝑣1 = −𝜃𝑒0 + 𝜃𝑒1 + 𝑒𝑑 + 𝑒𝑐 + 𝑒𝑏 − 𝑒𝑎.

Since 𝑥0 ∉ [𝑤], [𝑣1], we have 𝑥0 ∉ [𝑥], [𝑦]. Using Lemma 3.15, one of 𝑥, 𝑦 has the form±𝑒𝑗 + 𝑒𝑘 +

𝑒𝑙, where 𝑗 ∈ {0, 1}, {𝑘, 𝑙} ⊂ {𝑑, 𝑐, 𝑏}, but this vector is not in 𝜎⟂, a contradiction.
Suppose 𝑖 > 0. Then 𝑖 = min supp(𝑣𝑑) by [9, Paragraph 2 in Section 6, and Propositions 8.6, 8.7,

8.8]. Since ⟨𝑣𝑖+1, 𝑣𝑑⟩ = 1 (Lemma 3.18), by Lemma 7.5 we have 𝑖 + 1 = 1, a contradiction. □

Proposition 7.7. min supp(𝑣𝑑) ⩽ 1.

Proof. Set 𝑖 = min supp(𝑣𝑑). If 𝑖 > 0, since ⟨𝑣𝑖, 𝑣𝑑⟩ = −1, by Lemma 7.5 we have 𝑖 = 1. □

Let 𝐺 be defined as in (36). Our strategy is to first find a bound for 𝐺, and then find a bound for
the integer 𝑑. Next, we do a case-by-case analysis to find that indeed 𝑑 = 0.

Lemma 7.8. 𝑣𝑑 is not tight.

Proof. Suppose for contradiction that 𝑣𝑑 is tight. Using Lemma 6.15, we get

𝜎𝑑 = 𝐺 ⩾ min{𝜎𝑓, 𝜎𝑑 + 𝜎𝑐 + 𝜃} ⩾ min{𝜎𝑓, 2𝜎𝑑 − 1},

which is not possible by (34) and Corollary 7.2. □

Combining Proposition 7.7 and Lemmas 7.6 and 7.8, we have:

Corollary 7.9. 𝑣𝑑 = 𝑣𝑑,0𝑒0 + 𝑒1 +⋯ − 𝑒𝑑 with 𝑣𝑑,0 ∈ {0, 1}.

With the notation of Corollary 7.9 in place, we start the analysis to deduce 𝑑 = 0. The following
identity will be useful to keep in mind:

𝜎𝑑 = 𝐺 − 2 + 𝑣𝑑,0. (39)

Lemma 7.10. If either |𝑣𝑑| > 2 or 𝑑 = 1, then

𝐺 ⩾ 𝜎𝑑 + 𝜎𝑐 + 𝜃.
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THE PRISMMANIFOLD REALIZATION PROBLEM III 873

Proof. Let 𝜒 be the vector as in Lemma 6.15. By that lemma, it will suffice to show𝜒𝑎 ≠ 0. Assume
that 𝜒𝑎 = 0, then Lemma 6.15 implies that 𝐺 ⩾ 𝜎𝑓 > 𝜎𝑑. Using (39), we have that 𝐺 ⩽ 𝜎𝑑 + 2, so
𝜎𝑓 ∈ {𝜎𝑑 + 1, 𝜎𝑑 + 2}. Moreover, if 𝜎𝑓 = 𝜎𝑑 + 2, then 𝑣𝑑,0 = 0, hence 𝑑 > 1 by Corollary 7.9.
If 𝜎𝑓 = 𝜎𝑑 + 1, set 𝑣′

𝑓
= −𝑒𝑓 + 𝑒𝑑 + 𝑒0. If 𝜎𝑓 = 𝜎𝑑 + 2, set

𝑣′
𝑓
=

{
−𝑒𝑓 + 𝑒𝑑 + 𝑒1 + 𝑒0, if 𝜎1 = 1,

−𝑒𝑓 + 𝑒𝑑 + 𝑒1, if 𝜎1 = 2.

