Pseudo-Anosov extensions and degree one maps between hyperbolic surface bundles

Michel Boileau · Yi Ni · Shicheng Wang

Received: 9 August 2006 / Accepted: 15 November 2006 / Published online: 22 February 2007 © Springer-Verlag 2007

Abstract Let F', F be any two closed orientable surfaces of genus $g' > g \ge 1$, and $f: F \to F$ be any pseudo-Anosov map. Then we can "extend" f to be a pseudo-Anosov map $f': F' \to F'$ so that there is a fiber preserving degree one map $M(F', f') \to M(F, f)$ between the hyperbolic surface bundles. Moreover the extension f' can be chosen so that the surface bundles M(F', f') and M(F, f) have the same first Betti numbers.

Mathematics Subject Classification (2000) Pseudo-Anosov extension · Degree-one maps · Hyperbolic surface bundles

1 Introduction

All surfaces are oriented and all automorphisms on surfaces are orientation preserving.

Let F be an oriented closed surface of genus $g \ge 1$, and $f : F \to F$ be an automorphism. We denote the surface bundle with fiber F and monodromy f by M(F, f).

Y. Ni is partially supported by a Centennial fellowship of the Graduate School at Princeton University. S.C. Wang is partially supported by MSTC.

M. Boileau

Laboratoire Émile Picard, Université Paul Sabatier, Toulouse Cedex 4, France e-mail: boileau@picard.ups-tlse.fr

Y. Ni (⊠)

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA e-mail: yni@math.princeton.edu

S. Wang

LMAM, Department of Mathematics, Peking University, Beijing 100871, China e-mail: wangsc@math.pku.edu.cn

Definition 1 Suppose G is a compact surface of genus $g \ge 1$. A circle c on G is essential if c is not contractible or boundary parallel. An automorphism f on G is pseudo-Anosov if $f^n(c)$ is not isotopic to c for any essential circle $c \in G$ and any integer n. (Note in the case G is a torus, the term "pseudo-Anosov" we define here is usually known as "Anosov".)

Remark 1 Our definition of pseudo-Anosov maps is slightly different from the more standard definition in the literature. Pseudo-Anosov maps in our sense should be considered as "maps isotopic to a pseudo-Anosov map" in the standard sense.

Profound theories of Nielsen-Thurston and of Thurston in 2- and 3-dimensional topology tell us that pseudo-Anosov is the most important class of surface automorphisms, and when $\chi(F) < 0$, M(F,f) is a hyperbolic 3-manifold if and only if f is pseudo-Anosov.

Theorem 1 Let F_s , F_t be closed orientable surfaces of genus g_s , g_t respectively, where $g_s > g_t \ge 1$, and $f_t : F_t \to F_t$ be a pseudo-Anosov map. Then

- (1) There is a hyperbolic 3-manifold $M(F_s, f_s)$, such that there is a fiber preserving degree one map $P: M(F_s, f_s) \to M(F_t, f_t)$. (Here the subscript s means "source", and the subscript t means "target".)
- (2) Moreover the map f_s in (1) can be chosen so that $M(F_s, f_s)$ and $M(F_t, f_t)$ have the same first Betti numbers.

Motivation for Theorem 1 is from [1], where the following facts were proved:

- (1) For each 3-manifold M, there is a degree one map $f: M(F_s, f_s) \to M$ such that $M(F_s, f_s)$ is hyperbolic and $\beta_1(M(F_s, f_s)) = \beta_1(M) + 1$.
- (2) If there is a degree one map $f: M(F_s, f_s) \to M$ with $\beta_1(M(F_s, f_s)) = \beta_1(M)$ and M is irreducible, then M is a surface bundle and f can be homotoped to a fiber preserving one.

It is natural to wonder how to find fiber preserving degree one maps between non-homeomorphic hyperbolic surface bundles (of the same first Betti numbers). In Sect. 2, we will prove Theorem 1 (1). In Sect. 3, by modifying the proof in Sect. 2, we will prove Theorem 1 (2).

The proof of Theorem 1 relies on an extension process from the pseudo-Anosov map f_t on F_t to a pseudo-Anosov map f_s on F_s , which is delicate and somewhat complicated.

We will outline this process, i.e., for given $M(F_t, f_t)$ and F_s , how to find f_s . In this outline we assume that $g_t \ge 2$. This process in Section 2 is divided into three steps.

