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Dehn Surgery on Knots in S3 Producing Nil Seifert

Fibered Spaces

Yi Ni and Xingru Zhang

1 INTRODUCTION

For a knot K in S3, we denote by S3
K(p/q) the manifold obtained by Dehn surgery

along K with slope p/q. Here the slope p/q is parameterized by the standard merid-
ian/longitude coordinates of K and we always assume gcd(p, q)= 1. In this paper
we study the problem of on which knots in S3 with which slopes Dehn surgeries can
produce Seifert fibered spaces admitting the Nil geometry. Recall that every closed
connected orientable Seifert fibered space W admits one of 6 canonical geometries:
S2×R, E

3, H
2×R, S3, Nil, S̃L2(R). More concretely if e(W ) denotes the Euler

number of W and χ(BW ) denotes the orbifold Euler characteristic of the base orb-
ifold BW of W , then the geometry of W is uniquely determined by the values of
e(W ) and χ(BW ) according to the following table (cf. §4 of [18]):

Table 1: The type of geometry of a Seifert fibered
space W .

χ(BW )> 0 χ(BW )= 0 χ(BW )< 0

e(W )= 0 S
2×R E

3
H

2×R

e(W ) �=0 S
3 Nil S̃L2(R)

Suppose that S3
K(p/q) is a Seifert fibered space with Euclidean base orbifold.

A simple homology consideration shows that the base orbifold of S3
K(p/q) must

be S2(2, 3, 6)—the 2-sphere with 3 cone points of orders 2, 3, 6 respectively. The
orbifold fundamental group of S2(2, 3, 6) is the triangle group�(2, 3, 6)= 〈x, y;x2 =
y3 =(xy)6 =1〉, whose first homology is Z/6Z. Thus p is divisible by 6. If p=0, then
S3
K(0) must be a torus bundle. By [4], K is a fibered knot with genus one. So K

is the trefoil knot or the figure 8 knot. But the 0-surgery on the figure 8 knot is
a manifold with the Sol geometry. So K is the trefoil knot. By [18, Table 4.4],
there is only one Euclidean 3–manifold with base orbifold S2(2, 3, 6), which is the
zero surgery on the trefoil knot. So the trefoil knot is the only knot in S3 and
0 is the only slope which can produce a Seifert fibered space with the Euclidean
geometry. Therefore we may assume that p �=0. Hence S3

K(p/q) is a Seifert fibered
space with the Nil geometry. It is known that on a hyperbolic knot K in S3, there
is at most one surgery which can possibly produce a Seifert fibered space admitting

-1
0
1



DEHN SURGERY ON KNOTS IN S3

125-81918 Thurston WhatsNext ch01 6p 14th April, 2020 12:01 7x10 Page 245

245

the Nil geometry and if there is one, the surgery slope is integral [2]. In this paper
we show

Theorem 1.1. Suppose K is a knot in S3 which is not the (right-handed or left-
handed) trefoil knot T (±3, 2). Suppose that S3

K(p/q) is a Seifert fibered space admit-
ting the Nil geometry (where we may assume p, q > 0 up to changing K to its mirror
image). Then q=1 and p is one of the numbers 60, 144, 156, 288, 300. Moreover we
have the following cases:

1. S3
K(60)∼=−S3

T (3,2)(60/11),

2. S3
K(144)∼=−S3

T (3,2)(144/23) or S
3
K(144)∼=S3

T (3,2)(144/25),

3. S3
K(156)∼=S3

T (3,2)(156/25),

4. S3
K(288)∼=S3

T (3,2)(288/49),

5. S3
K(300)∼=S3

T (3,2)(300/49),

where ∼= stands for orientation preserving homeomorphism.

Furthermore, under the assumptions of Theorem 1.1, we have the following
additional information:

Addendum 1.2. (a) The knotK is either a hyperbolic knot or a cable over T (3, 2)
as given in Proposition 4.2.

(b) If Case (1) occurs, then K is a hyperbolic knot and its Alexander polynomial
is either

�K(t)= 1− t− t−1 + t2 + t−2− t4− t−4 + t5 + t−5− t6− t−6 + t7 + t−7− t8− t−8
+ t9 + t−9− t13−t−13 + t14 + t−14−t15− t−15 + t16 + t−16− t22− t−22 + t23 + t−23,

or

�K(t)= 1− t2− t−2 + t4 + t−4− t7− t−7 + t9 + t−9− t12− t−12 + t13

+ t−13− t16− t−16 + t17 + t−17− t21− t−21 + t22 + t−22.