In either case, 𝑣′
𝑓
is irreducible and also in 𝜎⟂. Since ⟨𝑣′

𝑓
, 𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑑⟩ = 1, we get that 𝑥0 ∈

[𝑣′
𝑓
]. So [𝑣𝑑] and [𝑣′𝑓] share their left endpoint. If |𝑣𝑑| > 2, then |⟨𝑣𝑑, 𝑣′𝑓⟩| ⩾ 2 by Lemma 3.8, which

contradicts the direct computation |⟨𝑣𝑑, 𝑣′𝑓⟩| ⩽ 1. If 𝑑 = 1, then 𝑣𝑑 = 𝑒0 − 𝑒1 by Corollary 7.9, and
𝑣′
𝑓
= −𝑒𝑓 + 𝑒1 + 𝑒0. We get ⟨𝑣𝑑, 𝑣′𝑓⟩ = 0: this is still giving a contradiction since the intervals [𝑣𝑑]

and [𝑣′
𝑓
] share their left endpoints, and so ⟨𝑣𝑑, 𝑣′𝑓⟩ ≠ 0. □

Proposition 7.11. If |𝑣𝑑| = 2, then either 𝑑 = 1, 𝐺 = 2, or else 𝑑 = 2, 𝐺 ∈ {3, 4}.
If |𝑣𝑑| > 2, then 𝑑 ∈ {3, 4}, 𝜃 = −1, 𝑣𝑑,0 = 0, and 1 + 𝑑 ⩽ 𝐺 ⩽ 5.

Proof. If |𝑣𝑑| = 2, our conclusion follows from Corollary 7.9 and (39).
Now we assume |𝑣𝑑| > 2. Using Lemma 7.10 and (39), we have

𝐺 ⩾ 𝜎𝑑 + 𝜎𝑐 + 𝜃 ⩾ 2𝜎𝑑 + 𝜃 = 2(𝐺 − 2 + 𝑣𝑑,0) + 𝜃,

thus

𝐺 ⩽ 4 − 𝜃 − 2𝑣𝑑,0. (40)

If 𝑑 ⩽ 2, by Corollary 7.9 and the assumption that |𝑣𝑑| > 2we have 𝑣𝑑,0 = 1 and 𝑑 = 2. We have
𝑥0 ∈ [𝑣2] while 𝑥0 ∉ [𝑤]. Since |𝑣2| = 3 < |𝑤|, [𝑣2] and [𝑤] do not share their right endpoint, so
we must have |⟨𝑣2, 𝑤⟩| ⩽ 1 by Lemma 3.8. Then 𝜃 = 1 by Corollary 7.2. So 𝐺 ⩽ 1 by (40), which is
not possible.
If 𝑑 ⩾ 3, it follows from (40) and (36) that

4 − 𝜃 − 2𝑣𝑑,0 ⩾ 𝐺 ⩾ 𝑑 + 1 ⩾ 4,

so 𝜃 = −1, 𝑣𝑑,0 = 0, 𝑑 ⩽ 4 and 𝐺 ⩽ 5. □

Proposition 7.11 implies 𝑑 ∈ {0, 1, 2, 3, 4}. We now argue that 𝑑 = 0.

Proposition 7.12. 𝑑 = 0.

Proof. Suppose that 𝑑 = 1. Using Lemma 7.8, we get that 𝑣1 = −𝑒1 + 𝑒0. By (40),𝐺 = 2 and 𝜎1 = 1.
By Corollary 7.2 and Lemma 7.10, we get that

2 = 𝐺 ⩾ 𝜎𝑐 + 𝜎1 + 1 ⩾ 3,

which is a contradiction.
Suppose 𝑑 = 2. It follows from Proposition 7.11 that |𝑣2| = 2. We separate the cases to whether

𝜎1(= 𝜎2) is 1 or 2.
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874 BALLINGER et al.