- Step 1. Fix a disk $D \subset F_t$ and let $V = F_t \text{int}(D)$. We can assume that $f_t|D = \text{id}|D$ up to isotopy. Then as a restriction of a pseudo-Anosov map, $f_t|V:V \to V$ is a pseudo-Anosov map (Lemma 2).
- Step 2. We will construct two embeddings $e_0, e_1 : V \to F_s$ such that (1) $e_0(\partial V)$ and $e_1(\partial V)$ are not homotopic in F_s , (2) two pinches $p_0, p_1 : F_s \to F_t$ (see Definition 2) defined by $p_i \circ e_i = \mathrm{id}_V : V \to V$ are homotopic (Lemma 4).
- Step 3. The two embeddings e_1 and e_2 in step 2 also provide a homeomorphism $\bar{f}_t := e_1 \circ f_t | \circ e_0^{-1} : e_0(V) \to e_1(V)$. With properties of e_1 and e_2 described in Step 2, we will be able to extend \bar{f}_t to a pseudo-Anosov map $f_s : F_s \to F_s$ (Proposition 1).

Then clearly $p_1 \circ f_s = f_t \circ p_0$, hence there exists a fiber preserving degree one map $P: M(F_s, f_s) \to M(F_t, f_t)$ (Lemma 1). This finishes the proof of Theorem 1 (1).

Now we give more detailed outline of the extension process in Step 3, on which the proof of Theorem 1 (2) is based.

Let $\bar{f}_s: F_s \to F_s$ be any extension of $\bar{f}_t: e_0(V) \to e_1(V)$ (Lemma 3). Let $W_1 = F_s - \text{int}e_1(V)$ and $h: W_1 \to W_1$ be any pseudo-Anosov map. Let A_1 be any maximal independent set of disjoint circles on W_1 (see Definition 3), let $\tau(A_1)$ be a composition of Dehn twists along all components in A_1 . Then $f_s = \tau^l(A_1) \circ h^k \circ \bar{f}_s$ is pseudo Anosov for large integers k and l (Lemmas 5, 6, 8, 9, 7).

In Sect. 3, we choose \bar{f}_s , h and A_1 carefully so that Theorem 1 (2) is proved (Lemmas 10–12).

We end the introduction by a comment on a related work [9]. The main result in [9] is that for an orientable closed surface F with $\chi(F) < 0$ and two non-isotopic circles c and c' on F, if g(c) = c' for some automorphism g on F, then f(c) = c' for some pseudo-Anosov map f on F. Some arguments in Proving Lemmas 8 and 9 were modified from the arguments in [9]. Indeed [9] was produced in a rather earlier stage of understanding the present project.

2 Homotopic pinches and pseudo-Anosov extensions

Definition 2 Let *D* be a fixed disc in F_t and $V = F_t - \text{int}(D)$. A degree one map $p: F_s \to F_t$ is a *pinch* if $p|: p^{-1}(V) \to V$ is a homeomorphism.

It has been known since Nielsen and Kneser that every degree one map between surfaces is homotopic to a pinch, see [2] for a reference.

Notation 1 *In the rest of this paper,* r = s, t and j = 0, 1.

Recall that $M(F_r, f_r) = F_r \times [0, 1]/f_r'$, where $f_r' : F_r \times \{0\} \to F_r \times \{1\}$ is given by $f_r'(x, 0) = (f_r(x), 1)$. Let $q_r : F_r \times [0, 1] \to F_r$ be the projection defined by $q_r(x, u) = x$, and $e_{r,j} : F_r \to F_r \times \{j\} \subset F_r \times [0, 1]$ be the homeomorphism given by $e_{r,j}(x) = (x, j)$. Let $o_r : F_r \times [0, 1] \to M(F_r, f_r)$ be the quotient map and $F_r' = o_r(F_r \times 0) = o_r(F_r \times 1)$. Then

$$q_r \circ f'_r \circ e_{r,0} = f_r, \quad e_{r,j} \circ q_r = id_{F_r \times \{j\}}.$$
 (*)

Lemma 1 There exists a fiber preserving degree one map $P: M(F_s, f_s) \to M(F_t, f_t)$ if and only if there are homotopic pinches $p_0, p_1: F_s \to F_t$ such that $p_1 \circ f_s = f_t \circ p_0$.

Proof Suppose first that $P: M(F_s, f_s) \to M(F_t, f_t)$ is a fiber preserving degree 1 map. Up to homotopy we may assume that $P^{-1}(F'_t) = F'_s$ and $P|: F'_s \to F'_t$ is a pinch. Moreover we may assume that the induced degree one map on S^1 is orientation preserving. Then by cutting $M(F_r, f_r)$ along F'_r , P provides a proper degree one map

$$\bar{P}: (F_s \times [0,1], F_s \times \{0\}, F_s \times \{1\}) \to (F_t \times [0,1], F_t \times \{0\}, F_t \times \{1\})$$

with the property $\bar{P}|_{F_s \times \{1\}} \circ f'_s = f'_t \circ \bar{P}|_{F_s \times \{0\}}$.