The two Berge knots which yield the lens spaces L(61, 13) and L(59, 27) respec-
tively realize the Nil Seifert surgery with the prescribed two Alexander polynomials
respectively. More explicitly these two Berge knots are given in [1], page 6, with a=5
and b=4 in case of Fig. 8, and with b=9 and a=2 in case of Fig. 9, respectively.

(c) If the former subcase of Case (2) occurs, then K is a hyperbolic knot and
its Alexander polynomial is

�K(t)= 1− t− t−1 + t2 + t−2− t4− t−4 + t5 + t−5− t6− t−6 + t7 + t−7− t9− t−9
+ t10 + t−10−t11−t−11 + t12 + t−12− t14− t−14 + t15 + t−15− t16− t−16 + t17 + t−17

− t19− t−19 + t20 + t−20− t21− t−21 + t22 + t−22− t24− t−24 + t25 + t−25−t26−t−26
+ t27 + t−27− t29− t−29 + t30 + t−30− t34− t−34 + t35 + t−35− t39− t−39 + t40

+ t−40− t44− t−44 + t45 + t−45− t49− t−49 + t50 + t−50− t54− t−54 + t55 + t−55.

This subcase is realized on the Eudave-Muñoz knot k(−2, 1, 6, 0) of [3, Propositions
5.3 (1) and 5.4 (2)], which is also a Berge knot on which the 143–surgery yields
L(143, 25).

(d) If the latter subcase of Case (2) occurs, then�K(t)=�T (29,5)(t)�T (3,2)(t
5).

If Case (4) or (5) occurs, then �K(t)=�T (41,7)(t)�T (3,2)(t
7) or �K(t)=�T (43,7)(t)

�T (3,2)(t
7) respectively. All these cases can be realized on certain cables over T (3, 2)

as given in Proposition 4.2.
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(e) If Case (3) occurs, then either �K(t)=�T (31,5)(t)�T (3,2)(t
5) or

�K(t)= 1− t3− t−3 + t4 + t−4− t5− t−5 + t6 + t−6− t8− t−8 + t9 + t−9− t10
− t−10 + t11 + t−11− t13− t−13 + t14 + t−14− t15− t−15 + t16 + t−16− t18− t−18
+ t19 + t−19− t20− t−20 + t21 + t−21− t23− t−23 + t24 + t−24− t25− t−25 + t26

+ t−26− t28− t−28 + t29 + t−29− t30− t−30 + t31 + t−31− t35− t−35 + t36 + t−36

− t40− t−40 + t41 + t−41− t45− t−45 + t46 + t−46− t50− t−50 + t51 + t−51− t55
− t−55 + t56 + t−56− t60− t−60 + t61 + t−61.

The former subcase can be realized on the (31, 5)-cable over T (3, 2), and the latter
subcase can be realized on the Eudave-Muñoz knot k(−3,−1, 7, 0), which is also a
Berge knot on which the 157–surgery yields L(157, 25).

In other words there are exactly 6 Nil Seifert fibered spaces which can be
obtained by Dehn surgeries on non-trefoil knots in S3 and there are exactly 5 slopes
for all such surgeries (while on the trefoil knot T (3, 2), infinitely many Nil Seifert
fibered spaces can be obtained by Dehn surgeries; in fact by [11], ST (3,2)(p/q) is a
Nil Seifert fibered space if and only if p=6q± 6, p �=0). It seems reasonable to raise
the following conjecture.

Conjecture 1.3. If a hyperbolic knot K in S3 admits a surgery yielding a Nil
Seifert fibered space, then K is one of the four hyperbolic Berge knots given in (b)
(c) (e) of Addendum 1.2.

The method of proof of Theorem 1.1 and Addendum 1.2 follows that given in
[10] and [8], where similar results are obtained for Dehn surgeries on knots in S3

yielding spherical space forms which are not lens spaces or prism manifolds. The
main ingredient of the method is the use of the correction terms (also known as the
d-invariants) for rational homology spheres together with their Spinc structures,
defined in [14]. In fact with the same method we can go a bit further to prove the
following theorems.

Theorem 1.4. For each fixed 2-orbifold S2(2, 3, r) (or S2(3, 4, r)), where r > 1 is an
integer satisfying

√
6r/Q /∈Z (resp.

√
12r/Q /∈Z) for each Q=1, 2, . . . , 8, there are

only finitely many slopes with which Dehn surgeries on hyperbolic knots in S3 can
produce Seifert fibered spaces with S2(2, 3, r) (resp. S2(3, 4, r)) as the base orbifold.