First assume that 𝜎1 = 𝜎2 = 1. If 𝑐 ≠ 3, then 𝑥0 ∈ [𝑣3] by Lemma 6.14, thus [𝑣2] and [𝑣3] share
their left endpoint. So ⟨𝑣3, 𝑣2⟩ ≠ 0. In particular, 1 ∉ supp(𝑣3). Since 𝜎0 = 𝜎1 = 1, 0 ∉ supp(𝑣3),
so |𝑣3| = 2, which is impossible as 𝜎3 > 1 by (34). If 𝑐 = 3, note that 𝜃 = 1 by Corollary 7.2, by
Lemma 6.15 we have

3 = 𝐺 ⩾ min{𝜎𝑓, 𝜎3 + 2}.

By (34), 𝜎𝑓 > 𝜎3, so we have 𝜎3 ⩽ 2. If 𝜎3 = 1, then |𝑣3| = 2, ⟨𝑣3, 𝑤⟩ = 0 and ⟨𝑣3, 𝑣2⟩ = −1. Since
𝑥0 ∉ [𝑣3], [𝑣3] abuts the right endpoint of [𝑣2]. Since [𝑣2] † [𝑤] by Lemma 7.4, we get ⟨𝑣3, 𝑤⟩ ≠ 0, a
contradiction. If𝜎3 = 2, then 𝑣3 = −𝑒3 + 𝑒2 + 𝑒1.Wehave 𝑣3 ∼ 𝑣1 ∼ 𝑣2, |𝑣1| = |𝑣2| = 2, [𝑣2] † [𝑤],
so [𝑣3] contains the leftmost high weight vertex of [𝑤], which contradicts the fact that ⟨𝑣3, 𝑤⟩ = 0.
Next we suppose (𝑑 = 2 and) 𝜎1 = 𝜎2 = 2. Then 𝑣1 = 2𝑒0 − 𝑒1, 𝑣2 = 𝑒1 − 𝑒2. We have 𝑥0 ∈ [𝑣2],

𝑥0 ∉ [𝑣1], [𝑤], [𝑣2] abuts both [𝑣1] and [𝑤], and 2 = |𝑣2| < |𝑣1| = |𝑤|. So [𝑣1] and [𝑤] share their
left endpoint. It follows from Lemma 3.8 that |⟨𝑣1, 𝑤⟩| = 4, which is not possible by Remark 7.3.
Suppose 𝑑 ∈ {3, 4}. Proposition 7.11 implies 𝑣𝑑 = −𝑒𝑑 + 𝑒𝑑−1 +⋯ + 𝑒1, 𝜃 = −1. Also, by Propo-

sition 7.11 and (36), we have 5 ⩾ 𝐺 ⩾ 2 + 𝜎1 + 𝜎2, so 𝜎1 = 1. Let 𝑣′
𝑑
= 𝑣𝑑 − 𝑒1 + 𝑒0, then 𝑣′

𝑑
is

irreducible by Lemma 3.15, |𝑣′
𝑑
| = 𝑑 < |𝑤| = 5, and ⟨𝑣′

𝑑
, 𝑤⟩ = −2. Since 𝑥0 ∈ [𝑣′

𝑑
] and 𝑥0 ∉ [𝑤],

by Lemma 3.8 we must have [𝑣′
𝑑
] ⋔ [𝑤] with |[𝑣′

𝑑
] ∩ [𝑤]| = 4, and there exists 𝜖 = ±1, such that

𝑣′
𝑑
= 𝜖[𝑣′

𝑑
] and 𝑤 = −𝜖[𝑤]. Hence

𝑣′
𝑑
+ 𝑤 = 𝜖([𝑣′

𝑑
] − [𝑤]) = −𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑑−1 +⋯ + 𝑒2

is reducible, a contradiction to Lemma 3.15. □

8 THE CASE 𝒅 = 𝟎

We now turn our attention to the classification in the case 𝑑 = 0: in what follows, we classify all
changemaker linear lattices of this sort.

Lemma 8.1. 𝑐 = 1, 𝜎𝑐 = 1, and 𝜎𝑎 = 𝜎𝑏 + 1.