Let $p_j = q_t \circ \bar{P}|_{F_s \times \{j\}} \circ e_{s,j} : F_s \to F_t$. Then p_j is a pinch and $q_t \circ \bar{P} : F_s \times [0,1] \to F_t$ is a homotopy from p_0 to p_1 . Moreover $\bar{P}|_{F_s \times \{1\}} \circ f'_s = f'_t \circ \bar{P}|_{F_s \times \{0\}}$ and (*) imply that

$$\begin{split} p_{1} \circ f_{s} &= q_{t} \circ P|_{F_{s} \times \{1\}} \circ e_{s,1} \circ q_{s} \circ f'_{s} \circ e_{s,0} \\ &= q_{t} \circ \bar{P}|_{F_{s} \times \{1\}} \circ f'_{s} \circ e_{s,0} \\ &= q_{t} \circ f'_{t} \circ \bar{P}|_{F_{s} \times \{0\}} \circ e_{s,0} \\ &= q_{t} \circ f'_{t} \circ e_{t,0} \circ q_{t} \circ \bar{P}|_{F_{s} \times \{0\}} \circ e_{s,0} \\ &= f_{t} \circ p_{0}. \end{split}$$

Suppose then there are two homotopic pinches $p_0, p_1 : F_s \to F_t$ such that $p_1 \circ f_s = f_t \circ p_0$. Let $P' : F_s \times [0,1] \to F_t$ be a homotopy from p_0 to p_1 . Then P' provides a proper degree one map

$$\bar{P}: (F_s \times [0,1], F_s \times \{0\}, F_s \times \{1\}) \to (F_t \times [0,1], F_t \times \{0\}, F_t \times \{1\})$$

defined by $\bar{P}(x, u) = (P'(x, u), u)$. Clearly \bar{P} is fiber preserving and $p_j = q_t \circ \bar{P}|_{F_s \times \{j\}} \circ e_{s,j}$. Then $p_1 \circ f_s = f_t \circ p_0$ and (*) implies that

$$q_t \circ P|_{F_s \times \{1\}} \circ e_{s,1} \circ q_s \circ f'_s \circ e_{s,0} = q_t \circ f'_t \circ e_{t,0} \circ q_t \circ \bar{P}|_{F_s \times \{0\}} \circ e_{s,0},$$

hence

$$q_t \circ P|_{F_s \times \{1\}} \circ f_s' \circ e_{s,0} = q_t \circ f_t' \circ \bar{P}|_{F_s \times \{0\}} \circ e_{s,0}.$$

Since $q_t|_{F_t \times \{1\}}$ and $e_{s,0}$ are invertible, we have

$$P|_{F_s \times \{1\}} \circ f'_s = f'_t \circ \bar{P}|_{F_s \times \{0\}}.$$

Hence \bar{P} is able to induce a fiber preserving degree one map $P: M(F_s, f_s) \rightarrow M(F_t, f_t)$.

By Lemma 1, to prove Theorem 1 (1), we need only to find two homotopic pinches $p_0, p_1 : F_s \to F_t$ and a pseudo-Anosov map $f_s : F_s \to F_s$ such that $p_1 \circ f_s = f_t \circ p_0$.

For $D \subset F_t$ and $V = F_t - \text{int}(D)$ given in Definition 2, we can assume that $f_t|D = \text{id}$ up to isotopy.

Lemma 2 If $f_t: F_t \to F_t$ is a pseudo-Anosov map, then $f_t|V: V \to V$ is also a pseudo-Anosov map.

Proof Suppose there is a non-contractible circle c on V such that $f_t|^n(c) \sim c$ on V for some n > 0, then $f_t^n(c) \sim c$ on F_t . Since f_t is pseudo-Anosov, c is contractible on F_t . Hence c bounds a disc D^* in F_t and $D \subset D^*$. It follows that $c = \partial D^*$ is parallel to $\partial D = \partial V$. Hence $f_t|V:V \to V$ is pseudo-Anosov by definition.

Let $p_0, p_1 : F_s \to F_t$ be two pinches. Then the pull-back of V into F_s provides embeddings $e_j : V \hookrightarrow F_s$. Let $V_j = e_j(V)$, $W_j = F_s - \text{int}(V_j)$, (j = 0, 1). The following lemma is clear.

Lemma 3

$$\bar{f}_t := e_1 \circ f_t \circ e_0^{-1} : V_0 \to V_1$$

is a homeomorphism. Moreover, \bar{f}_t can be extended to a homeomorphism $f_s: F_s \to F_s$, such that $f_t \circ p_0 = p_1 \circ f_s$.

