
Physics 129b Lecture 13 Caltech, 02/18/20

7 Continuous Group

Now we are going to move on to continuous groups. We have seen the simplest example of a
continuous group, the circle group. Let’s first review how that works and see how the idea can be
generalized to more complicated groups.

7.1 SO(2)

Instead of saying “the circle group”, we are going to call it by a more popular name: the SO(2)
group. It is a matrix group of two dimensional orthogonal matrices with +1 determinant. It
represents rotation of a two dimensional vector space and is represented on this two dimensional
space as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(1)

θ ∈ [0, 2π) and the group elements compose as

R(θ1)R(θ2) = R(θ1 + θ2 mod 2π) (2)

Notice that here we are using a particular representation to define the group, but the group is
a more general abstract notion. In particular the group can have other kinds of representations.
This 2D representation is special though in that it is faithful. Other representations may not be
faithful. It is a slight abuse of terminology to call the group SO(2), but in most cases it should be
clear enough whether we are talking about the abstract group or this particular two dimensional
representation.

The continuity of the group elements comes from the continuity of the parameter θ. Moreover, the
group has a nice property called compact, which roughly means that the parameter takes value in
the bounded region of [0, 2π).

This is an abelian group and the 2D representation actually decomposes into two 1D irreps through

unitary transformation S = 1√
2

(
1 i
1 −i

)

SR(θ)S−1 =

(
eiθ 0
0 e−iθ

)
(3)

Of course there are an infinite number of irreps given by {einθ}, n ∈ Z.

Because all irreps are 1D, the character of the representation is just given by the irrep itself.

χ(n) = einθ, θ ∈ [0, 2π) (4)

These characters satisfy an orthogonality condition similar to the finite group case. However,
instead of summing over individual group elements, we need to perform an integration over them.

〈χ(n), χ(n′)〉 =
1

2π

∫ 2π

0
dθe−inθein

′θ = δnn′ (5)
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Notice that I have chosen a normalization for the inner product of characters so that each character
have length 1.

We can use this orthogonality condition of characters in the same way as we have used it for finite
groups. For example, we can check that the 2D rep given above decomposes into two 1D irreps.
The character of the 2D irrep

χ = 2 cos θ = eiθ + e−iθ (6)

Therefore
R(θ) = D(1)(θ)⊕D(−1)(θ) (7)

as we have seen above.

The direct product of irreps goes as

D(n) ⊗D(n′) = D(n+n′) (8)

Therefore, under direct product, the irreps form a group which is isomorphic to the group of
integers.

For finite groups, a useful notion is the generator of the group. Once we have identified the
generators of a group and the relations between them, we knows which group it is. For continuous
group, can we similarly find such generators? For the SO(2) group, intuition says that the generator
of the group is an infinitesimal rotation by a very small angle θ. But of course, no θ is small enough,
we can always find a smaller one. What we define instead, is an infinitesimal generator

X = i
dR(θ)

dθ

∣∣∣
θ=0

(9)

for any representation R. Any group elements in the continuous group can then be obtained by
taking the exponential of this infinitesimal generator.

R(θ) = e−iθX (10)

The exponential of an operator is defined as e−iθX =
∑∞

k=0
(−iθX)k

k! . If we can diagonalize X into
V XV −1 = D, where D = diag(d1, d2, ...), then e−iθX = V −1diag(e−iθd1 , e−iθd2 , ...)V .

For the irrep labeled by n, D(n)(θ) = einθ, X(n) = −n. For the 2D orthogonal representation,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, X =

(
0 −i
i 0

)
. Note that X is Hermitian because R is unitary.

In physics, the Hermitian generator X is sometimes identified as the orbital angular momentum
Jz around the rotation axis z (e.g. for electron orbits around a nucleus). Suppose that a wave
function forms an irrep of the SO(2) group. That is,

R(θ)|ψ〉 = e−inθ|ψ〉 (11)

The state is said to have orbital angular momentum Jz = n. In other situations, X maybe identified
with the number of particles N in the system (e.g. for electrons in metals or insulators) and in this
particular state N = n.
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7.2 SO(3)

This is the group of three dimensional orthogonal matrices with +1 determinant. This set of
matrices describe rotation of a three dimensional real vector space. Even though it is just one
dimension up from SO(2), it is much more complicated but also much more interesting!

First, SO(3) is not abelian any more. Imagine we perform a rotation around the z axis first by an
angle θ, the transformation of the 3D vector space is given by

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (12)

Next let’s perform a rotation around x axis by an angle θ′, the transformation of the 3D vector
space is given by

Rx(θ′) =

1 0 0
0 cos θ′ − sin θ′

0 sin θ′ cos θ′

 (13)

Direct calculation shows that Rz(θ)Rx(θ′) 6= Rx(θ′)Rz(θ) for general θ and θ′. Similar to the case of
SO(2), these three dimensional matrices provide one particular representation of the SO(3) group,
but the group may have other representations. This three dimensional representation is special
in that it is faithful and irreducible. As a nonabelian group, SO(3) can have higher dimensional
irreps, which we are going to discuss later.