Proof. By Lemma 6.15, we have

1 = 𝐺 ⩾ min{𝜎𝑓, 𝜎𝑎 − 𝜎𝑏} ⩾ min{𝜎𝑓, 𝜎𝑐 + 𝜎0 − 1} = min{𝜎𝑓, 𝜎𝑐}.

If 𝑓 = 1, then 1 ⩾ 𝜎𝑓 , which contradicts (34). So 𝑓 > 1, thus 𝑐 = 1 and 𝜎𝑐 = 1. Hence the above
inequality becomes an inequality, which means 𝜎𝑎 = 𝜎𝑏 + 1. □

For the rest of the section, we will replace 𝑤 in (37) with

𝑤′ = −𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐. (41)

The following is an immediate corollary of Lemma 8.1.

Corollary 8.2. The vector 𝑤′ is an irreducible, unbreakable vector in 𝜎⟂, and 𝑥0 ∈ [𝑤′].

Proof. It follows from Lemma 8.1 that 𝑤′ ∈ 𝜎⟂. Since |𝑤′| = 3, it is irreducible and unbreakable.
The fact that 𝑥0 ∈ [𝑤′] follows from Lemma 6.14. □
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THE PRISMMANIFOLD REALIZATION PROBLEM III 875

Lemma 8.3. 𝑏 = 2, 𝜎𝑏 = 1, and 𝜎𝑎 = 2. Hence (𝜎0, … , 𝜎𝑎) = (1, 1, 1, 2[𝑠], 2) for some 𝑠 ⩾ 0.

Proof. Suppose toward a contradiction that 𝑏 > 2. Since 𝜎0 = 𝜎1 = 1 and 𝑏 > 2, 𝜎2 ∈ {2, 3}.
If 𝜎2 = 2, then ⟨𝑣2, 𝑣1⟩ = 0, ⟨𝑣2, 𝑤′⟩ = 1 and ⟨𝑣1, 𝑤′⟩ = −1. Since |𝑣1| = 2 and 𝑥0 ∉ [𝑣1], [𝑣1]

abuts the right end of [𝑤′]. If [𝑣2] also abuts [𝑤′], noting that 𝑥0 ∉ [𝑣2], it abuts the right end
of [𝑤′], so [𝑣2] abuts [𝑣1], contradicting the fact that ⟨𝑣2, 𝑣1⟩ = 0. Thus by Lemma 3.8 we must
have [𝑣2] ⋔ [𝑤′], |[𝑣2] ∩ [𝑤′]| = 3, 𝑣2 = 𝜖[𝑣2] and 𝑤′ = 𝜖[𝑤′] for some 𝜖 ∈ {1, −1}. It follows that
𝑤′ − 𝑣2 is reducible. However,𝑤′ − 𝑣2 = −𝑒𝑎 + 𝑒𝑏 + 𝑒2 − 𝑒0 is irreducible by Lemma 3.15 and the
fact that 𝜎𝑎 = 𝜎𝑏 + 1, a contradiction.
If 𝜎2 = 3, then [𝑣2] contains 𝑥0, so [𝑤′] ≺ [𝑣2]. However, since |𝑤′| = 3, Lemma 3.8 implies that|⟨𝑣2, 𝑤′⟩| = 2, contradicting the direct computation ⟨𝑣2, 𝑤′⟩ = 1.
Having proved 𝑏 = 2, we must have 𝜎2 ∈ {1, 2, 3}. If 𝜎2 = 2, the interval [𝑣2] contains 𝑥0, so