A necessary condition to guarantee the extension f_s in Lemma 3 to be pseudo-Anosov is that $e_0(\partial D)$ is **not** homotopic to $e_1(\partial D)$.

Now with Lemma 1 and Lemma 3, Theorem 1 (1) follows from the following Lemma 4 and Proposition 1.

Lemma 4 With the notation above, there exist two pinches $p_0, p_1 : F_s \to F_t$ such that

- (i) p_0 and p_1 are homotopic;
- (ii) $e_0(\partial D)$ is not homotopic to $e_1(\partial D)$.

Proof We will find two essential circles $\gamma_0, \gamma_1 \subset F_s$ such that

- (1) γ_0 is not homotopic to γ_1 ,
- (2) γ_i separates F_s into 1-punctured surfaces V_i and W_i , where V_0 , V_1 have genus g_t .

Then we define the pinch $p_i: F_s \to F_t$ such that W_i is the pinched part.

Case 1 $g_t \ge 2$. W_i , V_j , are shown in Fig. 1.

Let $p_j: F_s \to F_t$ be a pinch which sends W_j to $D_j \subset F_t$ such that the restrictions $p_0|, p_1|: F_s \setminus (W_0 \cup W_1) \to F_t \setminus (D_0 \cup D_1)$ are identical homeomorphisms. This requirement can be reached if we consider $p_j: F_s \to F_t$ as a quotient map which is the identity on $F_s \setminus W_j$ and pinches W_j to D_j .

Note $W_0 \cup W_1$ is a compact surface with two boundary components and $D_0 \cup D_1$ is annulus. Now the restrictions $p_0|,p_1|:W_0 \cup W_1 \to D_0 \cup D_1$ are degree one maps which are the identity on the boundary. It is also easy to see that there is an proper arc α of $W_0 \cup W_1$ connecting the different boundary components so that the pinches p_0 and p_1 can be homotoped relative to the boundaries so that $p_0(\alpha) = p_1(\alpha)$ and $p_0(\alpha)$ is a proper arc connecting the different boundary components of the annulus $D_0 \cup D_1$. Now it follows from a classical argument that $p_0|,p_1|:W_0 \cup W_1 \to D_0 \cup D_1$ are homotopic relative to the boundary, and furthermore $p_0,p_1:F_s \to F_t$ are homotopic.

Case 2 $g_t = 1$. Then $\pi_1(F_t) = H_1(F_t)$ is abelian and for each map $p : F_s \to F_t$, $p_\pi : \pi_1(F_s) \to \pi_1(F_t)$ is a composition of $\sigma : \pi_1(F_s) \to H_1(F_s)$ and $p_\# : H_1(F_s) \to H_1(F_t)$, where σ is the abelianizing map, $p_\#$ is the map on homology. So the homotopy class of p is determined by $p_\#$ by elementary homotopy theory (see [3]).

Using this fact, we can construct γ_0 and γ_1 as following: choose essential curves α , β_0 and β_1 on F_s , see Fig. 2, such that

- (1) β_0 and β_1 are in the same homology class, but not in the same homotopy class;
- $(2) \quad |\alpha \cap \beta_0| = |\alpha \cap \beta_1| = 1.$

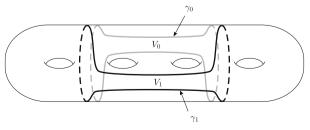
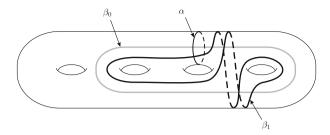


Fig. 2



Let $\gamma_j = \partial N(\alpha \cup \beta_j)$, $V_j = N(\alpha \cup \beta_j)$. It is easy to check that $\gamma_0 \nsim \gamma_1$ and $p_{0\#} = p_{1\#}$: $H_1(F_s) \to H_1(F_t)$.

Proposition 1 With the notation as above, once the two pinches $p_0, p_1 : F_s \to F_t$ are chosen to meet (i) and (ii) in Lemma 4, the extension f_s in Lemma 3 can be chosen to be pseudo-Anosov.

Suppose the two pinches $p_0, p_1 : F_s \to F_t$ are chosen to meet (i) and (ii) in Lemma 4, and $f_s : (F_s, V_0) \to (F_s, V_1)$ is an extension of $\bar{f}_t = e_1 \circ f_t | \circ e_0^{-1} : V_0 \to V_1$ with the condition $p_1 \circ f_s = f_t \circ p_0$.

Lemma 5 (1) If c is an essential circle in V, then c is essential in F_t .