Theorem 1.5. For each fixed torus knot T (m,n), withm≥ 2 even, n> 1, gcd(m,n)
= 1, and a fixed integer r > 1 satisfying

√
mnr/Q /∈Z for each Q=1, 2 . . . , 8, among

all Seifert fibered spaces

{
S3
T (m,n)

(
mnq± r

q

)
; q > 0, gcd(q, r)= 1

}

only finitely many of them can be obtained by Dehn surgeries on hyperbolic knots
in S3.

The above results suggest a possible phenomenon about Dehn surgery on hyper-
bolic knots in S3 producing Seifert fibered spaces, which we put forward in a form
of conjecture.
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Conjecture 1.6. For every fixed 2-orbifold S2(k, l,m), with all k, l,m larger than
1, there are only finitely many slopes with which Dehn surgeries on hyperbolic knots
in S3 can produce Seifert fibered spaces with S2(k, l,m) as the base orbifold.

In the above conjecture we may assume that gcd(k, l,m)= 1.
After recalling some basic properties of the correction terms in Section 2, we

give and prove a more general theorem in Section 3. This theorem together with its
proof will be applied in the proofs of Theorem 1.1, Addendum 1.2 and Theorems
1.4 and 1.5, which is the content of Section 4.
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2 CORRECTION TERMS IN HEEGAARD FLOER HOMOLOGY

To any oriented rational homology 3-sphere Y equipped with a Spinc structure
s∈ Spinc(Y ), there can be assigned a numerical invariant d(Y, s)∈Q, called the
correction term of (Y, s), which is derived in [14] from Heegaard Floer homology
machinery. The correction terms satisfy the following symmetries:

d(Y, s)= d(Y, Js), d(−Y, s)=−d(Y, s), (1)

where J : Spinc(Y )→Spinc(Y ) is the conjugation.
Suppose that Y is an oriented homology 3-sphere, K ⊂Y a knot, let YK(p/q)

be the oriented manifold obtained by Dehn surgery on Y along K with slope p/q,
where the orientation of YK(p/q) is induced from that of Y −K which in turn is
induced from the given orientation of Y . There is an affine isomorphism σ : Z/pZ→
Spinc(YK(p/q)). See [14, 15] for more details about the isomorphism. We shall
identify Spinc(YK(p/q)) with Z/pZ via σ but with σ suppressed, writing (YK(p/q), i)
for (YK(p/q), σ(i)). Note here i is (mod p) defined and sometimes it can appear as
an integer larger than or equal to p. The following lemma is contained in [10, 13].

Lemma 2.1. The conjugation J :Spinc(YK(p/q))→Spinc(YK(p/q)) is given by

J(i)= p+ q− 1− i, for 0≤ i< p+ q.

For a positive integer n and an integer k we use [k]n ∈Z/nZ to denote the
congruence class of k modulo n.

Let L(p, q) be the lens space obtained by p/q–surgery on the unknot in S3. The
correction terms for lens spaces can be computed inductively as in [14]:

d(S3, 0)= 0,

d(L(p, q), i)=−1

4
+

(2i+1− p− q)2
4pq

− d(L(q, [p]q), [i]q), for 0≤ i< p+ q. (2)

For a knot K in S3, write its Alexander polynomial in the following standard
form:

�K(t)= a0 +
∑

i≥1
ai(t

i+ t−i). -1
0
1
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For i≥ 0, define

bi=

∞∑

j=1

jai+j .

Note that the ai’s can be recovered from the bi’s by the following formula

ai= bi−1− 2bi+ bi+1, for i> 0. (3)

By [15] [16], if K ⊂S3 is a knot on which some Dehn surgery produces an
L-space, then the bi’s for K satisfy the following properties:

bi≥ 0, bi≥ bi+1≥ bi− 1, bi=0 for i≥ g(K) (4)

and if S3
K(p/q) is an L-space, where p, q > 0, then for 0≤ i≤ p− 1,

d(S3
K(p/q), i)= d(L(p, q), i)− 2bmin{� i

q �,� p+q−i−1
q �}. (5)

This surgery formula has been generalized in [12] to one that applies to any knot in
S3 as follows. Given any knot K in S3, from the knot Floer chain complex, there
is a uniquely defined sequence of integers V K

i , i∈Z, satisfying

V K
i ≥ 0, V K

i ≥V K
i+1≥V K

i − 1, V K
i =0 for i≥ g(K) (6)

and the following surgery formula holds.