[𝑣2] and [𝑤′] share their left end, a contradiction to the direct computation ⟨𝑣2, 𝑤′⟩ = 0. If 𝜎2 =
3, using Proposition 6.11, there must be some 𝜒 ∈ 1 with ⟨𝜒, 𝜎⟩ = 2. Moreover, since {0, 1, 2} =
{𝑑, 𝑐, 𝑏}, 𝜎𝑓 > 𝜎2 = 3. Therefore, 𝜒𝑎 ≠ 0 by Proposition 6.10. Using Lemma 8.1, 𝜎𝑎 = 4. So 𝜎𝑘 ⩾ 4

if 𝑘 > 𝑏 = 2 by (34). To get ⟨𝜒, 𝜎⟩ = 2, it must be the case that for some 𝑖 ∈ {𝑏, 𝑐, 𝑑}, 𝜒𝑖 = −1 and
𝜒𝑗 = 0 for 𝑗 ≠ 𝑖, 𝑎. Then ⟨𝜒, 𝜎⟩ is either 1 or 3, a contradiction.
Therefore, 𝑏 = 2, 𝜎2 = 1, and 𝜎𝑎 = 𝜎𝑏 + 1 = 2. □

Lemma 8.4. 𝜎𝑖 = 2𝑠 + 3 for 𝑖 > 𝑎. That is, 𝜎 = (1, 1, 1, 2[𝑠], 2, 2𝑠 + 3[𝑡]) with 𝑠, 𝑡 ⩾ 0.

Proof. First, consider 𝑣𝑎+1. By (34), 𝜎𝑎+1 > 2, so 𝑚 ∶= min supp(𝑣𝑎+1) < 𝑎. If 𝑚 ⩾ 3, then
𝑠 ∶= 𝑎 − 3 > 0. Let 𝑗 = min supp(𝑣𝑚), by Lemma 8.3, 𝑗 = 𝑚 − 1 if 𝑚 > 3, and 𝑗 = 𝑚 − 2 if
𝑚 = 3. There would be a claw (𝑣𝑚; 𝑣𝑎+1, 𝑣𝑚+1, 𝑣𝑗), a contradiction to Lemma 3.24. Therefore,
supp(𝑣𝑎+1) ∩ {0, 1, 2} is non-empty, thus is one of {0, 1, 2}, {1, 2}, or {2} by Lemma 3.13.
We note that 𝑥0 ∈ [𝑣𝑎] no matter 𝑠 = 0 or 𝑠 > 0.
We claim that there is no index 𝑗 such that 𝑣𝑗 is tight. Otherwise, we have 𝑗 > 𝑎 and [𝑣𝑗] con-

tains 𝑥0, so [𝑣𝑎] ≺ [𝑣𝑗]. If 𝑠 > 0, ⟨𝑣𝑎, 𝑣𝑗⟩ = 0, a contradiction to [𝑣𝑎] ≺ [𝑣𝑗]. If 𝑠 = 0, then |𝑣𝑎| = 3,
hence |⟨𝑣𝑎, 𝑣𝑗⟩| = 2 by Lemma 3.8, contradicting the direct computation ⟨𝑣𝑎, 𝑣𝑗⟩ = 1.
If 𝑚 ∈ {0, 1}, then 3 ∈ supp(𝑣𝑎+1) since otherwise ⟨𝑣3, 𝑣𝑎+1⟩ = 2, a contradiction to

Lemma 3.21. Then since |𝑣𝑖| = 2 for 3 < 𝑖 ⩽ 𝑎, 𝑣𝑎+1 is just right by Lemma 3.13 and the
claim in the last paragraph.
If 𝑚 = 0, we have ⟨𝑣3, 𝑣𝑎+1⟩ = 1, and 𝑥0 ∉ [𝑣𝑎+1]. We also have ⟨𝑣3, 𝑣1⟩ = −1, and 𝑥0 ∉ [𝑣1].