(2) No non-trivial circle $c \subset V_j$ can be isotoped into $W_{j'}$, $j, j' \in \{0, 1\}$, $j \neq j'$.

Proof (1) Otherwise c would bound a disk D^* in F_t with $\partial V \subset D^*$, hence c is parallel to ∂V in V, a contradiction.

(2) Otherwise say c ⊂ V₀ is a non-trivial circle, which is isotopic to a circle c' ⊂ W₁ in F_s.

First suppose that c is essential in V_0 . By $p_0 \sim p_1$ we have $p_0(c) \sim p_1(c')$. On one hand c is essential in V_0 implies that $p_0(c)$ is essential in V_0 , and then $p_0(c)$ is essential in F_t by (1). But on the other hand, $c' \subset W_1$ implies that $p_1(c')$ is homotopically trivial. We reach a contradiction.

Then suppose that ∂W_1 can be isotoped into W_0 . Then one of the two components V_1 and W_1 must be contained in W_0 . Since W_0 and W_1 are homeomorphic, if $W_1 \subset W_0$, we must have ∂W_0 is parallel to ∂W_1 , a contradiction. Hence $V_1 \subset W_0$, which implies that $\pi_1(V_1) \subset \ker p_{0\pi} = \ker p_{1\pi}$, which clearly is impossible.

So what remains to us is to modify $f_s|_{W_0}$.

Definition 3 [9] A set of mutually disjoint circles $C = \{c_1, ..., c_m\}$ on a compact surface F is an *independent set*, if the circles in C are essential and mutually non-parallel.

Lemma 6 Let $h: W_1 \to W_1$ be a pseudo-Anosov map which is the identity in ∂W_1 . We extend h by the identity to an automorphism h of F_s . A is a maximal independent set of circles in W_0 . $f = f_s: F_s \to F_s$ is an extension of $\bar{f}_t: V_0 \to V_1$.

Then when k is sufficiently large, for any $\alpha \in A$, $h^k f(\alpha)$ is not isotopic to any circle in A.

Proof Suppose $k_1 < k_2, \alpha \in A$. We claim that $h^{k_1}f(\alpha) \sim h^{k_2}f(\alpha)$ in F_s . In fact, $h^{k_1}f(\alpha)$ is an essential curve in W_1 , and any two curves in W_1 , which are homotopic in F_s ,

must be homotopic in W_1 . But $h|_{W_1}$ is a pseudo-Anosov automorphism on W_1 , so $h^{k_2-k_1}(h^{k_1}f(\alpha))$ is not isotopic to $h^{k_1}f(\alpha)$.

Hence for any $\alpha \in \mathcal{A}$, there are only finitely many k, such that $h^k f(\alpha)$ is homotopic to a circle in \mathcal{A} . Hence the conclusion holds.

From now on we replace f by $h^k f$.

Let \mathcal{A}_0 be a maximal independent set of circles on W_0 , \mathcal{A}_1 be its image under f_s . Let $V'_j = e_{s,j}(V_j)$, $W'_j = e_{s,j}(W_j)$, $\mathcal{A}'_j = e_{s,j}(\mathcal{A}_j)$. Let $L = o_s(\mathcal{A}' \bigcup \partial W'_0)$, $V' = o_s(V'_j)$, $W' = o_s(W'_j)$, $F' = o_s(F_s \times \{j\})$; and $X = M(F_s, f_s) - \operatorname{int}(N(L))$, $F^* = F' \cap X$. Then

$$f'_s: (F_s \times \{0\}, V'_0, W'_0, \mathcal{A}_0) \to (F_s \times \{1\}, V'_1, W'_1, \mathcal{A}_1)$$

is a homeomorphism.

Suppose that we already know X is hyperbolic. Let $L = \{\alpha_1, \dots, \alpha_m\}$, let T_l be the torus $\partial N(\alpha_l)$ on ∂X , $l = 1, \dots, m$. Denote by τ_c the right hand Dehn twist along a circle c on F_s . Pick a meridian-longitude pair for each T_l , with longitude a component of $F' \cap T_l$. q_l is a slope on T_l , define $X(q_1, \dots, q_m)$ to be the manifold obtained by q_l Dehn filling on T_l . The following lemma recalls a well-known relationship between Dehn fillings and Dehn twists, which has been used in some papers, say [4] and [9].

Lemma 7 Let $\tilde{f}(k_1,\ldots,k_m) = \tau_{\alpha_1}^{k_1} \circ \cdots \circ \tau_{\alpha_m}^{k_m} \circ f$. Then

$$M(F_s, \tilde{f}(k_1, \dots, k_n)) = X(1/k_1, \dots, 1/k_m)$$

for all $k_l \in \mathbb{Z}$.