Proposition 2.2. When p, q > 0,

d(S3
K(p/q), i)= d(L(p, q), i)− 2V K

min{� i
q �,� p+q−i−1

q �}

for 0≤ i≤ p− 1.

3 FINITELY MANY SLOPES

Theorems 1.1, 1.4 and 1.5 will follow from the following more general theorem and
its proof.

Theorem 3.1. Let L be a given knot in S3, and r, l, Q be given positive integers
satisfying √

rl

Q
/∈Z. (7)

Suppose further that l is even. Then there exist only finitely many positive integers
q, such that S3

L(
lq±r
q ) is homeomorphic to S3

K( lq±rQ ) for a knot K in S3.

Remark 3.2. The condition that l is even is not essential. We require this condition
to simplify our argument. The condition (7) does not seem to be essential either.
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We now proceed to prove Theorem 3.1. Let each of ζ and ε denote an element in
{1,−1}, and let p= lq+ ζr. We may assume that p is positive (as long as q > r/l).
Assume that

S3
K

(
p

Q

)
∼= εS3

L

(
p

q

)
, (8)

where ε∈{±1} indicates the orientation and “∼=” stands for orientation preserving
homeomorphism. Then the two sets

{d(S3
K(p/Q), i)| i∈Z/pZ}, {d(εS3

L(p/q), i)| i∈Z/pZ}

are of course equal, but the two parametrizations for Spinc may not be equal:
they could differ by an affine isomorphism of Z/pZ, that is, there exists an affine
isomorphism φ : Z/pZ→Z/pZ, such that

d

(
S3
K

(
p

Q

)
, i

)
= d

(
εS3

L

(
p

q

)
, φ(i)

)
, for i∈Z/pZ.

By Lemma 2.1, the fixed point set of the conjugation isomorphism J : Spinc(S3
K(p/

Q))→Spinc(S3
K(p/Q)) is

{
Q− 1

2
,
p+Q− 1

2

}
∩Z

and likewise the fixed point set of J : Spinc(εS3
L(p/q))→Spinc(εS3

L(p/q)) is

{
q− 1

2
,
p+ q− 1

2

}
∩Z.

As J and φ commute, we must have

φ

({
Q− 1

2
,
p+Q− 1

2

}
∩Z

)
=

{
q− 1

2
,
p+ q− 1

2

}
∩Z.

It follows that the affine isomorphism φ :Z/pZ→Z/pZ is of the form

φa(i)=

[
a(i− b)+ (1−α)p+ q− 1

2

]

p

(9)

where b is an element of {Q−12 , p+Q−12

}∩Z, α=0 or 1, and a is an integer satis-
fying 0<a<p, gcd(a, p)= 1. Similarly, replacing a with p− a in (9), we can define
φp−a. By (1) and Lemma 2.1, d(εS3

L(p/q), φa(i))= d(εS3
L(p/q), φp−a(i)). So we may

further assume that

0<a<
p

2
, gcd(p, a)= 1. (10)

Let
δεa(i)= d(L(p,Q), i)− εd(S3

L(p/q), φa(i)). (11)
-1
0
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By Proposition 2.2, we have, when q > r/l (so that p> 0),

δεa(i)= 2V K

min{� i
Q �,� p+Q−1−i

Q �}. (12)

Let m∈Z satisfy

0≤ a+ (1−α)ζr+ q− 1

2
−mq<q,

then as 0<a<p/2, we have 0≤m≤ l
2 when q > 2r.

Let

κ(i)=min

{
 i
q
�, p+ q− 1− i

q
�
}
.

Using Proposition 2.2 and (11), we get

δεa(i)= d(L(p,Q), i)− εd(S3
L(p/q), φa(i))

= d(L(p,Q), i)− εd(L(p, q), φa(i))+ 2εV L
κ(φa(i))

. (13)

Lemma 3.3. With the notations and conditions established above, there exists a
constant N =N(r, l, Q, L), such that

∣
∣
∣a− mp

l

∣
∣
∣<N

√
p

for all q > 2r.

Proof. It follows from (6) and (12) that

δεa(b+1)− δεa(b)= 0 or ± 2. (14)

Using (13), (2) and (9), we get

δεa(b+1)− δεa(b)
=

2b+2− p−Q
pQ

− d(L(Q, [p]Q), [b+1]Q)+ d(L(Q, [p]Q), [b]Q)

+2ε(V L
κ(φa(b+1))−V L

κ(φa(b))
)

−ε
(
d

(
L(p, q), a+

(1−α)p+ q− 1

2

)
− d

(
L(p, q),

(1−α)p+ q− 1

2

))
.