If 𝑠 > 0, then (𝑣3; 𝑣4, 𝑣1, 𝑣𝑎+1) will give a claw, a contradiction (Lemma 3.24). If 𝑠 = 0 then [𝑣3]

contains 𝑥0, so [𝑣1] and [𝑣𝑎+1] must both abut the right end of [𝑣3], contradicting the fact that
they are orthogonal.
If 𝑚 = 1, since |{𝑎, 𝑏, 𝑐, 𝑑} ∩ supp(𝑣𝑎+1)| = 3, 𝑥0 ∈ [𝑣𝑎+1]. So [𝑣𝑎] ≺ [𝑣𝑎+1] and |⟨𝑣𝑎+1, 𝑣𝑎⟩| =|𝑣𝑎| − 1. This contradicts the direct computation of ⟨𝑣𝑎, 𝑣𝑎+1⟩ no matter 𝑠 = 0 or 𝑠 > 0.
If 𝑚 = 2, then 𝑣𝑎+1 = 𝑒2 + 𝑒𝑘 +⋯ + 𝑒𝑎 − 𝑒𝑎+1 for some 3 ⩽ 𝑘 ⩽ 𝑎. If 3 < 𝑘 < 𝑎, there is a

claw (𝑣𝑘; 𝑣𝑘−1, 𝑣𝑘+1, 𝑣𝑎+1) (Lemma 3.24). If 𝑘 = 𝑎 and 𝑎 > 3, then 𝑥0 ∈ [𝑣𝑎] but 𝑥0 ∉ [𝑣𝑎+1].
Since ⟨𝑣𝑎, 𝑣𝑎+1⟩ = −1 and |𝑣𝑎| = 2 < |𝑣𝑎+1|, we have [𝑣𝑎] † [𝑣𝑎+1]. If 𝑠 = 1, then since |𝑣𝑎| =
2, ⟨𝑣3, 𝑣𝑎⟩ = −1, [𝑣3] and [𝑣𝑎+1] will share a hight weight vertex, which is not possible by
Lemma 3.22. If 𝑠 > 1, then ⟨𝑣𝑎, 𝑣𝑎−1⟩ = −1 and 𝑥0 ∉ [𝑣𝑎−1], so [𝑣𝑎−1] abuts the right endpoint
of [𝑣𝑎]. Recall that [𝑣𝑎+1] also abuts the right endpoint of [𝑣𝑎], hence ⟨𝑣𝑎+1, 𝑣𝑎−1⟩ = ±1, a con-
tradiction to the direct computation ⟨𝑣𝑎+1, 𝑣𝑎−1⟩ = 0. Therefore, 𝑘 = 3, so 𝑣𝑎+1 is just right and
𝜎𝑎+1 = 2𝑠 + 3.
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876 BALLINGER et al.

Finally, suppose that for some 𝑗 > 𝑎 + 1, |𝑣𝑗| > 2. Take 𝑗 to be the smallest such index. Then
𝑣𝑗 is unbreakable by our earlier claim. Let 𝓁 = min supp(𝑣𝑗). If either 𝓁 ⩾ 𝑎 + 1 or 3 ⩽ 𝓁 <

𝑎, there will be a claw (𝑣𝓁 ; 𝑣𝓁−1, 𝑣𝓁+1, 𝑣𝑗) (when 𝓁 > 3) or (𝑣𝓁 ; 𝑣𝓁−2, 𝑣𝓁+1, 𝑣𝑗) (when 𝓁 = 3),
contradicting Lemma 3.24.
If 𝓁 = 𝑎, then [𝑣𝑗] contains 𝑥0, so [𝑣𝑎] and [𝑣𝑗] share their left endpoint. No matter 𝑠 = 0 or

𝑠 > 0, [𝑣3] is connected to [𝑣𝑎] via a (possibly empty) sequence of norm 2 vectors, so the intervals
[𝑣3] and [𝑣𝑗] will share a high weight vertex, a contradiction to Lemma 3.22.
If 𝓁 < 3, then 𝑣𝑗 is connected to the path 𝑣3 ∼ 𝑣1 ∼ 𝑣2 ∼ 𝑣𝑎+1 in the intersection graph 𝐺(𝑆). If