Then we can use Thurston's hyperbolic surgery theorem to conclude that $\tilde{f}(k_1, \ldots, k_m)$ is pseudo-Anosov when k_1, \ldots, k_m are sufficiently large.

Now we are going to prove that X is hyperbolic. We first have

- **Lemma 8** (1) A'_j is a maximal independent set of circles on W'_j and each non-trivial circle in F^* is either essential in V'_j or parallel to a component of $\partial W'_j \cup A'_j$.
- (2) No component of $\partial W_0 \cup A_0$ is homotopic to a component of $\partial W_1 \cup A_1$, in F_s .

Proof (1) follows directly from the definitions and the constructions.

(2) ∂W_1 (resp. ∂W_0) can not be isotoped into W_0 (resp. W_1) by Lemma 5 (2). No component of $A_1 = f_s(A_0)$ is isotopic to a component of A_0 by Lemma 6. Hence (2) follows.

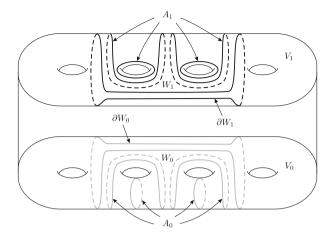
Figure 3 is what happens in $F_s \times [0,1]$, and clearly illustrate the meaning of Lemma 8.

Lemma 9 X is atoroidal.

Proof Suppose that T is an essential torus in X. We assume that T has been isotoped in X so that $|T \cap F^*|$ is minimal. Then $T \cap F^* = \mathcal{C}^*$ consists of π_1 -injective circles on both T and F^* . Note $\mathcal{C}^* \neq \emptyset$, otherwise T would be an incompressible torus in $F_s \times [0,1]$, which is impossible.

Cutting X along F^* , we get a manifold $X' \subset F_s \times [0,1]$ and $T \setminus C$ is a collection of annuli $A_1, A_2, \ldots, A_n \subset X'$. In the case A_k is vertical, we denote the component of ∂A_k in $F_s \times \{j\}$ by $c_{k,j}$, and $q_s(c_{k,0}) = q_s(c_{k,1}) \subset F_s$ by c_k .

Fig. 3



Now we claim that if one component of ∂A_k is essential in V_j' , then A_k is vertical. Because otherwise $\partial A_k \subset V_j'$, and we can push A_k across V' in X to reduce $|T \cap F^*|$, a contradiction.

By Lemma 8 (1), there are two cases:

Case 1 Some component of ∂A_k is an essential circle on V'_i .

By the claim above, A_k is vertical. Then $f_s'(c_{k,0})$ is a component of ∂A_l . (l=k-1 or k+1.) Since $f_s'(c_{k,0})$ is essential in V_1' , it follows by the claim A_l is vertical and $f_s'(c_{k,0}) = c_{l,1}$. Then $f_s(c_k) = c_l$ and c_l is essential in V_1 . Hence c_l can not be isotoped into W_0 by Lemma 5 (2). Since $c_{l,0}$ is disjoint from $\partial W_0'$, $c_l \subset V_0$. Clearly c_l is still an essential circle in V_0 , and therefore $c_{l,0}$ is essential in V_0' . Since T is connected, repeat the same argument finitely many times, we get that

- (1) all A_k are vertical;
- (2) all $c_{k,0}$ are essential in V'_0 and all $c_{k,1}$ are essential in V'_1 ;
- (3) $f'_s(c_{k,0}) = c_{k+1,1}$ (re-indexing A_k if needed, and the subscript k is considered mod n). Hence each c_k is essential in both V_0 and V_1 , and $f_s(c_k) = c_{k+1}$.

Now both $p_0(c_k)$ and $p_1(c_k)$ are essential circles in V, and therefore essential in F_t by Lemma 5 (1). Since $f_t \circ p_0 = p_1 \circ f_s$, we have that $f_t \circ p_0(c_k) = p_1 \circ f_s(c_k) = p_1(c_{k+1})$. Since p_0 and p_1 are homotopic, we have $p_0(c_k) \sim p_1(c_k)$. Then up to isotopy $f_t^n \circ p_0(c_k) = p_0(c_k)$, which contradicts to the fact that f_t is a pseudo-Anosov map on F_t .

Case 2 Each component of ∂A_k is parallel to a component of $\partial W'_0 \cup A'_0$. By Lemma 8 (2), no A_k is vertical, hence both components of ∂A_k are parallel to a component c of $\partial W'_0 \cup A'_0$. So A_k can be rel ∂A_k isotoped into N(c) in X'. Hence back to X the torus T can be isotoped into $N(o_s(c))$. This means that T is boundary parallel in X, contrary to our assumption.