(15)

When ζ =1, by the recursive formula (2), we have (note that a+ (1−α)p+q−1
2 <

p+ q)

d

(
L(p, q), a+

(1−α)p+ q− 1

2

)
− d

(
L(p, q),

(1−α)p+ q− 1

2

)

=
(2a−αp)2− (αp)2

4pq
− d

(
L(q, r), a−mq+ (1−α)r+ q− 1

2

)
-1
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+ d

(
L(q, r),

(1−α)r+ q− 1

2

)

=
a2− aαp

pq
− (2a− 2mq−αr)2− (αr)2

4qr

+ d

(
L(r, [q]r),

[
a−mq+ (1−α)r+ q− 1

2

]

r

)

− d
(
L(r, [q]r),

[
(1−α)r+ q− 1

2

]

r

)

=− l

pr

(
a− mp

l

)2
+
m2

l
−mα

+ d

(
L(r, [q]r),

[
a−mq+ (1−α)r+ q− 1

2

]

r

)

− d
(
L(r, [q]r),

[
(1−α)r+ q− 1

2

]

r

)
.

When ζ =−1,

d

(
L(p, q), a+

(1−α)p+ q− 1

2

)
− d

(
L(p, q),

(1−α)p+ q− 1

2

)

=
(2a−αp)2− (αp)2

4pq
− d

(
L(q, q− r), a−mq+ −(1−α)r+ q− 1

2

)

+ d

(
L(q, q− r), −(1−α)r+ q− 1

2

)

=
a2− aαp

pq
− (2a− 2mq+αr− q)2− (αr− q)2

4q(q− r)
+ d

(
L(q− r, r), a−mq+ −(1−α)r+ q− 1

2

)

− d
(
L(q− r, r), −(1−α)r+ q− 1

2

)

=
a2

pq
− αa

q
− (a−mq+αr− q)(a−mq)

q(q− r) +
(a−mq− (1−α)r)(a−mq)

(q− r)r
− d

(
L(r, [q− r]r),

[
a−mq+ −(1−α)r+ q− 1

2

]

r

)

+ d

(
L(r, [q− r]r),

[−(1−α)r+ q− 1

2

]

r

)

=
l

pr

(
a− mp

l

)2
+
m2

l
−mα

− d
(
L(r, [q]r),

[
a−mq+ −(1−α)r+ q− 1

2

]

r

)

+ d

(
L(r, [q]r),

[−(1−α)r+ q− 1

2

]

r

)
. -1
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Let

C0 =
2b+2− p−Q

pQ
− d(L(Q, [p]Q), [b+1]Q)+ d(L(Q, [p]Q), [b]Q)

+ 2ε(V L
κ(φa(b+1))−V L

κ(φa(b))
)

− εζ
(
d

(
L(r, [q]r),

[
a−mq+ ζ(1−α)r+ q− 1

2

]

r

)

− d
(
L(r, [q]r),

[
ζ(1−α)r+ q− 1

2

]

r

))
,

then the right-hand side of (15) becomes

ε

(
ζ
l

pr

(
a− mp

l

)2
− m2

l
+mα

)
+C0.

Using (14), we get

l

pr

(
a− mp

l

)2
≤ 2+ |m

2

l
−mα|+ |C0|.

Clearly, |C0| and m are bounded in terms of r, l, Q, L, so the conclusion of the
lemma follows. ♦

Lemma 3.4. Let k be an integer satisfying

0≤ k < p− (2l+1)r+ l

2Nl2
√
p

− 1

l
. (16)

Let

ik =
(1−α)p+ q− 1

2
+ k(al−mp), jk =

(1−α)ζr+ q− 1

2
+ k(al−mp).

Then
δεa(b+ lk+1)− δεa(b+ lk)=Ak+B+Ck,

where

A= εζ · 2(al−mp)
2

pr
+

2l

pQ
,

B= ε

(
ζ
l

pr
(a− mp

l
)2− m2

l
+mα

)
,

Ck =
2b+2− p−Q

pQ
− d(L(Q, [p]Q), [b+ lk+1]Q)+ d(L(Q, [p]Q), [b+ lk]Q)

+ 2ε(V L
κ(φa(b+lk+1))−V L

κ(φa(b+lk))
)

− εζ(d(L(r, [q]r), [a−mq+ jk]r)− d(L(r, [q]r), [jk]r)
)
.
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Proof. By (16), we have

(lk+1)N
√
p<

p− (2l+1)r+ l

2l
≤ q− 2r+1

2
. (17)

It follows from (10), (17) and Lemma 3.3 that

0≤ ik <ik + a<p+ q, 0≤ jk, jk + a−mq<q. (18)

For example,

jk + a−mq= jk + a−mp− ζr
l

=
(1−α)ζr+ q− 1

2
+ (lk+1)

(
a− mp

l

)
+
mζr

l

<
r+ q− 1

2
+
q− 2r+1

2
+
r

2
= q.