Infinitesimal generators

First, let us try to understand what are the infinitesimal generators of SO(3). Following the
discussion of SO(2), it is easy to see that to generate rotation around z axis, the infinitesimal
generator is

X3 =

0 −i 0
i 0 0
0 0 0

 (14)

such that Rz(θ) = e−iθX3 . Similarly, we find that

X1 =

0 0 0
0 0 −i
0 i 0

 , X2 =

 0 0 i
0 0 0
−i 0 0

 (15)

such that Rx(θ) = e−iθX1 , Ry(θ) = e−iθX2 . X1, X2, X3 each generate a subgroup of rotation around
x, y and z axes respectively.

Are X1, X2 and X3 enough to generate all SO(3) transformations?

Euler’s rotation theorem says: any transformation in SO(3) is equivalent to a single rotation about
some axis for a certain angle. It can be shown (Jones page 102-103) that such rotation operation
can be written in the form

R~n(θ) = e−iθ(nxX1+nyX2+nzX3) = e−iθX~n (16)
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Therefore, the linear combination of X1, X2 and X3 gives the infinitesimal generator of all trans-
formations in SO(3). The inverse of this operation corresponds to rotation around the same axis
but with opposite angle R−1~n (θ) = eiθX~n .

In quantum mechanics, X1, X2 and X3 correspond to angular momentum operator Jx, Jy, Jz and
their linear combination X~n = nxX1 + nyX2 + nzX3 corresponds to angular momentum in the ~n
direction.

The vector space of linear combinations of X1, X2 and X3 leads to the most important concept in
describing the set of continuous groups we are interested in.

SO(3) (and also SO(2)) is an example of a Lie group. Its infinitesimal generators form a Lie
algebra. The Lie algebra is usually denoted with lower case letters of the name of the group. For
example, the Lie algebra of the SO(2) group is so(2) and the Lie algebra of SO(3) is so(3).

There are two important structures of this algebra:

(1) it is a (real) vector space. That is, the linear combination of two infinitesimal generators is
(linearly proportional to) an infinitesimal generator;

(2) The commutator of two infinitesimal generators [Xi, Xj ] = XiXj−XjXi is (linearly proportional
to) an infinitesimal generator.

Comment:

1. By focusing on the infinitesimal generators, we reduce the study of a continuous group with an
infinite number of elements to the study of a finite set, the basis of the Lie algebra.

2. In SO(3), X1, X2, X3 form the basis of the vector space. We have shown above that (1) is true
for SO(3). Let’s now see that (2) is also true. First [Xi, Xi] = 0 which is the infinitesimal generator
for doing nothing because eiθ0 = I.

[X1, X2] = iX3, [X2, X3] = iX1, [X3, X1] = iX2 (17)

From which we can show that for any two linear combinations of X1, X2, X3, we have

[~na · ~X,~nb · ~X] = i(~na × ~nb) · ~X (18)

3. Notice that because in general Xi’s do not commute, eiθ
∑

i niXi 6=
∏
i e
iθniXi .

4. The commutator can be thought of as a composition rule between the infinitesimal generators,
mapping two such generators to a third one. This composition rule is anti-commuting, [Xi, Xj ] =
−[Xj , Xi]. It satisfies the Jacobi Identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (19)

5. The commutator between the infinitesimal generators is very useful in determining the conjugacy
classes of the group. For SO(3) we are going to find that rotation operations around different axes
with the same angle are conjugate to each other. That is,

eiφ~n2· ~Xeiθ~n1· ~Xe−iφ~n2· ~X = eiθ~n3· ~X (20)
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Physically this is very intuitive. We can imagine that eiφ~n2· ~X and e−iφ~n2· ~X maps the vector ~n1 to ~n3
and back. Then under this mapping, the rotation around axis ~n1 for angle θ is mapped to rotation
around axis ~n3 for angle θ.

We are not going to derive this result in class, but we are going to work it out in the homework.

6. The conjugacy classes of SO(3) then consist of rotation through the same angle about different
axes and can be labelled simply by that angle θ. Correspondingly, characters are just a function of
θ. In the three dimensional special orthogonal representation, we have

χ = 2 cos(θ) + 1 (21)

which can be verified directly for Rx(θ), Ry(θ) and Rz(θ).

Irreducible representations

Now let’s see what irreps the group SO(3) has. There is an infinite number of them, as you might
have expected from the continuous nature of this group. Instead of trying to find irreps of the group,
we can just find irreps of the infinitesimal generators (the algebra). Then by taking exponentiation,
we can recover the group elements.

That is, we are looking for irreducible representations of X1, X2, X3 such that

1. X1, X2, X3 are finite dimensional Hermitian operators.

2. they satisfy the relation [Xa, Xb] = iεabcXc, where εabc = 1 if {ijk} can be obtained from {xyz}
by a cyclic permutation, εabc = −1 if {abc} can be obtained from {xyz} by a cyclic permutation
and an exchange and εabc = 0 otherwise.

3. once exponentiated, they give rise to the SO(3) group. (This requirement may seem redundant,
if the previous two are satisfied. But in fact it is not, as we are going to see later on.)

In physics, this exercise is called ‘finding the orbit of an electron in a Hydrogen atom’. Rotation
invariance around z axis in the Hydrogen atom implies that every orbit is labeled by a particular
value of angular momentum Jz in the z direction. If we take into account the full rotation symmetry
of the Hydrogen atom in three dimensional space, then the orbits should be labelled by irreps of
the SO(3) group, not just the SO(2) group, and they transform under SO(3) rotation as an irrep.
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