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Reference: Jones, “Groups, Representations, and Physics”, Chapter 10.

9 Lorentz Group and Special Relativity

Special relativity says, physics laws should look the same for different observers in different inertial
reference frames.

In the non-relativistic setting, the coordinates of different reference frames are related by the
Euclidean transformation. In particular, if two reference frames S and S′ coincide at t = 0 and are
moving with relative velocity ~v = (v, 0, 0), then the relation between the coordinates of an event in
the two reference frames is

t′ = t, ~r′ = ~r − ~vt
(
x′ = x− vt, y′ = y, z′ = z

)
(1)

Under such a transformation the spatial distance between two points (at the same time) remains
invariant

(~r′1 − ~r′2)2 = (~r1 − ~r2)2 (2)

In special relativity however, we need to use the Lorentz transformation and replace the above
relation with

t′ = γ(t− xv/c2), x′ = γ(x− vt), y′ = y, z′ = z (3)

where γ = c√
c2−~v2 . This particular transformation induced by a relative velocity is called a boost.

The transformation may look complicated, but it is designed so that the velocity of light remains
invariant in all inertial reference frames. Suppose that we send out a light signal from the origin
at t = 0 in the x direction. In reference frame S, at a later time t, the signal has travelled to point
x = ct, y = 0, z = 0. Transformed to the reference frame of S′, we find that the coordinate of the
corresponding signal is

t′ = t

√
c− v
c+ v

, x′ = ct

√
c− v
c+ v

, y′ = 0, z′ = 0 (4)

Therefore the velocity of light in the frame of S′ is also c.

This is just one particular example of the whole group of Lorentz transformation, which we are
going to study in detail below.

9.1 Coordinate four vector

The fact that time and space gets mixed together under Lorentz transformation motivates the
definition of the space-time four vector x̃µ, µ = 0, 1, 2, 3 for the Minkowski space

x̃0 = ct, x̃1 = x, x̃2 = y, x̃3 = z (5)

Notice that the components of the four vector all have the dimension of length.
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Lorentz transformation leaves the ‘interval’

|x̃|2 = c2t2 − x2 − y2 − z2 (6)

invariant. (This ensures that the speed of light remains invariant in all reference frames.)

We define a metric tensor, gµν such that gµν = 0 if µ 6= ν and g00 = −g11 = −g22 = −g33 = 1.
That is,

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (7)

Then we can define the ‘length’ of the four vector as

|x̃|2 = x̃T gx̃ (8)

This is very different from the metric we are used to. In the usual Euclidean space, g =

1 0 0
0 1 0
0 0 1


is positive definite. The metric for the Minkowski space is not positive definite and will result in
some special properties of the Lorentz group.

Suppose that under a Lorentz transformation, the four vector transforms as

x̃′ = Λx̃ (9)

Then the invariance of the length of the vector requires that

|x̃′|2 = x̃′T gx̃′ = x̃ΛT gΛx̃ = x̃T gx̃ = |x̃|2 (10)

Because this is true for all x, we have ΛT gΛ = g.

Notice that if g = I3, this condition reduces to the orthogonality condition of three dimensional
rotation transformations which form the group SO(3). The Lorentz group can be thought of as the
group of ‘orthogonal’ transformations on a space with metric g = diag(−1, 1, 1, 1) and it is denoted
as SO(3, 1).

9.2 Lorentz Transformations

What kind of Λ satisfies the above condition?

First, any spatial rotation involving x̃1, x̃2, x̃3 keeps the length of the four vector invariant. There-
fore, the spatial rotation transformations ∈ SO(3) forms a subgroup of the Lorentz group. The
transformation matrices take the form

Λr~n(θ) =


1 0 0 0
0
0 R~n(θ)
0

 (11)
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where R~n(θ) is the three dimensional special orthogonal matrix representing the spatial rotation.
This subgroup of transformations is generated by

X1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , X2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , X3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (12)

A different kind of Lorentz transformations which do involve time are the ‘boosts’. Boost in the x
direction gives rise to the transformation

Λbx(v) =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1

 (13)

where γ = c√
c2−v2 . If we define γ = cosh ζ = eζ+e−ζ

2 , so that tanh ζ = sinh ζ
cosh ζ = v

c , then Λbx(v) can

be re-written as

Λbx(ζ) =


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

 (14)

One can explicitly check that
(
Λbx(ζ)

)T
gΛbx(ζ) = g.

The infinitesimal generator for x direction boost is

Y1 = i
dΛbx(ζ)

dζ

∣∣∣
ζ=0

=


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 (15)

By exponentiating Y1, we can recover Λbx(ζ)

Λbx(ζ) = e−iζY1 (16)

However, notice one important difference with the generator for SO(3): ζ is not bounded. As v
approaches c, ζ approaches +∞. Therefore, the Lorentz group SO(3, 1) is not compact. This has
a series of consequence. One of them being that the finite dimensional representations of SO(3, 1)
are no longer unitary.