The other inequalities can be verified similarly.
Using (13), we can compute

δεa(b+ lk+1)− δεa(b+ lk)

=
2b+2lk+2− p−Q

pQ
− d(L(Q, [p]Q), [b+ lk+1]Q)+ d(L(Q, [p]Q), [b+ lk]Q)

+2ε(V L
κ(φa(b+lk+1))−V L

κ(φa(b+lk))
)− ε(d(L(p, q), ik + a)− d(L(p, q), ik)

)
. (19)

As in the proof of Lemma 3.3, using (18) and the recursion formula (2), when
ζ =1, we can compute

d(L(p, q), ik + a)− d(L(p, q), ik)

=
(2ik +2a+1− p− q)2− (2ik +1− p− q)2

4pq
−d(L(q, r), jk + a−mq)+ d(L(q, r), jk)

=
a(2k(al−mp)+ a−αp)

pq
− (2jk +2a− 2mq+1− q− r)2− (2jk +1− q− r)2

4qr

+d(L(r, [q]r), [jk + a−mq]r)− d(L(r, [q]r), [jk]r)

=−2(al−mp)2
pr

k− l

pr
(a− mp

l
)2 +

m2

l
−mα+ d(L(r, [q]r), [jk + a−mq]r)

−d(L(r, [q]r), [jk]r).

Similarly, when ζ =−1, we get

d(L(p, q), ik + a)− d(L(p, q), ik)

=
2(al−mp)2

pr
k+

l

pr

(
a− mp

l

)2
+
m2

l
−mα− d(L(r, [q]r), [jk + a−mq]r)

+ d(L(r, [q]r), [jk]r).

So the right-hand side of (19) is Ak+B+Ck. ♦
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We can now finish the proof of Theorem 3.1. If S3
K(p/Q)∼= εS3

L(p/q), then (12)
holds, so

δεa(b+ lk+1)− δεa(b+ lk)= 0 or ± 2 (20)

for all k satisfying (16).
Let A,B,Ck be as in Lemma 3.4. By (7), A �=0. So Ak+B+C is equal to 0 or

±2 for at most three values of k for any given C. From the expression of Ck, it is
evident that there exists a constant integer M =M(L), such that given p, q, a, ε, ζ,
as k varies, Ck can take at most MQr values. Thus Ak+B+Ck can be 0 or
±2, i.e., (20) holds, for at most 3MQr values of k. But if p≥ 4l2N2(3lMQr+2)2,
then each of k in {0, 1, 2, . . . , 3MQr} satisfies (16) and thus (20) holds for each of
these 3MQr+1 values of k. This contradiction shows that p is bounded above by
4l2N2(3lMQr+2)2. Since p= lq+ ζr, we also get a bound for q.

4 SEIFERT SURGERIES

In this section we prove Theorem 1.1, Addendum 1.2 and Theorems 1.4 and 1.5.

Lemma 4.1. If W is an oriented Seifert fibered space whose base orbifold is
S2(2, 3, r) (or S2(3, 4, r)), r > 1, then W is homeomorphic to some surgery on the
torus knot T (3, 2) (resp. T (4, 3)), i.e.,

W ∼= εS3
T (3,2)

(
6q+ ζr

q

) (
resp. W ∼= εS3

T (4,3)

(
12q+ ζr

q

))

for some ε, ζ ∈{1,−1} and some positive integer q.

Proof. The proof is a quick generalization of that of [10, Lemma 3.1]. The Seifert
space W has three singular fibers of orders 2, 3, r (resp. 3, 4, r). The exterior of
the singular fiber of order r in W is homeomorphic (not necessarily orientation
preserving) to the exterior of the torus knot T (3, 2) (resp. T (4, 3)) in S3 because
there is only one Seifert fibered space (up to homeomorphism) with base orbifold
D2(2, 3) (resp. D2(3, 4)). Now on T (3, 2) (resp. T (4, 3)), a surgery gives Seifert
fibered space with base orbifold S2(2, 3, r) (resp. S2(3, 4, r)) if and only if the slope
is 6q+ζr

q (resp. 12q+ζr
q ), gcd(q, r)= 1. We may assume q > 0 up to change the sign

of ζ. ♦

The following proposition classifies satellite knots in S3 which admit Nil Seifert
surgeries.