It is easy to see that X is irreducible: a reducing sphere S would bound a ball B in $M(F_s, f_s)$, because $M(F_s, f_s)$, as a surface bundle over circle, is irreducible. Hence B would contain some component of L. This is impossible because each component of L is essential in $M(F_s, f_s)$.

X is not a Seifert fibered space: it contains $q(F_s \times \frac{1}{2})$, a non-separating, hyperbolic, closed incompressible surface. No such surface exists in a Seifert fibered space with boundary, because an essential surface in such a manifold is either horizontal (hence bounded) or vertical (hence a torus or an annulus).

Now the geometrization theorem of Thurston for Haken manifolds [8] leads us to the following:

Corollary 1 *X is a hyperbolic manifold.*

Proof (Proof of Proposition 1) By Corollary 1, X is a hyperbolic manifold, therefore, by the hyperbolic surgery theorem of Thurston [7], $X(1/k_1, ..., 1/k_m)$ is hyperbolic for sufficiently large k_l . The previous lemma implies that

$$X(1/k_1,...,1/k_m) = M(F_s,\tilde{f}(k_1,...,k_m)).$$

The theorem now follows from Thurston's theorem that $M(F_s, \tilde{f})$ is hyperbolic if and only if \tilde{f} is isotopic to a pseudo-Anosov map [5,8]).

3 Adjusting Betti numbers

Now we pay attention to the Betti numbers of the surface bundles. Using HNN extension one can calculate directly that

$$H_1(M(F,f);\mathbb{Z}) = H_1(F,\mathbb{Z})/\ker(f_{2g} - f_{\#}) \oplus \mathbb{Z}$$

where g = g(F), l_{2g} is the unit matrix in $SL_{2g}(\mathbb{Z})$.

By abuse of notation, denote the image of $H_1(V_j)$ in $H_1(F_s)$ by $H_1(\widehat{V}_j)$. Similarly, define $H_1(\widehat{W}_i)$. We have

$$\mathrm{H}_1(F_s) = \mathrm{H}_1(\widehat{V}_0) \oplus \mathrm{H}_1(\widehat{W}_0) = \mathrm{H}_1(\widehat{V}_1) \oplus \mathrm{H}_1(\widehat{W}_1).$$

Lemma 10

$$H_1(\widehat{V}_0) = H_1(\widehat{V}_1),$$

 $H_1(\widehat{W}_0) = H_1(\widehat{W}_1),$

as subgroups of $H_1(F_s)$.

Proof The second equation is easy, because $H_1(\widehat{W}_j) = \ker p_{j\#}$, and $p_0 \sim p_1$ implies $p_{0\#} = p_{1\#}$.

Now we will prove the first equation. Suppose $c_0 \subset V_0$ is a circle, then $c = p_0(c_0)$ is a circle in V, thus $c_1 = p_1^{-1}(c)$ is a circle in V_1 . Since $p_0 \sim p_1$, we have a map $H: F_s \times [0,1] \to F_t$, $H(\cdot,j) = p_j(\cdot)$.

Make H transverse to c, then $H^{-1}(c)$ is a submanifold of $F_s \times [0,1]$ with boundary $c_0 \cup c_1$. So c_0 and c_1 represent the same homology class in $H_1(F_s \times [0,1]) = H_1(F_s)$. Hence the generators of $H_1(\widehat{V}_0)$ is the same as the ones of $H_1(\widehat{V}_1)$, our conclusion holds.

Choose a basis of $H_1(\widehat{V}_0)$ and a basis of $H_1(\widehat{W}_0)$ to make up a basis of $H_1(F_s)$. Under this basis, $f_{s\#}$ will be represented by a matrix of the form:

$$\begin{pmatrix} f_{t\#} & 0 \\ 0 & A \end{pmatrix}$$
.

Lemma 11 The map f_s can be chosen so that the matrix I - A is non-degenerate.

Proof Let $\delta = g_s - g_t$. Choose curves $\alpha_1, \ldots, \alpha_\delta, \beta_1, \ldots, \beta_\delta \subset W_1$, such that they are mutually disjoint, except that α_l intersects β_l in a single point transversely. These 2δ curves form a symplectic basis of $H_1(\widehat{W}_1)$. Under this basis, the intersection form of $H_1(\widehat{W}_1)$ is $\begin{pmatrix} 0 & l_\delta \\ -l_\delta & 0 \end{pmatrix}$. So if $f: (F_s, W_0) \to (F_s, W_1)$ is a homeomorphism, $f_\#|_{H_1(\widehat{W}_0)}$ will be represented by a symplectic matrix F.