𝓁 ∈ {1, 2}, 𝑣𝑗 ∼ 𝑣𝓁 , so there is a heavy triple (𝑣3, 𝑣𝑎+1, 𝑣𝑗), contradicting Lemma 3.26. If 𝓁 = 0, it
follows from Lemma 3.13 that 1, 2 ∈ supp(𝑣𝑗). By Lemma 3.21, |⟨𝑣3, 𝑣𝑗⟩| ⩽ 1, so 3 ∈ supp(𝑣𝑗) and
𝑣𝑗 ∼ 𝑣3. Now 4, … , 𝑎 ∈ supp(𝑣𝑗) by Lemma 3.13, so ⟨𝑣𝑎+1, 𝑣𝑗⟩ ⩾ 𝑠 + 2 − 1 ⩾ 1, so 𝑣𝑗 ∼ 𝑣𝑎+1. We
again have a heavy triple (𝑣3, 𝑣𝑎+1, 𝑣𝑗), contradicting Lemma 3.26. □

9 PROOF OF THEOREM 1.2

Lemma 8.4 specifies a changemaker vector in ℤ𝑛+2 whose orthogonal complement is the lin-
ear changemaker lattice Λ(𝑞, −𝑝). From the integers 𝑎0, 𝑎1, … 𝑎𝑛 in (16), we can recover 𝑝 and
𝑞 using (14). Since 𝑞 < 𝑝 < 2𝑞, we have

𝑝

𝑞
= [2, 𝑎0, 𝑎1, … , 𝑎𝑛]

−.

We use the following facts:

Lemma 9.1 [9, Lemma 9.5 (2) and (3)]. For integers 𝑠, 𝑡, 𝑏 with 𝑏 ⩾ 2 and 𝑠, 𝑡 ⩾ 0:

(1) [⋯ , 𝑏, 2[𝑡−1]]− = [⋯ , 𝑏 − 1, −𝑡]−;
(2) If [2[𝑠+1], 𝑏, …]− =

𝑝

𝑞
, then [−(𝑠 + 2), 𝑏 − 1,…]− =

𝑝

𝑞−𝑝
.

We have

𝜎 = (1, 1, 1, 2[𝑠], 2, 2𝑠 + 3[𝑡]),

with 𝑠, 𝑡 ⩾ 0. One can check that the standard basis of the linear changemaker lattice

𝑆 = {𝑣𝑠+3, … , 𝑣3, 𝑣1, 𝑣2, 𝑣𝑠+4, … , 𝑣𝑠+𝑡+3}

coincides with its vertex basis with norms given by

{2[𝑠], 3, 2, 2, 𝑠 + 3, 2[𝑡−1]}.

By Lemma 6.14, [𝑣𝑠+3] contains 𝑥0, so 𝑣𝑠+3 = 𝑥0. Hence, we have

𝑝

𝑞
= [2[𝑠+1], 3, 2, 2, 𝑠 + 3, 2[𝑡−1]]−.

Using Lemma 9.1, we see that

𝑞 = 7 + 4𝑠 + 9𝑡 + 12𝑠𝑡 + 4𝑠2𝑡, and

𝑝 = 11 + 4𝑠 + 14𝑡 + 16𝑠𝑡 + 4𝑠2𝑡.
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It is straightforward to check that

𝑞 =
1

𝑟2 − 2𝑟 − 1
(𝑟2𝑝 − 1),

with 𝑟 = −2𝑠 − 3 and 𝑝 = 𝑡(𝑟2 − 2𝑟 − 1) − 2𝑟 + 5.

Proof of Theorem 1.2. Suppose 𝑃(𝑝, 𝑞) ≅ 𝑆3
4𝑞
(𝐾), the above computation shows that (𝑝, 𝑞)must be

as in the statement. On the other hand, if (𝑝, 𝑞) is as in the statement, it follows from [1, Table 2]
and [21] that there exists a Berge–Kang knot 𝐾0 such that 𝑃(𝑝, 𝑞) ≅ 𝑆3

4𝑞
(𝐾0). For the second state-

ment, we note that 𝐾 and 𝐾0 correspond to the same changemaker vector. Using Proposition 6.8,
we know that Δ𝐾 = Δ𝐾0

, so 𝐻𝐹𝐾(𝐾) ≅ 𝐻𝐹𝐾(𝐾0) by [17, Theorem 1.2]. □
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