Proposition 4.2. Suppose K is a satellite knot and S3
K(p/q) is a Nil Seifert fibered

space with p/q > 0. Then K is a cable over T (3, 2). More precisely, there are four
cases for the cable type and the slope:

Cable Type p/q

(29, 5) 144/1

(31, 5) 156/1

(41, 7) 288/1

(43, 7) 300/1
-1
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Proof. Let C be a companion knot of K such that C is itself not a satellite knot. Let
V be a solid torus neighborhood of C in S3 such that K is contained in the interior
of V but is not contained in a 3-ball in V and is not isotopic to the core circle of V .
Let N be a regular neighborhood of K in V ,MK =S3− int(N),MC =S3− int(V ),
and let VK(p/q) be the p/q-surgery of V along K. Then S3

K(p/q)=MK(p/q)=
MC ∪VK(p/q). Since S3

K(p/q) does not contain incompressible tori, ∂V must be
compressible in S3

K(p/q) and in fact compressible in VK(p/q). By [5], it follows that
either VK(p/q) has a connected summandW with 0< |H1(W )|<∞, or VK(p/q) is a
solid torus. In the former case, by [17] VK(p/q) contains a lens space as a connected
summand, which contradicts the fact that S3

K(p/q)=MK(p/q)=MC ∪VK(p/q) is
a Nil Seifert fibered space. Hence VK(p/q) is a solid torus. Now by [5], K is a 0 or
1-bridge braid in V with winding number w> 1. By [7, Lemma 3.3] the meridian
slope of the solid torus VK(p/q) is p/w2q and thus MK(p/q)=MC(p/w

2q). So C is
a torus knot by [2] and then C must be the trefoil knot T (3, 2) by [11].

If K is a (s, t)-cable in V (where we may assume t> 1 is the winding number of
K in V ), then by [7, Lemma 7.2], p= stq+ ε1, ε1 ∈{±1}. So MK(p/q)=MC((stq+
ε1)/(t

2q)). By [11] we should have stq+ ε1 =6t2q+ ε26, ε2 ∈{±1}. So we have stq−
6t2q= ε15 or −ε17, which implies q=1 and t=5 or 7.

If t=5, then s=30+ ε1 and p=5(30+ ε1)+ ε1. That is, either K is the (29, 5)-
cable over T (3, 2), q=1 and p=144 or K is the (31, 5)-cable over T (3, 2), q=1 and
p=156. Likewise if t=7, K is the (41, 7)-cable over T (3, 2), q=1 and p=288 or K
is the (43, 7)-cable over T (3, 2), q=1 and p=300.

Now suppose that K is a 1-bridge braid in V . By [6, Lemma 3.2], q=1 and
p= τw+ d where w is the winding number of K in V , and τ and d are integers sat-
isfying 0<τ <w− 1 and 0<d<w. Hence MK(p/q)=MC(τw+ d/w2) and by [11]
τw+ d=6w2± 6. But 6w2± 6− τw− d≥ 6w2− 6− (w− 1)w−w=5w2− 6> 0.
We get a contradiction, which means K cannot be a 1-bridge braid in V . ♦

Proof of Theorem 1.1 and Addendum 1.2. LetK be any non-trefoil knot in S3 such
that S3

K(p/q) is a Nil Seifert space. Up to changing K to its mirror image, we may
assume that p, q > 0. If K is a torus knot, then by [11], no surgery on K can produce
a Nil Seifert fibered space. So we may assume that K is not a torus knot. By [2]
and Proposition 4.2, q=1. We are now going to give a concrete upper bound for p.
As noted in Section 1, the base orbifold of S3

K(p) is S2(2, 3, 6). Thus by Lemma 4.1,
S3
K(p)∼= εS3

T (3,2)(p/q) with p=6q+ ζ6, for some ε, ζ ∈{1,−1}, and q > 0. As p �=0,

p/q > 1= g(T (3, 2)) which implies that S3
K(p)∼= εS3

T (3,2)(p/q) is an L-space by [15,

Corollary 1.4]. Therefore we may use surgery formula (5) instead of Proposition 2.2.
Now we apply the proof of Theorem 3.1 (and the notations established there) to
our current case with L=T (3, 2), Q=1, l= r=6. Thenm∈{0, 1, 2, 3}, b∈{0, p/2},
V L
i = b