We choose a map $\eta: W_1 \to W_1$, such that it fixes the points on ∂W_1 , and it induces F^{-1} on the homology.

When $\delta > 1$, by Theorem 2 in [6], every symplectic matrix of rank 2δ can be represented by a pseudo-Anosov map on a closed surface of genus δ . So there is a pseudo-Anosov map $h: W_1 \to W_1$, such that it fixes the points on ∂W_1 , and induces $-l_{2\delta}$ on the homology. Extend η, h to maps on F_s , with the points in V_1 fixed.

Let $\gamma_I = \partial N(\alpha_I \cup \beta_I)$, which is a separating circle in W_1 (see those separating circles in \mathcal{A}_1 , Figure 3). Now we extend $\{\alpha_1,\ldots,\alpha_\delta,\gamma_1,\ldots,\gamma_\delta\}$ to a maximal independent set \mathcal{A} on W_0 . Then every curve in $\mathcal{A} - \{\alpha_1,\ldots,\alpha_\delta\}$ is homologous to 0. Let $L = \mathcal{A} \cup \{\partial W_1\}$ So the only Dehn twists along circles in L, which act nontrivially on the homology group, are $\tau_{\alpha_1},\ldots,\tau_{\alpha_\delta}$. The action of products of these twists on $H_1(\widehat{W}_1)$ is represented by a upper-triangular matrix T, whose diagonal elements are all 1. By Lemma 6, $h^{2k+1}\eta f$ does not send any curve in L into L when k is sufficiently large. The matrix of $h^{2k+1}\eta f$, when restricted on $H_1(\widehat{W}_0)$, is $-l_{2\delta}$. Now replace f by the composition of Dehn twists along L and $h^{2k+1}\eta f$, we have

$$I_{2\delta} - A = I_{2\delta} + T$$

is non-degenerate.

When $\delta=1$, we give a direct construction. Let α,β be a symplectic basis of W_0 . Choose a map $h':W_1\to W_1$, with matrix $\begin{pmatrix} 2&1\\1&1 \end{pmatrix}$. Then $h'\eta f$ meets the conclusion of Lemma 6. τ is the Dehn twist along $\eta f(\alpha)$, then the matrix of τ is $\begin{pmatrix} 1&1\\0&1 \end{pmatrix}$. τ_0 is the Dehn twist along ∂W_1 . Now the matrix A of $\tau_0^m \tau^k h' \eta f$ is

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^k \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2+k & 1+k \\ 1 & 1 \end{pmatrix}.$$

One can check I - A is non-degenerate when $k \ge 0$.

To prove Theorem 1 (2), we need only to show the following lemma.

Lemma 12 With the notation as above, the extension f_s in Proposition 1 can be chosen so that

$$rank (H_1(F_s; \mathbb{Q}) / \ker(I_{2g_s} - f_{s\#})) = rank (H_1(F_t; \mathbb{Q}) / \ker(I_{2g_t} - f_{t\#})).$$

Proof The conclusion follows from the formula of computing $H_1(M(F,f))$ and Lemma 11.

Proof (Proof of Theorem 1) This theorem follows from Proposition 1 and Lemma 12.

Acknowledgment We are grateful to Dr. Hao Zheng for drawing the figures in this paper. Boileau and Wang wish to thank Prof. D. Gabai and Prof. G. Mess for helpful conversations. Y. Ni joined this project when he was a graduate student at Peking University. The paper was finished when Ni visited Peking University.

References

- Boileau, M., Wang, S.C.: Non-zero degree maps and surface bundles over S¹. J. Diff. Geom. 43, 789–806 (1996)
- Edmonds, A.: Deformation of maps to branched coverings in dimension two. Ann. Math. 110, 113–124 (1979)
- 3. Hu, S.-T.: Homotopy Theory. Academic Newyork (1959)
- Long, D.D., Morton, H.R.: Hyperbolic 3-manifolds and surface automorphisms. Topology 25(4), 575–583 (1986)
- Otal, J.P.: Le theoreme d'hyperbolisation pour les variétés fibrées de dimension 3. Astérisque 235.
 Soc. Mat. de France (1997)
- Papadopoulos, A.: Difféomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie. (French) Ann. Sci. École Norm. Sup. 4º Sér. 15 (3), 543–546 (1982)
- 7. Thurston, W.: The geometry and topology of 3-manifolds. Princeton University, New Jersey (1978)
- 8. Thurston, W.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. 6, 357–381 (1982)
- Wang, S., Wu, Y.-Q., Zhou, Q.: Pseudo-Anosov maps and simple curves on surfaces. Math. Proc. Camb. Phil. Soc. 128, 321–326 (2000)