Similarly, boosts in y and z directions are generated by

Y2 =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , Y3 =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 (17)

Boosts in an arbitrary direction ~n can be obtained first by rotating ~n to x axis, applying the boost
in x direction and then rotating back.

In general, an arbitrary Lorentz transformation contains both spatial rotation and boost. The
whole group is generated from X1, X2, X3 and Y1, Y2, Y3. The Lie algebra of SO(3, 1) is a six
dimensional real vector space with commutators

[Xa, Xb] = iεabcXc, [Xa, Yb] = iεabcYc, [Ya, Yb] = −iεabcXc (18)
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Comments:

(1) While X1, X2, X3 is closed under commutation, Y1, Y2, Y3 are not. Therefore, the boosts do
not form a subgroup.

(2) While X1, X2, X3 are Hermitian, Y1, Y2, Y3 are anti-Hermitian. Therefore, the representation
is not unitary (the boost transformation is not unitary).

(3) The first and second commutation relation says that X1, X2, X3 transform as a vector under
SO(3), so do Y1, Y2, Y3.

(4) We can make linear combinations between X and Y

X(±)
a =

1

2
(Xa ± iYa) (19)

In terms of X±a , the commutation relations become

[X(+)
a , X

(+)
b ] = iεabcX

(+)
c , [X(−)

a , X
(−)
b ] = iεabcX

(−)
c , [X(+)

a , X
(−)
b ] = 0 (20)

That is, the set of six generators break up into two subsets, such that each subset is equivalent to
the Lie algebra of SU(2) and the two subsets are independent of each other.

9.3 Irreducible representations

The four dimensional matrices Λ provides one possible representation of SO(3, 1) while the group is
abstractly defined as that satisfying the same composition rule as the Λ’s. In terms of Lie algebra,
the group is defined as that with a six dimensional Lie algebra, satisfying the commutation relation

[Xa, Xb] = iεabcXc, [Xa, Yb] = iεabcYc, [Ya, Yb] = −iεabcXc (21)

or
[X(+)

a , X
(+)
b ] = iεabcX

(+)
c , [X(−)

a , X
(−)
b ] = iεabcX

(−)
c , [X(+)

a , X
(−)
b ] = 0 (22)

Now we can try to see what irreducible representations do SO(3, 1) have. Following our analysis
of SO(3), in order to find irreps for a Lie group, we can try to find the irreps for its Lie algebra,
but with the danger that we get the irrep of the covering group (SU(2) for SO(3)). Things work
in a very similar way for SO(3, 1).

We see that the Lie algebra of SO(3, 1) contains two SU(2) part. Therefore, its irrep can be labelled
by (j1, j2), where j1, j2 are integer or half-integer. The representation is then (2j1 + 1)(2j2 + 1)
dimensional. The generators are

X+
a = J j1a ⊗ I2j2+1, X

−
a = I2j1+1 ⊗ J j2a (23)

From which we get

Xa = J j1a ⊗ I2j2+1 + I2j1+1 ⊗ J j2a , Ya = −i(J j1a ⊗ I2j2+1 − I2j1+1 ⊗ J j2a ) (24)

If we then take the exponential, we can recover the group (or its covering group).
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Let’s see some example irreps.

(1) j1 = 0, j2 = 0

This is the trivial representation. It is one dimensional, with all the generators being 0 and all the
group elements being represented by 1. In quantum field theory, this representation is carried by a
relativistic scalar field (e.g. Higgs field).

(2) j1 = 1/2, j2 = 0

This is called a spinor representation. It is two dimensional.

X+
1 = σx, X

+
2 = σy, X

+
3 = σz, X

−
1 = 0, X−2 = 0, X−3 = 0 (25)

Correspondingly

X1 = σx, X2 = σy, X3 = σz, Y1 = −iσx, Y2 = −iσy, Y3 = −iσz (26)

The Lorentz transformations are then parameterized by six real numbers θ1, θ2, θ3, φ1, φ2, φ3

Λ(~θ, ~φ) = ei(
~θ· ~X+~φ·~Y ) = ei(

~θ−i~φ)·~σ (27)

Note that this is different from the SU(2) group which contains matrices ei
~θ·~σ. In fact, the set of

matrices generated are the group of special (determinant 1) linear (invertible) matrices of dimension
2, SL(2,C). SL(2,C) is a covering group of the SO(3, 1) group as 2π spatial rotation results in −I
instead of I.

In quantum field theory, this representation is carried by the Weyl fermion.

(3) j1 = 0, j2 = 1/2

This is another spinor representation with generators

X1 = σx, X2 = σy, X3 = σz, Y1 = iσx, Y2 = iσy, Y3 = iσz (28)

This is inequivalent to the previous representation because they cannot be related by a basis
transformation.

In quantum field theory, the direct sum of the j1 = 1/2, j2 = 0 representation and the j1 = 0,
j2 = 1/2 representation is carried by the Dirac fermion.

(4) j1 = 1/2, j2 = 1/2

This is a four dimensional representation. Actually, it is exactly the four dimensional representa-
tion which we used to define SO(3, 1). That is, the space time four vector transforms with this
representation.
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