T (3,2)
i (which is 1 if i=0 and 0 if i> 0), V K

i = bKi and

C0 =
2b+2− p− 1

p
+2ε

(
b
T (3,2)
κ(φa(b+1))− bT (3,2)

κ(φa(b))

)

−εζ
(
d

(
L(6, [q]6),

[
a−mq+ ζ(1−α)6+ q− 1

2

]

6

)

−d
(
L(6, [q]6),

[
ζ(1−α)6+ q− 1

2

]

6

))
.
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Using formula (2) one can compute

d(L(6, q), i)=

⎧
⎨

⎩

(
5
4 ,

5
12 ,
−1
12 ,

−1
4 ,
−1
12 ,

5
12

)
, q=1, i=0, 1, . . . , 5,

(−5
12 ,

1
12 ,

1
4 ,

1
12 ,
−5
12 ,

−5
4

)
, q=5, i=0, 1, . . . , 5.

(21)

Thus |C0| ≤ 1+2+ 3
2 < 5. Since |m2

6 −mα| ≤ 2 form=0, 1, 2, 3 and α=0, 1, we may
take N =3. Similarly recall the A,B, and Ck in Lemma 3.4, and in our current case,
Ck becomes

Ck =
2b+2− p− 1

p
+2ε

(
b
T (3,2)
κ(φa(b+lk+1))− bT (3,2)

κ(φa(b+lk))

)

−εζ (d(L(6, [q]6), [a−mq+ jk]6)− d(L(6, [q]6), [jk]6)) ,

which can take at most 18 values as k varies. Thus the bound for p is 4 · 62 · 32(3 ·
6 · 18+2)2 when A �=0.

Now we just need to show that in our current case, A is never zero. Suppose
otherwise that A=0. Then εζ =−1, (a− mp

6 )2 =1, so a−mq= ζm± 1, and by
Lemma 3.4

δεa(b+ lk+1)− δεa(b+ lk)=B+Ck

=−εm2

6 + εmα+(0 or -1)+ 2ε(b
T (3,2)
κ(φa(b+lk+1))− bT (3,2)

κ(φa(b+lk))
)

+d(L(6, [q]6), [ζm± 1+ jk]6)− d(L(6, [q]6), [jk]6).

Thus

− εm
2

6
+ d

(
L(6, [q]6), ζm± 1+

[
3ζ(1−α)+ q− 1

2

]

6

)

− d
(
L(6, [q]6),

[
3ζ(1−α)+ q− 1

2

]

6

)
(22)

is integer valued. Using (21), we see that for each ofm=0, 1, 2, 3, q≡ 1, 5 (mod 6),
α∈{0, 1} and ζ ∈{1,−1}, the expression given in (22) is never integer valued. This
contradiction proves the assertion that A �=0.

Now for the bounded region of integral slopes for p, one can use (5), (2) and
computer calculation to locate those possible integral slopes and identify the cor-
responding Nil Seifert fibered spaces given in Theorem 1.1, so we get Theorem 1.1.
One can also recover the possible Alexander polynomials for the candidate knots
using formula (3). The rest of Addendum 1.2 follows from [11], Proposition 4.2, [3],
and direct verification using SnapPy. ♦

Proof of Theorem 1.4. Let K be a hyperbolic knot in S3 such that S3
K(p/Q) is a

Seifert fibered space whose base orbifold is S2(2, 3, r) (or S2(3, 4, r)). By changing
K to its mirror image, we may assume that both p and Q are positive integers. By
[9] we have Q≤ 8. So we just need to show that p is bounded above (independent
of hyperbolic K).

By Lemma 4.1,

S3
K(p/Q)∼= εS3

T (3,2)

(
6q+ ζr

q

) (
resp.S3

K(p/Q)∼= εS3
T (4,3)

(
12q+ ζr

q

))
-1
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for some ε, ζ ∈{1,−1} and some positive integer q. Now applying Theorem 3.1 with
l=6 and L=T (3, 2) (resp. l=12 and L=T (4, 3)), our desired conclusion is true
when (7) holds, i.e., √

6r

Q
/∈Z (resp.

√
12r

Q
/∈Z)

for each Q=1, . . . , 8. ♦

Proof of Theorem 1.5. Let K be a hyperbolic knot in S3 such that S3
K(p/Q)∼=

εS3
T (m,n)(

mnq+ζr
q ). Again Q≤ 8 and Theorem 3.1 applies with l=mn and L=

T (m,n). ♦
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